
Apache Solr Reference Guide

Covering Apache Solr 6.1

Licensed to the Apache Software Foundation (ASF) under one
or more contributor license agreements. See the NOTICE file
distributed with this work for additional information
regarding copyright ownership. The ASF licenses this file
to you under the Apache License, Version 2.0 (the
"License"); you may not use this file except in compliance
with the License. You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing,
software distributed under the License is distributed on an
"AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the
specific language governing permissions and limitations
under the License.

Apache and the Apache feather logo are trademarks of The Apache Software Foundation. Apache Lucene, Apache
Solr and their respective logos are trademarks of the Apache Software Foundation. Please see the Apache

 for more information.Trademark Policy

Fonts used in the Apache Solr Reference Guide include , licensed under the .Raleway SIL Open Font License, 1.1

TM

http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/foundation/marks/
http://www.apache.org/foundation/marks/
https://www.theleagueofmoveabletype.com/raleway
http://scripts.sil.org/OFL

2Apache Solr Reference Guide 6.1

Apache Solr Reference Guide
This reference guide describes Apache Solr, the open source solution for search. You can download Apache
Solr from the Solr website at .http://lucene.apache.org/solr/

This Guide contains the following sections:

Getting Started: This section guides you through the installation and setup of Solr.

Using the Solr Administration User Interface: This section introduces the Solr Web-based user interface.
From your browser you can view configuration files, submit queries, view logfile settings and Java environment
settings, and monitor and control distributed configurations.

Documents, Fields, and Schema Design: This section describes how Solr organizes its data for indexing. It
explains how a Solr schema defines the fields and field types which Solr uses to organize data within the
document files it indexes.

Understanding Analyzers, Tokenizers, and Filters: This section explains how Solr prepares text for indexing
and searching. Analyzers parse text and produce a stream of tokens, lexical units used for indexing and
searching. Tokenizers break field data down into tokens. Filters perform other transformational or selective work
on token streams.

Indexing and Basic Data Operations: This section describes the indexing process and basic index operations,
such as commit, optimize, and rollback.

Searching: This section presents an overview of the search process in Solr. It describes the main components
used in searches, including request handlers, query parsers, and response writers. It lists the query parameters
that can be passed to Solr, and it describes features such as boosting and faceting, which can be used to
fine-tune search results.

The Well-Configured Solr Instance: This section discusses performance tuning for Solr. It begins with an
overview of the file, then tells you how to configure cores with , how to configuresolrconfig.xml solr.xml
the Lucene index writer, and more.

Managing Solr: This section discusses important topics for running and monitoring Solr. Other topics include
how to back up a Solr instance, and how to run Solr with Java Management Extensions (JMX).

SolrCloud: This section describes the newest and most exciting of Solr's new features, SolrCloud, which
provides comprehensive distributed capabilities.

Legacy Scaling and Distribution: This section tells you how to grow a Solr distribution by dividing a large index
into sections called shards, which are then distributed across multiple servers, or by replicating a single index
across multiple services.

Client APIs: This section tells you how to access Solr through various client APIs, including JavaScript, JSON,
and Ruby.

http://lucene.apache.org/solr/

3Apache Solr Reference Guide 6.1

About This Guide
This guide describes all of the important features and functions of Apache Solr. It is free to download from http://l

.ucene.apache.org/solr/

Designed to provide high-level documentation, this guide is intended to be more encyclopedic and less of a
cookbook. It is structured to address a broad spectrum of needs, ranging from new developers getting started to
well-experienced developers extending their application or troubleshooting. It will be of use at any point in the
application life cycle, for whenever you need authoritative information about Solr.

The material as presented assumes that you are familiar with some basic search concepts and that you can read
XML. It does not assume that you are a Java programmer, although knowledge of Java is helpful when working
directly with Lucene or when developing custom extensions to a Lucene/Solr installation.

Special Inline Notes

Special notes are included throughout these pages.

Note Type Look & Description

Information

Notes

Tip

Warning

Hosts and Port Examples

The default port when running Solr is 8983. The samples, URLs and screenshots in this guide may show
different ports, because the port number that Solr uses is configurable. If you have not customized your
installation of Solr, please make sure that you use port 8983 when following the examples, or configure your own
installation to use the port numbers shown in the examples. For information about configuring port numbers, see

.Managing Solr

Similarly, URL examples use 'localhost' throughout; if you are accessing Solr from a location remote to the server
hosting Solr, replace 'localhost' with the proper domain or IP where Solr is running.

Paths

Path information is given relative to , which is the location under the main Solr installation wheresolr.home
Solr's collections and their and directories are stored. When running the various examplesconf data

Notes with a blue background are used for information that is important for you to know.

Yellow notes are further clarifications of important points to keep in mind while using
Solr.

Notes with a green background are Helpful Tips.

Notes with a red background are warning messages.

http://lucene.apache.org/solr/
http://lucene.apache.org/solr/

4Apache Solr Reference Guide 6.1

mentioned through out this tutorial (i.e.,) the will be a sub directorybin/solr -e techproducts solr.home
of created for you automatically.example/

5Apache Solr Reference Guide 6.1

Getting Started
Solr makes it easy for programmers to develop sophisticated, high-performance search applications with
advanced features such as faceting (arranging search results in columns with numerical counts of key terms).
Solr builds on another open source search technology: Lucene, a Java library that provides indexing and search
technology, as well as spellchecking, hit highlighting and advanced analysis/tokenization capabilities. Both Solr
and Lucene are managed by the Apache Software Foundation (.www.apache.org)

The Lucene search library currently ranks among the top 15 open source projects and is one of the top 5 Apache
projects, with installations at over 4,000 companies. Lucene/Solr downloads have grown nearly ten times over
the past three years, with a current run-rate of over 6,000 downloads a day. The Solr search server, which
provides application builders a ready-to-use search platform on top of the Lucene search library, is the fastest
growing Lucene sub-project. Apache Lucene/Solr offers an attractive alternative to the proprietary licensed
search and discovery software vendors.

This section helps you get Solr up and running quickly, and introduces you to the basic Solr architecture and
features. It covers the following topics:

Installing Solr: A walkthrough of the Solr installation process.

Running Solr: An introduction to running Solr. Includes information on starting up the servers, adding documents,
and running queries.

A Quick Overview: A high-level overview of how Solr works.

A Step Closer: An introduction to Solr's home directory and configuration options.

Solr Start Script Reference: a complete reference of all of the commands and options available with the bin/solr
script.

Installing Solr
This section describes how to install Solr. You can install Solr in any system where a suitable Java Runtime
Environment (JRE) is available, as detailed below. Currently this includes Linux, OS X, and Microsoft Windows.
The instructions in this section should work for any platform, with a few exceptions for Windows as noted.

Got Java?

You will need the Java Runtime Environment (JRE) version 1.8 or higher. At a command line, check your Java
version like this:

$ java -version
java version "1.8.0_60"
Java(TM) SE Runtime Environment (build 1.8.0_60-b27)
Java HotSpot(TM) 64-Bit Server VM (build 25.60-b23, mixed mode)

The exact output will vary, but you need to make sure you meet the minimum version requirement. We also
recommend choosing a version that is not end-of-life from its vendor. If you don't have the required version, or if
the java command is not found, download and install the latest version from Oracle at http://www.oracle.com/tec

.hnetwork/java/javase/downloads/index.html

Installing Solr

http://www.apache.org/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

6Apache Solr Reference Guide 6.1

Solr is available from the Solr website at .http://lucene.apache.org/solr/

For Linux/Unix/OSX systems, download the file. For Microsoft Windows systems, download the file..tgz .zip
When getting started, all you need to do is extract the Solr distribution archive to a directory of your choosing.
When you're ready to setup Solr for a production environment, please refer to the instructions provided on the Ta

 page. To keep things simple for now, extract the Solr distribution archive to your localking Solr to Production
home directory, for instance on Linux, do:

$ cd ~/
$ tar zxf solr-x.y.z.tgz

Once extracted, you are now ready to run Solr using the instructions provided in the section.Running Solr

Running Solr
This section describes how to run Solr with an example schema, how to add documents, and how to run queries.

Start the Server

If you didn't start Solr after installing it, you can start it by running from the Solr directory.bin/solr

$ bin/solr start

If you are running Windows, you can start Solr by running instead.bin\solr.cmd

bin\solr.cmd start

This will start Solr in the background, listening on port 8983.

When you start Solr in the background, the script will wait to make sure Solr starts correctly before returning to
the command line prompt.

The and scripts allow you to customize how you start Solr. Let's work through a fewbin/solr bin\solr.cmd
examples of using the script (if you're running Solr on Windows, the works the samebin/solr bin\solr.cmd
as what is shown in the examples below):

Solr Script Options

The script has several options.bin/solr

Script Help

To see how to use the script, execute:bin/solr

$ bin/solr -help

For specific usage instructions for the command, do:start

 $ bin/solr start -help

http://lucene.apache.org/solr/

7Apache Solr Reference Guide 6.1

Start Solr in the Foreground

Since Solr is a server, it is more common to run it in the background, especially on Unix/Linux. However, to start
Solr in the foreground, simply do:

 $ bin/solr start -f

If you are running Windows, you can run:

bin\solr.cmd start -f

Start Solr with a Different Port

To change the port Solr listens on, you can use the parameter when starting, such as:-p

 $ bin/solr start -p 8984

Stop Solr

When running Solr in the foreground (using -f), then you can stop it using . However, when running in theCtrl-c
background, you should use the command, such as:stop

 $ bin/solr stop -p 8983

The stop command requires you to specify the port Solr is listening on or you can use the parameter to-all
stop all running Solr instances.

Start Solr with a Specific Bundled Example

Solr also provides a number of useful examples to help you learn about key features. You can launch the
examples using the flag. For instance, to launch the "techproducts" example, you would do:-e

 $ bin/solr -e techproducts

Currently, the available examples you can run are: techproducts, dih, schemaless, and cloud. See the section Ru
 for details on each example.nning with Example Configurations

Check if Solr is Running

If you're not sure if Solr is running locally, you can use the status command:

 $ bin/solr status

This will search for running Solr instances on your computer and then gather basic information about them, such
as the version and memory usage.

That's it! Solr is running. If you need convincing, use a Web browser to see the Admin Console.

Getting Started with SolrCloud
Running the example starts Solr in mode. For more information on starting Solr incloud SolrCloud
cloud mode, see the section . Getting Started with SolrCloud

https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations
https://cwiki.apache.org/confluence/display/solr/Solr+Start+Script+Reference#SolrStartScriptReference-RunningwithExampleConfigurations

8Apache Solr Reference Guide 6.1

http://localhost:8983/solr/

The Solr Admin interface.

If Solr is not running, your browser will complain that it cannot connect to the server. Check your port number
and try again.

Create a Core

If you did not start Solr with an example configuration, you would need to create a core in order to be able to
index and search. You can do so by running:

 $ bin/solr create -c <name>

This will create a core that uses a data-driven schema which tries to guess the correct field type when you add
documents to the index.

To see all available options for creating a new core, execute:

 $ bin/solr create -help

Add Documents

Solr is built to find documents that match queries. Solr's schema provides an idea of how content is structured
(more on the schema), but without documents there is nothing to find. Solr needs input before it can dolater
much.

You may want to add a few sample documents before trying to index your own content. The Solr installation
comes with different types of example documents located under the sub-directories of the directory ofexample/
your installation.

In the directory is the post script, a command line tool which can be used to index different types ofbin/

9Apache Solr Reference Guide 6.1

documents. Do not worry too much about the details for now. The sectionIndexing and Basic Data Operations
has all the details on indexing.

To see some information about the usage of , use the option. Windows users, see the sectionbin/post -help
for .Post Tool on Windows

bin/post can post various types of content to Solr, including files in Solr's native XML and JSON formats, CSV
files, a directory tree of rich documents, or even a simple short web crawl. See the examples at the end of
`bin/post -help` for various commands to easily get started posting your content into Solr.

Go ahead and add all the documents in some example XML files:

$ bin/post -c gettingstarted example/exampledocs/*.xml
SimplePostTool version 5.0.0
Posting files to [base] url http://localhost:8983/solr/gettingstarted/update...
Entering auto mode. File endings considered are
xml,json,csv,pdf,doc,docx,ppt,pptx,xls,xlsx,odt,odp,ods,ott,otp,ots,rtf,htm,html,txt
,log
POSTing file gb18030-example.xml (application/xml) to [base]
POSTing file hd.xml (application/xml) to [base]
POSTing file ipod_other.xml (application/xml) to [base]
POSTing file ipod_video.xml (application/xml) to [base]
POSTing file manufacturers.xml (application/xml) to [base]
POSTing file mem.xml (application/xml) to [base]
POSTing file money.xml (application/xml) to [base]
POSTing file monitor.xml (application/xml) to [base]
POSTing file monitor2.xml (application/xml) to [base]
POSTing file mp500.xml (application/xml) to [base]
POSTing file sd500.xml (application/xml) to [base]
POSTing file solr.xml (application/xml) to [base]
POSTing file utf8-example.xml (application/xml) to [base]
POSTing file vidcard.xml (application/xml) to [base]
14 files indexed.
COMMITting Solr index changes to http://localhost:8983/solr/gettingstarted/update...
Time spent: 0:00:00.153

That's it! Solr has indexed the documents contained in those files.

Ask Questions

Now that you have indexed documents, you can perform queries. The simplest way is by building a URL that
includes the query parameters. This is exactly the same as building any other HTTP URL.

For example, the following query searches all document fields for "video":

http://localhost:8983/solr/gettingstarted/select?q=video

Notice how the URL includes the host name (), the port number where the server is listening (),localhost 8983
the application name (), the request handler for queries (), and finally, the query itself ().solr select q=video

The results are contained in an XML document, which you can examine directly by clicking on the link above.
The document contains two parts. The first part is the , which contains information about theresponseHeader
response itself. The main part of the reply is in the result tag, which contains one or more doc tags, each of
which contains fields from documents that match the query. You can use standard XML transformation
techniques to mold Solr's results into a form that is suitable for displaying to users. Alternatively, Solr can output
the results in JSON, PHP, Ruby and even user-defined formats.

Just in case you are not running Solr as you read, the following screen shot shows the result of a query (the next
example, actually) as viewed in Mozilla Firefox. The top-level response contains a named lst responseHeade

https://cwiki.apache.org/confluence/display/solr/Post+Tool#PostTool-Windows

10Apache Solr Reference Guide 6.1

 and a result named response. Inside result, you can see the three docs that represent the search results.r

An XML response to a query.

Once you have mastered the basic idea of a query, it is easy to add enhancements to explore the query syntax.
This one is the same as before but the results only contain the ID, name, and price for each returned document.
If you don't specify which fields you want, all of them are returned.

http://localhost:8983/solr/gettingstarted/select?q=video&fl=id,name,price

Here is another example which searches for "black" in the field only. If you do not tell Solr which field toname
search, it will search default fields, as specified in the schema.

http://localhost:8983/solr/gettingstarted/select?q=name:black

You can provide ranges for fields. The following query finds every document whose price is between $0 and
$400.

http://localhost:8983/solr/gettingstarted/select?q=price:[0%20TO%20400]&fl=id,name

11Apache Solr Reference Guide 6.1

,price

Faceted browsing is one of Solr's key features. It allows users to narrow search results in ways that are
meaningful to your application. For example, a shopping site could provide facets to narrow search results by
manufacturer or price.

Faceting information is returned as a third part of Solr's query response. To get a taste of this power, take a look
at the following query. It adds and .facet=true facet.field=cat

http://localhost:8983/solr/gettingstarted/select?q=price:[0%20TO%20400]&fl=id,name
,price&facet=true&facet.field=cat

In addition to the familiar and response from Solr, a element is also present.responseHeader facet_counts
Here is a view with the and response collapsed so you can see the faceting informationresponseHeader
clearly.

<response>
<lst name="responseHeader">
...
</lst>
<result name="response" numFound="9" start="0">
 <doc>
 <str name="id">SOLR1000</str>
 <str name="name">Solr, the Enterprise Search Server</str>
 <float name="price">0.0</float></doc>
...
</result>
<lst name="facet_counts">
 <lst name="facet_queries"/>
 <lst name="facet_fields">
 <lst name="cat">
 <int name="electronics">6</int>
 <int name="memory">3</int>
 <int name="search">2</int>
 <int name="software">2</int>
 <int name="camera">1</int>
 <int name="copier">1</int>
 <int name="multifunction printer">1</int>
 <int name="music">1</int>
 <int name="printer">1</int>
 <int name="scanner">1</int>
 <int name="connector">0</int>
 <int name="currency">0</int>
 <int name="graphics card">0</int>
 <int name="hard drive">0</int>
 <int name="monitor">0</int>
 </lst>
 </lst>
 <lst name="facet_dates"/>
 <lst name="facet_ranges"/>
</lst>
</response>

The facet information shows how many of the query results have each possible value of the field. You couldcat
easily use this information to provide users with a quick way to narrow their query results. You can filter results
by adding one or more filter queries to the Solr request. This request constrains documents with a category of
"software".

An XML Response with faceting

12Apache Solr Reference Guide 6.1

1.

2.
3.
4.

http://localhost:8983/solr/gettingstarted/select?q=price:0%20TO%20400&fl=id,name,p
rice&facet=true&facet.field=cat&fq=cat:software

A Quick Overview
Having had some fun with Solr, you will now learn about all the cool things it can do.

Here is a example of how Solr might be integrated into an application:

In the scenario above, Solr runs along side other server applications. For example, an online store application
would provide a user interface, a shopping cart, and a way to make purchases for end users; while an inventory
management application would allow store employees to edit product information. The product metadata would
be kept in some kind of database, as well as in Solr.

Solr makes it easy to add the capability to search through the online store through the following steps:

Define a . The schema tells Solr about the contents of documents it will be indexing. In the onlineschema
store example, the schema would define fields for the product name, description, price, manufacturer, and
so on. Solr's schema is powerful and flexible and allows you to tailor Solr's behavior to your application.
See for all the details.Documents, Fields, and Schema Design
Deploy Solr.
Feed Solr documents for which your users will search.
Expose search functionality in your application.

Because Solr is based on open standards, it is highly extensible. Solr queries are RESTful, which means, in
essence, that a query is a simple HTTP request URL and the response is a structured document: mainly XML,
but it could also be JSON, CSV, or some other format. This means that a wide variety of clients will be able to
use Solr, from other web applications to browser clients, rich client applications, and mobile devices. Any
platform capable of HTTP can talk to Solr. See for details on client APIs.Client APIs

Solr is based on the Apache Lucene project, a high-performance, full-featured search engine. Solr offers support
for the simplest keyword searching through to complex queries on multiple fields and faceted search results. Sea

13Apache Solr Reference Guide 6.1

 has more information about searching and queries.rching

If Solr's capabilities are not impressive enough, its ability to handle very high-volume applications should do the
trick.

A relatively common scenario is that you have so much data, or so many queries, that a single Solr server is
unable to handle your entire workload. In this case, you can scale up the capabilities of your application using So

 to better distribute the data, and the processing of requests, across many servers. Multiple options canlrCloud
be mixed and matched depending on the type of scalability you need.

For example: "Sharding" is a scaling technique in which a collection is split into multiple logical pieces called
"shards" in order to scale up the number of documents in a collection beyond what could physically fit on a single
server. Incoming queries are distributed to every shard in the collection, which respond with merged results.
Another technique available is to increase the "Replication Factor" of your collection, which allows you to add
servers with additional copies of your collection to handle higher concurrent query load by spreading the
requests around to multiple machines. Sharding and Replication are not mutually exclusive, and together make
Solr an extremely powerful and scalable platform.

Best of all, this talk about high-volume applications is not just hypothetical: some of the famous Internet sites that
use Solr today are Macy's, EBay, and Zappo's.

For more information, take a look at .https://wiki.apache.org/solr/PublicServers

A Step Closer
You already have some idea of Solr's schema. This section describes Solr's home directory and other
configuration options.

When Solr runs in an application server, it needs access to a home directory. The home directory contains
important configuration information and is the place where Solr will store its index. The layout of the home
directory will look a little different when you are running Solr in standalone mode vs when you are running in
SolrCloud mode.

The crucial parts of the Solr home directory are shown in these examples:

<solr-home-directory>/
 solr.xml
 core_name1/
 core.properties
 conf/
 solrconfig.xml
 managed-schema
 data/
 core_name2/
 core.properties
 conf/
 solrconfig.xml
 managed-schema
 data/

Standalone Mode

https://wiki.apache.org/solr/PublicServers

14Apache Solr Reference Guide 6.1

<solr-home-directory>/
 solr.xml
 core_name1/
 core.properties
 data/
 core_name2/
 core.properties
 data/

You may see other files, but the main ones you need to know are:

solr.xml specifies configuration options for your Solr server instance. For more information on solr.xm
 see .l Solr Cores and solr.xml

Per Solr Core:
core.properties defines specific properties for each core such as its name, the collection the
core belongs to, the location of the schema, and other parameters. For more details on core.pro

, see the section .perties Defining core.properties
solrconfig.xml controls high-level behavior. You can, for example, specify an alternate location
for the data directory. For more information on , see .solrconfig.xml Configuring solrconfig.xml
managed-schema (or instead) describes the documents you will ask Solr to index.schema.xml
The Schema define a document as a collection of fields. You get to define both the field types and
the fields themselves. Field type definitions are powerful and include information about how Solr
processes incoming field values and query values. For more information on Solr Schemas, see Doc

 and the .uments, Fields, and Schema Design Schema API
data/ The directory containing the low level index files.

Note that the SolrCloud example does not include a directory for each Solr Core (so there is no conf solrconf
 or Schema file). This is because the configuration files usually found in the directory are stored inig.xml conf

ZooKeeper so they can be propagated across the cluster.

If you are using SolrCloud with the embedded ZooKeeper instance, you may also see and zoo.cfg zoo.data
which are ZooKeeper configuration and data files. However, if you are running your own ZooKeeper ensemble,
you would supply your own ZooKeeper configuration file when you start it and the copies in Solr would be
unused. For more information about ZooKeeper and SolrCloud, see the section .SolrCloud

Solr Start Script Reference

Solr includes a script known as " " that allows you to start and stop Solr, create and delete collectionsbin/solr
or cores, and check the status of Solr and configured shards. You can find the script in the directory of yourbin/
Solr installation. The script makes Solr easier to work with by providing simple commands andbin/solr
options to quickly accomplish common goals.

In this section, the headings below correspond to available commands. For each command, the available options
are described with examples.

More examples of bin/solr in use are available throughout the Solr Reference Guide, but particularly in the
sections and .Running Solr Getting Started with SolrCloud

Starting and Stopping
Start and Restart
Stop

SolrCloud Mode

15Apache Solr Reference Guide 6.1

Informational
Version
Status
Healthcheck

Collections and Cores
Create
Delete

ZooKeeper Operations
Uploading a Configuration Set
Downloading a Configuration Set

Starting and Stopping

Start and Restart

The start command starts Solr. The restart command allows you to restart Solr while it is already running or if it
has been stopped already.

The start and restart commands have several options to allow you to run in SolrCloud mode, use an example
configuration set, start with a hostname or port that is not the default and point to a local ZooKeeper ensemble.

bin/solr start [options]

bin/solr start -help

bin/solr restart [options]

bin/solr restart -help

When using the restart command, you must pass all of the parameters you initially passed when you started
Solr. Behind the scenes, a stop request is initiated, so Solr will be stopped before being started again. If no
nodes are already running, restart will skip the step to stop and proceed to starting Solr.

Available Parameters

The bin/solr script provides many options to allow you to customize the server in common ways, such as
changing the listening port. However, most of the defaults are adequate for most Solr installations, especially
when just getting started.

Parameter Description Example

-a "<string>" Start Solr with additional JVM
parameters, such as those starting with
-X. If you are passing JVM parameters
that begin with "-D", you can omit the -a
option.

bin/solr start -a
"-Xdebug -Xrunjdwp:transport=dt_socket,
server=y,suspend=n,address=1044"

16Apache Solr Reference Guide 6.1

-cloud Start Solr in SolrCloud mode, which will
also launch the embedded ZooKeeper
instance included with Solr.

This option can be shortened to simply
.-c

If you are already running a ZooKeeper
ensemble that you want to use instead
of the embedded (single-node)
ZooKeeper, you should also pass the -z
parameter.

For more details, see the section SolrCl
 below.oud Mode

bin/solr start -c

-d <dir> Define a server directory, defaults to se
 (as in,). Itrver $SOLR_HOME/server

is uncommon to override this option.
When running multiple instances of Solr
on the same host, it is more common to
use the same server directory for each
instance and use a unique Solr home
directory using the -s option.

bin/solr start -d newServerDir

-e <name> Start Solr with an example
configuration. These examples are
provided to help you get started faster
with Solr generally, or just try a specific
feature.

The available options are:

cloud
techproducts
dih
schemaless

See the section Running with Example
 below for more detailsConfigurations

on the example configurations.

bin/solr start -e schemaless

-f Start Solr in the foreground; you cannot
use this option when running examples
with the -e option.

bin/solr start -f

-h
<hostname>

Start Solr with the defined hostname. If
this is not specified, 'localhost' will be
assumed.

bin/solr start -h search.mysolr.com

-m
<memory>

Start Solr with the defined value as the
min (-Xms) and max (-Xmx) heap size
for the JVM.

bin/solr start -m 1g

17Apache Solr Reference Guide 6.1

-noprompt Start Solr and suppress any prompts
that may be seen with another option.
This would have the side effect of
accepting all defaults implicitly.

For example, when using the "cloud"
example, an interactive session guides
you through several options for your
SolrCloud cluster. If you want to accept
all of the defaults, you can simply add
the -noprompt option to your request.

bin/solr start -e cloud -noprompt

-p <port> Start Solr on the defined port. If this is
not specified, '8983' will be used.

bin/solr start -p 8655

-s <dir> Sets the solr.solr.home system
property; Solr will create core
directories under this directory. This
allows you to run multiple Solr instances
on the same host while reusing the
same server directory set using the -d
parameter. If set, the specified directory
should contain a solr.xml file, unless
solr.xml exists in ZooKeeper. The
default value is .server/solr

This parameter is ignored when running
examples (-e), as the solr.solr.home
depends on which example is run.

bin/solr start -s newHome

-V Start Solr with verbose messages from
the start script.

bin/solr start -V

-z <zkHost> Start Solr with the defined ZooKeeper
connection string. This option is only
used with the -c option, to start Solr in
SolrCloud mode. If this option is not
provided, Solr will start the embedded
ZooKeeper instance and use that
instance for SolrCloud operations.

bin/solr start -c -z
server1:2181,server2:2181

To emphasize how the default settings work take a moment to understand that the following commands are
equivalent:

bin/solr start

bin/solr start -h localhost -p 8983 -d server -s solr -m 512m

It is not necessary to define all of the options when starting if the defaults are fine for your needs.

Setting Java System Properties

The bin/solr script will pass any additional parameters that begin with -D to the JVM, which allows you to set
arbitrary Java system properties. For example, to set the auto soft-commit frequency to 3 seconds, you can do:

bin/solr start -Dsolr.autoSoftCommit.maxTime=3000

SolrCloud Mode

The -c and -cloud options are equivalent:

18Apache Solr Reference Guide 6.1

bin/solr start -c

bin/solr start -cloud

If you specify a ZooKeeper connection string, such as , then Solr will connect to-z 192.168.1.4:2181
ZooKeeper and join the cluster. If you do not specify the -z option when starting Solr in cloud mode, then Solr will
launch an embedded ZooKeeper server listening on the Solr port + 1000, i.e., if Solr is running on port 8983,
then the embedded ZooKeeper will be listening on port 9983.

IMPORTANT: If your ZooKeeper connection string uses a chroot, such as , then youlocalhost:2181/solr
need to bootstrap the /solr znode before launching SolrCloud using the bin/solr script. To do this, you need to
use the script shipped with Solr, such as:zkcli.sh

server/scripts/cloud-scripts/zkcli.sh -zkhost localhost:2181/solr -cmd bootstrap
-solrhome server/solr

When starting in SolrCloud mode, the interactive script session will prompt you to choose a configset to use.

For more information about starting Solr in SolrCloud mode, see also the section .Getting Started with SolrCloud

Running with Example Configurations

bin/solr start -e <name>

The example configurations allow you to get started quickly with a configuration that mirrors what you hope to
accomplish with Solr.

Each example launches Solr in with a managed schema, which allows use of the to make schemaSchema API
edits, but does not allow manual editing of a Schema file If you would prefer to manually modify a fischema.xml
le directly, you can change this default as described in the section .Schema Factory Definition in SolrConfig

Unless otherwise noted in the descriptions below, the examples do not enable nor .SolrCloud schemaless mode

The following examples are provided:

cloud: This example starts a 1-4 node SolrCloud cluster on a single machine. When chosen, an
interactive session will start to guide you through options to select the initial configset to use, the number
of nodes for your example cluster, the ports to use, and name of the collection to be created. When using
this example, you can choose from any of the available configsets found in $SOLR_HOME/server/solr

./configsets
techproducts: This example starts Solr in standalone mode with a schema designed for the sample
documents included in the directory. The configset used can be$SOLR_HOME/example/exampledocs
found in .$SOLR_HOME/server/solr/configsets/sample_techproducts_configs
dih: This example starts Solr in standalone mode with the DataImportHandler (DIH) enabled and several
example files pre-configured for different types of data supported with DIH (such as,dataconfig.xml
database contents, email, RSS feeds, etc.). The configset used is customized for DIH, and is found in $SO

. For more information about DIH, see the section LR_HOME/example/example-DIH/solr/conf Uploa
.ding Structured Data Store Data with the Data Import Handler

schemaless: This example starts Solr in standalone mode using a managed schema, as described in the
section , and provides a very minimal pre-defined schema. SolrSchema Factory Definition in SolrConfig
will run in with this configuration, where Solr will create fields in the schema on the flySchemaless Mode
and will guess field types used in incoming documents. The configset used can be found in $SOLR_HOME

./server/solr/configsets/data_driven_schema_configs

Stop

The run in-foreground option (-f) does not work with the -e option since the script needs to perform
additional tasks after starting the Solr server.

19Apache Solr Reference Guide 6.1

The stop command sends a STOP request to a running Solr node, which allows it to shutdown gracefully. The
command will wait up to 5 seconds for Solr to stop gracefully and then will forcefully kill the process (kill -9).

bin/solr stop [options]

bin/solr stop -help

Available Parameters

Parameter Description Example

-p <port> Stop Solr running on the given port. If you are running more than one instance,
or are running in SolrCloud mode, you either need to specify the ports in
separate requests or use the -all option.

bin/solr
stop -p
8983

-all Stop all running Solr instances that have a valid PID. bin/solr
stop -all

-k <key> Stop key used to protect from stopping Solr inadvertently; default is "solrrocks". bin/solr
stop -k
solrrocks

Informational

Version

The version command simply returns the version of Solr currently installed and immediately exists.

$ bin/solr version
X.Y.0

Status

The status command displays basic JSON-formatted information for any Solr nodes found running on the local
system. The status command uses the SOLR_PID_DIR environment variable to locate Solr process ID files to
find running Solr instances; the SOLR_PID_DIR variable defaults to the bin directory.

bin/solr status

The output will include a status of each node of the cluster, as in this example:

20Apache Solr Reference Guide 6.1

Found 2 Solr nodes:

Solr process 39920 running on port 7574
{
 "solr_home":"/Applications/Solr/example/cloud/node2/solr/",
 "version":"X.Y.0",
 "startTime":"2015-02-10T17:19:54.739Z",
 "uptime":"1 days, 23 hours, 55 minutes, 48 seconds",
 "memory":"77.2 MB (%15.7) of 490.7 MB",
 "cloud":{
 "ZooKeeper":"localhost:9865",
 "liveNodes":"2",
 "collections":"2"}}

Solr process 39827 running on port 8865
{
 "solr_home":"/Applications/Solr/example/cloud/node1/solr/",
 "version":"X.Y.0",
 "startTime":"2015-02-10T17:19:49.057Z",
 "uptime":"1 days, 23 hours, 55 minutes, 54 seconds",
 "memory":"94.2 MB (%19.2) of 490.7 MB",
 "cloud":{
 "ZooKeeper":"localhost:9865",
 "liveNodes":"2",
 "collections":"2"}}

Healthcheck

The healthcheck command generates a JSON-formatted health report for a collection when running in SolrCloud
mode. The health report provides information about the state of every replica for all shards in a collection,
including the number of committed documents and its current state.

bin/solr healthcheck [options]

bin/solr healthcheck -help

Available Parameters

Parameter Description Example

-c
<collection>

Name of the collection to run a healthcheck against (required). bin/solr
healthcheck
-c
gettingstarted

-z <zkhost> ZooKeeper connection string, defaults to localhost:9983. If you are running
Solr on a port other than 8983, you will have to specify the ZooKeeper
connection string. By default, this will be the Solr port + 1000.

bin/solr
healthcheck
-z
localhost:2181

Below is an example healthcheck request and response using a non-standard ZooKeeper connect string, with 2
nodes running:

21Apache Solr Reference Guide 6.1

$ bin/solr healthcheck -c gettingstarted -z localhost:9865

{
 "collection":"gettingstarted",
 "status":"healthy",
 "numDocs":0,
 "numShards":2,
 "shards":[
 {
 "shard":"shard1",
 "status":"healthy",
 "replicas":[
 {
 "name":"core_node1",
 "url":"http://10.0.1.10:8865/solr/gettingstarted_shard1_replica2/",
 "numDocs":0,
 "status":"active",
 "uptime":"2 days, 1 hours, 18 minutes, 48 seconds",
 "memory":"25.6 MB (%5.2) of 490.7 MB",
 "leader":true},
 {
 "name":"core_node4",
 "url":"http://10.0.1.10:7574/solr/gettingstarted_shard1_replica1/",
 "numDocs":0,
 "status":"active",
 "uptime":"2 days, 1 hours, 18 minutes, 42 seconds",
 "memory":"95.3 MB (%19.4) of 490.7 MB"}]},
 {
 "shard":"shard2",
 "status":"healthy",
 "replicas":[
 {
 "name":"core_node2",
 "url":"http://10.0.1.10:8865/solr/gettingstarted_shard2_replica2/",
 "numDocs":0,
 "status":"active",
 "uptime":"2 days, 1 hours, 18 minutes, 48 seconds",
 "memory":"25.8 MB (%5.3) of 490.7 MB"},
 {
 "name":"core_node3",
 "url":"http://10.0.1.10:7574/solr/gettingstarted_shard2_replica1/",
 "numDocs":0,
 "status":"active",
 "uptime":"2 days, 1 hours, 18 minutes, 42 seconds",
 "memory":"95.4 MB (%19.4) of 490.7 MB",
 "leader":true}]}]}

Collections and Cores

The bin/solr script can also help you create new collections (in SolrCloud mode) or cores (in standalone mode),
or delete collections.

Create

22Apache Solr Reference Guide 6.1

The create command detects the mode that Solr is running in (standalone or SolrCloud) and then creates a core
or collection depending on the mode.

bin/solr create options

bin/solr create -help

Available Parameters

Parameter Description Example

-c <name> Name of the core or collection to create (required). bin/solr
create -c
mycollection

-d <confdir> The configuration directory. This defaults to data_driven_schema_
.configs

See the section below forConfiguration Directories and SolrCloud
more details about this option when running in SolrCloud mode.

bin/solr
create -d
basic_configs

-n <configName> The configuration name. This defaults to the same name as the core
or collection.

bin/solr
create -n
basic

-p <port> Port of a local Solr instance to send the create command to; by default
the script tries to detect the port by looking for running Solr instances.

This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to create the core in.

bin/solr
create -p
8983

-s <shards>

-shards

Number of shards to split a collection into, default is 1; only applies
when Solr is running in SolrCloud mode.

bin/solr
create -s 2

-rf <replicas>

-replicationFactor

Number of copies of each document in the collection. The default is 1
(no replication).

bin/solr
create -rf 2

Configuration Directories and SolrCloud

Before creating a collection in SolrCloud, the configuration directory used by the collection must be uploaded to
ZooKeeper. The create command supports several use cases for how collections and configuration directories
work. The main decision you need to make is whether a configuration directory in ZooKeeper should be shared
across multiple collections. Let's work through a few examples to illustrate how configuration directories work in
SolrCloud.

First, if you don't provide the or options, then the default configuration (-d -n $SOLR_HOME/server/solr/con
) is uploaded to ZooKeeper using the same name as thefigsets/data_driven_schema_configs/conf

User permissions on "create"
When using the "create" command, be sure that you run this command as the same user that you use to
start Solr. If you use the UNIX/Linux install script, this will normally be a user named "solr". If Solr is
running as the solr user but you use root to create a core, then Solr will not be able to write to the
directories created by the start script.

If you are running in cloud mode, this very likely will not be a problem. In cloud mode, all the
configuration is stored in ZooKeeper, and the create script does not need to make directories or copy
configuration files. Solr itself will create all the necessary directories.

23Apache Solr Reference Guide 6.1

collection. For example, the following command will result in the configurationdata_driven_schema_configs
being uploaded to in ZooKeeper: . If you create/configs/contacts bin/solr create -c contacts
another collection, by doing , then another copy of the bin/solr create -c contacts2 data_driven_sch

 directory will be uploaded to ZooKeeper under . Any changes you makeema_configs /configs/contacts2
to the configuration for the contacts collection will not affect the contacts2 collection. Put simply, the default
behavior creates a unique copy of the configuration directory for each collection you create.

You can override the name given to the configuration directory in ZooKeeper by using the option. For-n
instance, the command will upload the bin/solr create -c logs -d basic_configs -n basic serve

 directory to ZooKeeper as .r/solr/configsets/basic_configs/conf /configs/basic

Notice that we used the option to specify a different configuration than the default. Solr provides several-d
built-in configurations under . However you can also provide the path to your ownserver/solr/configsets
configuration directory using the option. For instance, the command -d bin/solr create -c mycoll -d

, will upload into ZooKeeper under . To reiterate, the/tmp/myconfigs /tmp/myconfigs /configs/mycoll
configuration directory is named after the collection unless you override it using the option.-n

Other collections can share the same configuration by specifying the name of the shared configuration using the
 option. For instance, the following command will create a new collection that shares the basic configuration-n

created previously: .bin/solr create -c logs2 -n basic

Data-driven schema and shared configurations

The data_driven_schema_configs schema can mutate as data is indexed. Consequently, we recommend that
you do not share data-driven configurations between collections unless you are certain that all collections should
inherit the changes made when indexing data into one of the collections.

Delete

The delete command detects the mode that Solr is running in (standalone or SolrCloud) and then deletes the
specified core (standalone) or collection (SolrCloud) as appropriate.

bin/solr delete [options]

bin/solr delete -help

If running in SolrCloud mode, the delete command checks if the configuration directory used by the collection
you are deleting is being used by other collections. If not, then the configuration directory is also deleted from
ZooKeeper. For example, if you created a collection by doing , then thebin/solr create -c contacts
delete command will check to see if the configuratiobin/solr delete -c contacts /configs/contacts
n directory is being used by any other collections. If not, then the directory is removed/configs/contacts
from ZooKeeper.

Available Parameters

Parameter Description Example

-c <name> Name of the core / collection to delete (required). bin/solr
delete -c
mycoll

-deleteConfig
<true|false>

Delete the configuration directory from ZooKeeper. The default is true.

If the configuration directory is being used by another collection, then it
will not be deleted even if you pass -deleteConfig true.

bin/solr
delete
-deleteConfig
false

24Apache Solr Reference Guide 6.1

-p <port> The port of a local Solr instance to send the delete command to. By
default the script tries to detect the port by looking for running Solr
instances.

This option is useful if you are running multiple standalone Solr
instances on the same host, thus requiring you to be specific about
which instance to delete the core from.

bin/solr
delete -p 8983

ZooKeeper Operations

The bin/solr script allows certain operations affecting ZooKeeper. These operations are for SolrCloud mode only.

bin/solr zk [options]

bin/solr zk -help

NOTE: Solr should have been started at least once before issuing these commands to initialize ZooKeeper with
the znodes Solr expects. Once ZooKeeper is initialized, Solr doesn't need to be running on any node to use
these commands.

Uploading a Configuration Set

Use this ZooKeeper sub-command to upload one of the pre-configured configuration set or a customized
configuration set to ZooKeeper.

Available Parameters (all parameters are required)

Parameter Description Example

-upconfig Upload a configuration set from the local
filesystem to ZooKeeper

-upconfig

-n <name> Name of the configuration set in ZooKeeper.
This command will upload the configuration set
to the "configs" ZooKeeper node giving it the
name specified.

You can see all uploaded configuration sets in
the Admin UI via the Cloud screens. Choose
Cloud->tree->configs to see them.

If a pre-existing configuration set is specified, it
will be overwritten in ZooKeeper.

-n myconfig

-d
<configset
dir>

The path of the configuration set to upload. It
should have a "conf" directory immediately
below it that in turn contains solrconfig.xml etc.

If just a name is supplied,
$SOLR_HOME/server/solr/configsets will be
checked for this name. An absolute path may be
supplied instead.

-d directory_under_configsets
-d
/absolute/path/to/configset/source

-z
<zkHost>

The ZooKeeper connection string. -z 123.321.23.43:2181

25Apache Solr Reference Guide 6.1

An example of this command with these parameters is:

bin/solr zk -upconfig -z 111.222.333.444:2181 -n mynewconfig -d /path/to/configset

This command does automatically make changes effective! It simply uploads the configuration sets tonot
ZooKeeper. You can use the to issue a RELOAD command for any collections that uses thisCollections API
configuration set.

Downloading a Configuration Set

Use this ZooKeeper sub-command to download a configuration set from ZooKeeper to the local filesystem.

Available Parameters (all parameters are required)

Parameter Description Example

-downconfig Download a configuration set from
ZooKeeper to the local filesystem.

-downconfig

-n <name> Name of config set in ZooKeeper to
download. The Admin
UI>>Cloud>>tree>>configs node lists all
available configuration sets.

-n myconfig

-d
<configset
dir>

The path to write the downloaded
configuration set into.

If just a name is supplied,
SOLR_HOME/server/solr/configsets will
be the parent.

An absolute path may be supplied as
well.

In either case, pre-existing
configurations at the destination will be
overwritten!

-d directory_under_configsets -d
/absolute/path/to/configset/destination

-z <zkHost> The ZooKeeper connection string. -z 123.321.23.43:2181

An example of this command with the parameters is:

bin/solr zk -downconfig -z 111.222.333.444:2181 -n mynewconfig -d
/path/to/configset

A "best practice" is to keep your configuration sets in some form of version control as the system-of-record. In
that scenario, should rarely be used.downconfig

26Apache Solr Reference Guide 6.1

Upgrading Solr
If you are already using Solr 6.0, Solr 6.1 should not present any major problems. However, you should review
the file found in your Solr package for changes and updates that may effect your existing CHANGES.txt
implementation. Detailed steps for upgrading a Solr cluster can be found in the appendix: Upgrading a Solr

.Cluster

Upgrading from 6.0.x

If you use historical dates, specifically on or before the year 1582, you should re-index.

Upgrading from 5.5.x

The deprecated and subclasses have been removed, use instead.SolrServer SolrClient
The deprecated configuration in has been removed. Please remove it<nrtMode> solrconfig.xml
from .solrconfig.xml
SolrClient.shutdown() has been removed, use instead.SolrClient.close()
The deprecated element in section of is nowzkCredientialsProvider solrcloud solr.xml
removed. Use the correct spelling () instead.zkCredentialsProvider
Internal/expert - was significantly changed and expanded to allow for multiple full queryResultContext
results () per Solr request. was rendered redundant and was removed.DocLists TransformContext
See for details.SOLR-7957
Several changes have been made regarding the " " used in Solr, in order to provide betterSimilarity
default behavior for new users. There are 3 key impacts of these changes on existing users who upgrade:

DefaultSimilarityFactory has been removed. If you currently have DefaultSimilarityF
 explicitly referenced in your , edit your config to use the functionally identical actory schema.xml

. See for more details.ClassicSimilarityFactory SOLR-8239
The implicit default Similarity used when no is configured in has<similarity/> schema.xml
been changed to . Users who wish to preserve back-compatibleSchemaSimilarityFactory
behavior should either explicitly configure , or ensure that the ClassicSimilarityFactory luc

 for the collection is less then 6.0. See + for details.eneMatchVersion SOLR-8270 SOLR-8271
SchemaSimilarityFactory has been modified to use as the default for BM25Similarity fie

 that do not explicitly declare a Similarity. The legacy behavior of using ldTypes ClassicSimila
 as the default will occur if the for the collection is less then 6.0, orrity luceneMatchVersion

the ' ' configuration option may be used to specify any default of yourdefaultSimFromFieldType
choosing. See + for more details.SOLR-8261 SOLR-8329

If your file doesn't explicitly mention the to use then Solr will choosesolrconfig.xml schemaFactory
the by default. Previously it would have chosen ManagedIndexSchemaFactory ClassicIndexSchem

. This means that the Schema APIs () are enabled and the schemaaFactory /<collection>/schema
is mutable. When Solr starts your file will be renamed to . If you want toschema.xml managed-schema
retain the old behaviour then please ensure that the explicitly uses the solrconfig.xml ClassicInde

 or your in the is less than 6.0. See the xSchemaFactory luceneMatchVersion solrconfig.xml Sc
 section for more detailshema Factory Definition in SolrConfig

SolrIndexSearcher.QueryCommand and were moved to their own classes. If youQueryResult
reference them in your code, you should import them under o.a.s.search (or use your IDE's "Organize
Imports").
The ' ' attribute specified in request handler cannot be overridden from request params. See useParams S

 for more details.OLR-8698
When requesting stats in date fields, "sum" is now returned as a double value instead of a date. See SOL

 for more details.R-8671
The deprecated GET methods for schema are now accessible through the . These methods nowbulk API
accept fewer request parameters, and output less information. See for more details. Some ofSOLR-8736

http://lucene.apache.org/solr/6_1_0/changes/Changes.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/SolrClient.html#close()
https://issues.apache.org/jira/browse/SOLR-7957
https://cwiki.apache.org/confluence/display/solr/Other+Schema+Elements#OtherSchemaElements-Similarity
https://issues.apache.org/jira/browse/SOLR-8239
https://issues.apache.org/jira/browse/SOLR-8270
http://SOLR-8271
https://issues.apache.org/jira/browse/SOLR-8261
https://issues.apache.org/jira/browse/SOLR-8329
https://issues.apache.org/jira/browse/SOLR-8698
https://issues.apache.org/jira/browse/SOLR-8698
https://issues.apache.org/jira/browse/SOLR-8671
https://issues.apache.org/jira/browse/SOLR-8671
https://issues.apache.org/jira/browse/SOLR-8736

27Apache Solr Reference Guide 6.1

the removed functionality will likely be restored in a future version of Solr - see .SOLR-8992
In the past, Solr guaranteed that retrieval of multi-valued fields would preserve the order of values.
Because values may now be retrieved from column-stored fields (), in conjunctiondocValues="true"
with the fact that do not currently preserve order, means that users should set DocValues useDocValues

 to prevent future optimizations from using the column-stored values over theAsStored="false"
row-stored values when fields have both and .stored="true" docValues="true"
Formatted date-times from Solr have some differences. If the year is more than 4 digits, there is a leading
'+'. When there is a non-zero number of milliseconds, it is padded with zeros to 3 digits. Negative year
(BC) dates are now possible. Parsing: It is now an error to supply a portion of the date out of its, range,
like 67 seconds.
SolrJ no longer includes . If for some reason you need to format or parse dates, simply use DateUtil In

 and .stant.format() Instant.parse()
If you are using spatial4j, please upgrade to 0.6 and to replace edit your spatialContextFactory com

 with .spatial4j.core org.locationtech.spatial4j.

Upgrading from Older Versions of Solr

Users upgrading from older versions are strongly encouraged to consult for the details of cha CHANGES.txt all
nges since the version they are upgrading from.

A summary of the significant changes between Solr 5.x and Solr 6.0 can be found in the Major Changes from
 section.Solr 5 to Solr 6

https://issues.apache.org/jira/browse/SOLR-8992
http://lucene.apache.org/solr/6_1_0/changes/Changes.html

28Apache Solr Reference Guide 6.1

Using the Solr Administration User Interface
This section discusses the Solr Administration User Interface ("Admin UI").

The explains the basic features of the user interface, what's on the initial Admin UIOverview of the Solr Admin UI
page, and how to configure the interface. In addition, there are pages describing each screen of the Admin UI:

Getting Assistance shows you how to get more information about the UI.
Logging shows recent messages logged by this Solr node and provides a way to change logging levels
for specific classes.
Cloud Screens display information about nodes when running in SolrCloud mode.
Collections / Core Admin explains how to get management information about each core.
Java Properties shows the Java information about each core.
Thread Dump lets you see detailed information about each thread, along with state information.
Collection-Specific Tools is a section explaining additional screens available for each collection.

Analysis - lets you analyze the data found in specific fields.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands
directly from the browser.
Files - shows the current core configuration files such as .solrconfig.xml
Query - lets you submit a structured query about various elements of a core.
Stream - allows you to submit streaming expressions and see results and parsing explanations.
Schema Browser - displays schema data in a browser window.

Core-Specific Tools is a section explaining additional screens available for each named core.
Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Replication - shows you the current replication status for the core, and lets you enable/disable
replication.
Segments Info - Provides a visualization of the underlying Lucene index segments.

Overview of the Solr Admin UI
Solr features a Web interface that makes it easy for Solr administrators and programmers to view Solr

details, run document fields in order to fine-tune a Solr configuration and configuration queries and analyze
access and other help.online documentation

29Apache Solr Reference Guide 6.1

Accessing the URL will show the main dashboard, which is divided into twohttp://hostname:8983/solr/
parts.

A left-side of the screen is a menu under the Solr logo that provides the navigation through the screens of the UI.
The first set of links are for system-level information and configuration and provide access to ,Logging Collection/

 and , among other things. At the end of this information is at least oneCore Administration Java Properties
pulldown listing Solr cores configured for this instance. On nodes, an additional pulldown list shows allSolrCloud
collections in this cluster. Clicking on a collection or core name shows secondary menus of information for the
specified collection or core, such as a , , , and an ability toSchema Browser Config Files Plugins & Statistics
perform on indexed data.Queries

The center of the screen shows the detail of the option selected. This may include a sub-navigation for the option
or text or graphical representation of the requested data. See the sections in this guide for each screen for more
details.

Under the covers, the Solr Admin UI re-uses the same HTTP APIs available to all clients to access Solr-related
data to drive an external interface.

Related Topics

Configuring solrconfig.xml

Getting Assistance
At the bottom of each screen of the Admin UI is a set of links that can be used to get more assistance with
configuring and using Solr.

Assistance icons

These icons include the following links.

Link Description

Documentation Navigates to the Apache Solr documentation hosted on .https://lucene.apache.org/solr/

Issue Tracker Navigates to the JIRA issue tracking server for the Apache Solr project. This server resides
at .https://issues.apache.org/jira/browse/SOLR

IRC Channel Navigates to an Apache Wiki page describing how to join Solr's live-chat room: IRC https://wi
.ki.apache.org/solr/IRCChannels

Community
forum

Navigates to the Apache Wiki page which has further information about ways to engage in
the Solr User community mailing lists: .https://wiki.apache.org/solr/UsingMailingLists

The path to the Solr Admin UI given above is , which redirects to http://hostname:port/solr http
 in the current version. A convenience redirect is also supported, so://hostname:port/solr/#/

simply accessing the Admin UI at will also redirect to http://hostname:port/ http://hostname:
.port/solr/#/

https://lucene.apache.org/solr/
https://issues.apache.org/jira/browse/SOLR
http://en.wikipedia.org/wiki/Internet_Relay_Chat
https://wiki.apache.org/solr/IRCChannels
https://wiki.apache.org/solr/IRCChannels
https://wiki.apache.org/solr/UsingMailingLists

30Apache Solr Reference Guide 6.1

Solr Query
Syntax

Navigates to the section " " in this reference guide.Query Syntax and Parsing

These links cannot be modified without editing the in the that contains the Admin UIadmin.html solr.war
files.

Logging
The Logging page shows recent messages logged by this Solr node.

When you click the link for "Logging", a page similar to the one below will be displayed:

The Main Logging Screen, including an example of an error due to a bad document sent by a client

While this example shows logged messages for only one core, if you have multiple cores in a single instance,
they will each be listed, with the level for each.

Selecting a Logging Level

When you select the link on the left, you see the hierarchy of classpaths and classnames for yourLevel
instance. A row highlighted in yellow indicates that the class has logging capabilities. Click on a highlighted row,
and a menu will appear to allow you to change the log level for that class. Characters in boldface indicate that
the class will not be affected by level changes to root.

31Apache Solr Reference Guide 6.1

For an explanation of the various logging levels, see .Configuring Logging

Cloud Screens
When running in mode, a "Cloud" option will appear in the Admin UI between and SolrCloud Logging Collections/

 which provides status information about each collection & node in your cluster, as well as access toCore Admin
the low level data being stored in .Zookeeper

Click on the Cloud option in the left-hand navigation, and a small sub-menu appears with options called "Tree",
"Graph", "Graph (Radial)" and "Dump". The default view ("Graph") shows a graph of each collection, the shards
that make up those collections, and the addresses of each replica for each shard.

This example shows the very simple two-node cluster created using the " "bin/solr -e cloud -noprompt
example command. In addition to the 2 shard, 2 replica "gettingstarted" collection, there is an additional "films"
collection consisting of a single shard/replica:

The "Graph (Radial)" option provides a different visual view of each node. Using the same example cluster, the
radial graph view looks like:

Only Visible When using SolrCloud
The "Cloud" menu option is only available on Solr instances running in . Single node orSolrCloud mode
master/slave replication instances of Solr will not display this option.

32Apache Solr Reference Guide 6.1

The "Tree" option shows a directory structure of the data in ZooKeeper, including cluster wide information
regarding the and status, as well as collection specific information such as the live_nodes overseer state.

, current shard leaders, and configuration files in use. In this example, we see the filejson state.json
definition for the "films" collection:

The final option is "Dump", which returns a JSON document containing all nodes, their contents and their
children (recursively). This can be used to export a snapshot of all the data that Solr has kept inside ZooKeeper
and can aid in debugging SolrCloud problems.

Collections / Core Admin
The Collections screen provides some basic functionality for managing your Collections, powered by the Collecti

.ons API

The main display of this page provides a list of collections that exist in your cluster. Clicking on a collection name
provides some basic metadata about how the collection is defined, and it's current shards & replicas, with options
for adding and deleting individual replicas.

The buttons at the top of the screen let you make various collection level changes to your cluster, from add new
collections or aliases to reloading or deleting a single collection.

If you are running a single node Solr instance, you will not see a Collections option in the left nav menu
of the Admin UI.

You will instead see a "Core Admin" screen that supports some comparable Core level information &
manipulation via the instead.CoreAdmin API

33Apache Solr Reference Guide 6.1

Java Properties
The Java Properties screen provides easy access to one of the most essential components of a top-performing
Solr systems. With the Java Properties screen, you can see all the properties of the JVM running Solr, including
the class paths, file encodings, JVM memory settings, operating system, and more.

Thread Dump
The Thread Dump screen lets you inspect the currently active threads on your server. Each thread is listed and
access to the stacktraces is available where applicable. Icons to the left indicate the state of the thread: for
example, threads with a green check-mark in a green circle are in a "RUNNABLE" state. On the right of the
thread name, a down-arrow means you can expand to see the stacktrace for that thread.

When you move your cursor over a thread name, a box floats over the name with the state for that thread.
Thread states can be:

State Meaning

34Apache Solr Reference Guide 6.1

NEW A thread that has not yet started.

RUNNABLE A thread executing in the Java virtual machine.

BLOCKED A thread that is blocked waiting for a monitor lock.

WAITING A thread that is waiting indefinitely for another thread to perform a particular action.

TIMED_WAITING A thread that is waiting for another thread to perform an action for up to a specified
waiting time.

TERMINATED A thread that has exited.

When you click on one of the threads that can be expanded, you'll see the stacktrace, as in the example below:

Inspecting a thread

You can also check the button to automatically enable expansion for all threads.Show all Stacktraces

Collection-Specific Tools
In the left-hand navigation bar, you will see a pull-down menu titled "Collection Selector" that can be used to
access collection specific administration screens.

Clicking on the Collection Selector pull-down menu will show a list of the collections in your Solr cluster, with a
search box that can be used to find a specific collection by name. When you select a collection from the
pull-down, the main display of the page will display some basic metadata about the collection, and a secondary
menu will appear in the left nav with links to additional collection specific administration screens.

Only Visible When using SolrCloud
The "Collection Selector" pull-down menu is only available on Solr instances running in .SolrCloud mode

Single node or master/slave replication instances of Solr will not display this menu, instead the Collection
specific UI pages described in this section will be available in the .Core Selector pull-down menu

35Apache Solr Reference Guide 6.1

The collection-specific UI screens are listed below, with a link to the section of this guide to find out more:

Analysis - lets you analyze the data found in specific fields.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly
from the browser.
Files - shows the current core configuration files such as .solrconfig.xml
Query - lets you submit a structured query about various elements of a core.
Stream - allows you to submit streaming expressions and see results and parsing explanations.
Schema Browser - displays schema data in a browser window.

Analysis Screen

The Analysis screen lets you inspect how data will be handled according to the field, field type and dynamic field
configurations found in your Schema. You can analyze how content would be handled during indexing or during
query processing and view the results separately or at the same time. Ideally, you would want content to be
handled consistently, and this screen allows you to validate the settings in the field type or field analysis chains.

Enter content in one or both boxes at the top of the screen, and then choose the field or field type definitions to
use for analysis.

If you click the check box, you see more information, including more details on theVerbose Output
transformations to the input (such as, convert to lower case, strip extra characters, etc.) including the raw bytes,
type and detailed position information at each stage. The information displayed will vary depending on the
settings of the field or field type. Each step of the process is displayed in a separate section, with an abbreviation
for the tokenizer or filter that is applied in that step. Hover or click on the abbreviation, and you'll see the name
and path of the tokenizer or filter.

36Apache Solr Reference Guide 6.1

In the example screenshot above, several transformations are applied to the input "Running is a sport." The
words "is" and "a" have been removed and the word "running" has been changed to its basic form, "run". This is
because we are using the field type in this scenario, which is configured to remove stop words (smalltext_en
words that usually do not provide a great deal of context) and "stem" terms when possible to find more possible
matches (this is particularly helpful with plural forms of words). If you click the question mark next to the Analyze

 pull-down menu, the will open, showing you the settings for theFieldname/Field Type Schema Browser window
field specified.

The section describes in detail what each option is and how itUnderstanding Analyzers, Tokenizers, and Filters
may transform your data and the section has specific examples for using the AnalysisRunning Your Analyzer
screen.

Dataimport Screen

The Dataimport screen shows the configuration of the DataImportHandler (DIH) and allows you start, and
monitor the status of, import commands as defined by the options selected on the screen and defined in the
configuration file.

37Apache Solr Reference Guide 6.1

This screen also lets you adjust various options to control how the data is imported to Solr, and view the data
import configuration file that controls the import. For more information about data importing with DIH, see the
section on .Uploading Structured Data Store Data with the Data Import Handler

Documents Screen

The Documents screen provides a simple form allowing you to execute various Solr indexing commands in a
variety of formats directly from the browser.

The screen allows you to:

Copy documents in JSON, CSV or XML and submit them to the index
Upload documents (in JSON, CSV or XML)
Construct documents by selecting fields and field values

The first step is to define the RequestHandler to use (aka, 'qt'). By default will be defined. To use Solr/update
Cell, for example, change the request handler to ./update/extract

Then choose the Document Type to define the type of document to load. The remaining parameters will change
depending on the document type selected.

JSON

When using the JSON document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper JSON format.

Then you can choose when documents should be added to the index (Commit Within), whether existing
documents should be overwritten with incoming documents with the same id (if this is not , then the incomingtrue
documents will be dropped), and, finally, if a document boost should be applied.

38Apache Solr Reference Guide 6.1

This option will only add or overwrite documents to the index; for other update tasks, see the optiSolr Command
on.

CSV

When using the CSV document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper CSV format, with columns delimited and one row per document.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not , then the incomingtrue
documents will be dropped).

Document Builder

The Document Builder provides a wizard-like interface to enter fields of a document

File Upload

The File Upload option allows choosing a prepared file and uploading it. If using only for the/update
Request-Handler option, you will be limited to XML, CSV, and JSON.

However, to use the ExtractingRequestHandler (aka Solr Cell), you can modify the Request-Handler to /update
. You must have this defined in your file, with your desired defaults. You should/extract solrconfig.xml

also update the shown in the Extracting Req. Handler Params so the file chosen is given a&literal.id
unique id.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not , then the incomingtrue
documents will be dropped).

Solr Command

The Solr Command option allows you use XML or JSON to perform specific actions on documents, such as
defining documents to be added or deleted, updating only certain fields of documents, or commit and optimize
commands on the index.

The documents should be structured as they would be if using on the command line./update

XML

When using the XML document type, the functionality is similar to using a requestHandler on the command line.
Instead of putting the documents in a curl command, they can instead be input into the Document entry box. The
document structure should still be in proper Solr XML format, with each document separated by tags and<doc>
each field defined.

Then you can choose when documents should be added to the index (Commit Within), and whether existing
documents should be overwritten with incoming documents with the same id (if this is not , then the incomingtrue
documents will be dropped).

This option will only add or overwrite documents to the index; for other update tasks, see the optiSolr Command
on.

Related Topics

Uploading Data with Index Handlers
Uploading Data with Solr Cell using Apache Tika

39Apache Solr Reference Guide 6.1

Files Screen

The Files screen lets you browse & view the various configuration files (such and the schemasolrconfig.xml
file) for the collection you selected.

If you are using , the files displayed are the configuration files for this collection stored in ZooKeeperSolrCloud
(using), for single node Solr installations, all files in the directory are displayed.upconfig ./conf

While defines the behaviour of Solr as it indexes content and responds to queries, thesolrconfig.xml
Schema allows you to define the types of data in your content (field types), the fields your documents will be
broken into, and any dynamic fields that should be generated based on patterns of field names in the incoming
documents. Any other configuration files are used depending on how they are referenced in either solrconfig

 or your schema..xml

Configuration files cannot be edited with this screen, so a text editor of some kind must be used.

This screen is related to the , in that they both can display information from the schema,Schema Browser Screen
but the Schema Browser provides a way to drill into the analysis chain and displays linkages between field types,
fields, and dynamic field rules.

Many of the options defined in these configuration files are described throughout the rest of this Guide. In
particular, you will want to review these sections:

Indexing and Basic Data Operations
Searching
The Well-Configured Solr Instance
Documents, Fields, and Schema Design

Query Screen

You can use the screen to submit a search query to a Solr collection and analyze the results. In theQuery

40Apache Solr Reference Guide 6.1

example in the screenshot, a query has been submitted, and the screen shows the query results sent to the
browser as JSON.

In this example a query for was sent to a "films" collection. Defaults were used for all othergenre:Fantasy
options in the form, which are explained briefly in the table below, and covered in detail in later parts of this
Guide.

The response is shown to the right of the form. Requests to Solr are simply HTTP requests, and the query
submitted is shown in light type above the results; if you click on this it will open a new browser window with just
this request and response (without the rest of the Solr Admin UI). The rest of the response is shown in JSON,
which is part of the request (see the part at the end).wt=json

The response has at least two sections, but may have several more depending on the options chosen. The two
sections it always has are the and the . The includes the statusresponseHeader response responseHeader
of the search (), the processing time (), and the parameters () that were used to processstatus QTime params
the query.

The includes the documents that matched the query, in sub-sections. The fields return dependresponse doc
on the parameters of the query (and the defaults of the request handler used). The number of results is also
included in this section.

This screen allows you to experiment with different query options, and inspect how your documents were
indexed. The query parameters available on the form are some basic options that most users want to have
available, but there are dozens more available which could be simply added to the basic request by hand (if
opened in a browser). The table below explains the parameters available:

Field Description

Request-handler
(qt)

Specifies the query handler for the request. If a query handler is not specified, Solr
processes the response with the standard query handler.

q The query event. See for an explanation of this parameter.Searching

41Apache Solr Reference Guide 6.1

fq The filter queries. See for more information on this parameter.Common Query Parameters

sort Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

start, rows start is the offset into the query result starting at which documents should be returned.
The default value is 0, meaning that the query should return results starting with the first
document that matches. This field accepts the same syntax as the start query parameter,
which is described in . is the number of rows to return.Searching rows

fl Defines the fields to return for each document. You can explicitly list the stored fields, functi
, and you want to have returned by separating them with either aons doc transformers

comma or a space.

wt Specifies the Response Writer to be used to format the query response. Defaults to XML if
not specified.

indent Click this button to request that the Response Writer use indentation to make the
responses more readable.

debugQuery Click this button to augment the query response with debugging information, including
"explain info" for each document returned. This debugging information is intended to be
intelligible to the administrator or programmer.

dismax Click this button to enable the Dismax query parser. See forThe DisMax Query Parser
further information.

edismax Click this button to enable the Extended query parser. See The Extended DisMax Query
 for further information.Parser

hl Click this button to enable highlighting in the query response. See for moreHighlighting
information.

facet Enables faceting, the arrangement of search results into categories based on indexed
terms. See for more information.Faceting

spatial Click to enable using location data for use in spatial or geospatial searches. See Spatial
 for more information.Search

spellcheck Click this button to enable the Spellchecker, which provides inline query suggestions based
on other, similar, terms. See for more information.Spell Checking

Related Topics

Searching

Stream Screen

The Stream screen allows you to enter a and see the results. It is very similar to the streaming expression Query
, except the input box is at the top and all options must be declared in the expression. Screen

The screen will insert everything up to the streaming expression itself, so you do not need to enter the full URI
with the hostname, port, collection, etc. Simply input the expression after the `expr=` part, and the URL will be
constructed dynamically as appropriate.

Under the input box, the Execute button will run the expression. An option "with explanation" will show the parts
of the streaming expression that were executed. Under this, the streamed results are shown. A URL to be able to

42Apache Solr Reference Guide 6.1

view the output in a browser is also available.

Schema Browser Screen

The Schema Browser screen lets you review schema data in a browser window. If you have accessed this
window from the Analysis screen, it will be opened to a specific field, dynamic field rule or field type. If there is
nothing chosen, use the pull-down menu to choose the field or field type.

43Apache Solr Reference Guide 6.1

The screen provides a great deal of useful information about each particular field and fieldtype in the Schema,
and provides a quick UI for adding fields or fieldtypes using the (if enabled). In the example above,Schema API
we have chosen the field. On the left side of the main view window, we see the field name, that it isgenre
copied to the (because of a copyField rule) and that it use the fieldtype. Click on one of those_text_ strings
field or fieldtype names, and you can see the corresponding definitions.

In the right part of the main view, we see the specific properties of how the field is defined – eithergenre
explicitly or implicitly via it's fieldtype, as well as how many documents have populated this field. Then we see the
analyzer used for indexing and query processing. Click the icon to the left of either of those, and you'll see the
definitions for the tokenizers and/or filters that are used. The output of these processes is the information you
see when testing how content is handled for a particular field with the .Analysis Screen

Under the analyzer information is a button to . Clicking that button will show the top terms thatLoad Term Info N
are in a sample shard for that field, as well as a histogram showing the number of terms with various
frequencies. Click on a term, and you will be taken to the to see the results of a query of that termQuery Screen
in that field. If you want to always see the term information for a field, choose and it will always appearAutoload
when there are terms for a field. A histogram shows the number of terms with a given frequency in the field.

Core-Specific Tools
In the left-hand navigation bar, you will see a pull-down menu titled "Core Selector". Clicking on the menu will
show a list of Solr cores hosted on this Solr node, with a search box that can be used to find a specific core by
name. When you select a core from the pull-down, the main display of the page will display some basic metadata
about the core, and a secondary menu will appear in the left nav with links to additional core specific
administration screens. You can also define a configuration file called that includes links oradmin-extra.html
other information you would like to display in the "Admin Extra" part of this main screen.

The core-specific UI screens are listed below, with a link to the section of this guide to find out more:

Ping - lets you ping a named core and determine whether the core is active.
Plugins/Stats - shows statistics for plugins and other installed components.
Replication - shows you the current replication status for the core, and lets you enable/disable replication.
Segments Info - Provides a visualization of the underlying Lucene index segments.

Term Information is loaded from single arbitrarily selected core from the collection, to provide a
representative sample for the collection. Full query results are needed to see precise termField Facet
counts across the entire collection.

44Apache Solr Reference Guide 6.1

If you are running a single node instance of Solr, additional UI screens normally displayed on a per-collection
bases will also be listed:

Analysis - lets you analyze the data found in specific fields.
Dataimport - shows you information about the current status of the Data Import Handler.
Documents - provides a simple form allowing you to execute various Solr indexing commands directly
from the browser.
Files - shows the current core configuration files such as .solrconfig.xml
Query - lets you submit a structured query about various elements of a core.
Stream - allows you to submit streaming expressions and see results and parsing explanations.
Schema Browser - displays schema data in a browser window.

Ping

Choosing Ping under a core name issues a request to check whether the core is up and responding toping
requests.

The search executed by a Ping is configured using a in the file:requestHandler solrconfig.xml

<!-- ping/healthcheck -->
 <requestHandler name="/admin/ping" class="solr.PingRequestHandler">
 <lst name="invariants">
 <str name="q">solrpingquery</str>
 </lst>
 <lst name="defaults">
 <str name="echoParams">all</str>
 </lst>
 <!-- An optional feature of the PingRequestHandler is to configure the
 handler with a "healthcheckFile" which can be used to enable/disable
 the PingRequestHandler.
 relative paths are resolved against the data dir
 -->
 <!-- <str name="healthcheckFile">server-enabled.txt</str> -->
 </requestHandler>

The Ping option doesn't open a page, but the status of the request can be seen on the core overview page
shown when clicking on a collection name. The length of time the request has taken is displayed next to the Ping
option, in milliseconds.

API Examples

While the UI screen makes it easy to see the ping response time, the underlying ping command can be more

45Apache Solr Reference Guide 6.1

useful when executed by remote monitoring tools:

Input

http://localhost:8983/solr/<core-name>/admin/ping

This command will ping the core name for a response.

Input

http://localhost:8983/solr/<collection-name>admin/ping?wt=json&distrib=true&indent=t
rue

This command will ping all replicas of the given collection name for a response

Sample Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">13</int>
 <lst name="params">
 <str name="q">{!lucene}*:*</str>
 <str name="distrib">false</str>
 <str name="df">_text_</str>
 <str name="rows">10</str>
 <str name="echoParams">all</str>
 </lst>
 </lst>
 <str name="status">OK</str>
</response>

Both API calls have the same output. A status=OK indicates that the nodes are responding.

SolrJ Example

SolrPing ping = new SolrPing();
ping.getParams().add("distrib", "true"); //To make it a distributed request against
a collection
rsp = ping.process(solrClient, collectionName);
int status = rsp.getStatus();

Plugins & Stats Screen

The Plugins screen shows information and statistics about the status and performance of various plugins running
in each Solr core. You can find information about the performance of the Solr caches, the state of Solr's
searchers, and the configuration of Request Handlers and Search Components.

Choose an area of interest on the right, and then drill down into more specifics by clicking on one of the names
that appear in the central part of the window. In this example, we've chosen to look at the Searcher stats, from
the Core area:

46Apache Solr Reference Guide 6.1

1.
2.
3.

Searcher Statistics

The display is a snapshot taken when the page is loaded. You can get updated status by choosing to either Wat
 or . Watching the changes will highlight those areas that have changed, whilech Changes Refresh Values

refreshing the values will reload the page with updated information.

Replication Screen

The Replication screen shows you the current replication state for the core you have specified. hasSolrCloud
supplanted much of this functionality, but if you are still using Master-Slave index replication, you can use this
screen to:

View the replicatable index state. (on a master node)
View the current replication status (on a slave node)
Disable replication. (on a master node)

More details on how to configure replication is available in the section called .Index Replication

Segments Info

The Segments Info screen lets you see a visualization of the various segments in the underlying Lucene index
for this core, with information about the size of each segment – both bytes and in number of documents – as well
as other basic metadata about those segments. Most visible is the the number of deleted documents, but you

Caution When Using SolrCloud
When using , do not attempt to disable replication via this screen.SolrCloud

47Apache Solr Reference Guide 6.1

can hover your mouse over the segments to see additional numeric details.

This information may be useful for people to help make decisions about the optimal for their data.merge settings

https://cwiki.apache.org/confluence/display/solr/IndexConfig+in+SolrConfig#IndexConfiginSolrConfig-MergingIndexSegments

48Apache Solr Reference Guide 6.1

Documents, Fields, and Schema Design
This section discusses how Solr organizes its data into documents and fields, as well as how to work with a
schema in Solr.

This section includes the following topics:

Overview of Documents, Fields, and Schema Design: An introduction to the concepts covered in this section.

Solr Field Types: Detailed information about field types in Solr, including the field types in the default Solr
schema.

Defining Fields: Describes how to define fields in Solr.

Copying Fields: Describes how to populate fields with data copied from another field.

Dynamic Fields: Information about using dynamic fields in order to catch and index fields that do not exactly
conform to other field definitions in your schema.

Schema API: Use curl commands to read various parts of a schema or create new fields and copyField rules.

Other Schema Elements: Describes other important elements in the Solr schema.

Putting the Pieces Together: A higher-level view of the Solr schema and how its elements work together.

DocValues: Describes how to create a docValues index for faster lookups.

Schemaless Mode: Automatically add previously unknown schema fields using value-based field type guessing.

Overview of Documents, Fields, and Schema Design
The fundamental premise of Solr is simple. You give it a lot of information, then later you can ask it questions
and find the piece of information you want. The part where you feed in all the information is called or indexing up

. When you ask a question, it's called a .dating query

One way to understand how Solr works is to think of a loose-leaf book of recipes. Every time you add a recipe to
the book, you update the index at the back. You list each ingredient and the page number of the recipe you just
added. Suppose you add one hundred recipes. Using the index, you can very quickly find all the recipes that use
garbanzo beans, or artichokes, or coffee, as an ingredient. Using the index is much faster than looking through
each recipe one by one. Imagine a book of one thousand recipes, or one million.

Solr allows you to build an index with many different fields, or types of entries. The example above shows how to
build an index with just one field, . You could have other fields in the index for the recipe's cookingingredients
style, like , , or , and you could have an index field for preparation times. Solr can answerAsian Cajun vegan
questions like "What Cajun-style recipes that have blood oranges as an ingredient can be prepared in fewer than
30 minutes?"

The schema is the place where you tell Solr how it should build indexes from input documents.

How Solr Sees the World

Solr's basic unit of information is a , which is a set of data that describes something. A recipe documentdocument
would contain the ingredients, the instructions, the preparation time, the cooking time, the tools needed, and so
on. A document about a person, for example, might contain the person's name, biography, favorite color, and
shoe size. A document about a book could contain the title, author, year of publication, number of pages, and so
on.

In the Solr universe, documents are composed of , which are more specific pieces of information. Shoe sizefields

49Apache Solr Reference Guide 6.1

could be a field. First name and last name could be fields.

Fields can contain different kinds of data. A name field, for example, is text (character data). A shoe size field
might be a floating point number so that it could contain values like 6 and 9.5. Obviously, the definition of fields is
flexible (you could define a shoe size field as a text field rather than a floating point number, for example), but if
you define your fields correctly, Solr will be able to interpret them correctly and your users will get better results
when they perform a query.

You can tell Solr about the kind of data a field contains by specifying its . The field type tells Solr how tofield type
interpret the field and how it can be queried.

When you add a document, Solr takes the information in the document's fields and adds that information to an
index. When you perform a query, Solr can quickly consult the index and return the matching documents.

Field Analysis

Field analysis tells Solr what to do with incoming data when building an index. A more accurate name for this
process would be or even , but the official name is .processing digestion analysis

Consider, for example, a biography field in a person document. Every word of the biography must be indexed so
that you can quickly find people whose lives have had anything to do with ketchup, or dragonflies, or
cryptography.

However, a biography will likely contains lots of words you don't care about and don't want clogging up your
index—words like "the", "a", "to", and so forth. Furthermore, suppose the biography contains the word "Ketchup",
capitalized at the beginning of a sentence. If a user makes a query for "ketchup", you want Solr to tell you about
the person even though the biography contains the capitalized word.

The solution to both these problems is field analysis. For the biography field, you can tell Solr how to break apart
the biography into words. You can tell Solr that you want to make all the words lower case, and you can tell Solr
to remove accents marks.

Field analysis is an important part of a field type. is a detailedUnderstanding Analyzers, Tokenizers, and Filters
description of field analysis.

Solr's Schema File

Solr stores details about the field types and fields it is expected to understand in a schema file. The name and
location of this file may vary depending on how you initially configured Solr or if you modified it later.

managed-schema is the name for the schema file Solr uses by default to support making Schema
changes at runtime via the , or features. You may Schema API Schemaless Mode explicitly configure the

 to use an alternative filename if you choose, but the contents of the files aremanaged schema features
still updated automatically by Solr.
schema.xml is the traditional name for a schema file which can be edited manually by users who use
the .ClassicIndexSchemaFactory
If you are using SolrCloud you may not be able to find any file by these names on the local filesystem.
You will only be able to see the schema through the Schema API (if enabled) or through the Solr Admin
UI's .Cloud Screens

Whichever name of the file is being used in your installation, the structure of the file is not changed. However, the
way you interact with the file will change. If you are using the managed schema, it is expected that you only
interact with the file with the Schema API, and never make manual edits. If you do not use the managed schema,
you will only be able to make manual edits to the file, the Schema API will not support any modifications.

Note that if you are not using the Schema API yet you do use SolrCloud, you will need to interact with schema.x
 through ZooKeeper using upconfig and downconfig commands to make a local copy and upload yourml

changes. The options for doing this are described in and Solr Start Script Reference Using ZooKeeper to
.Manage Configuration Files

50Apache Solr Reference Guide 6.1

Solr Field Types
The field type defines how Solr should interpret data in a field and how the field can be queried. There are many
field types included with Solr by default, and they can also be defined locally.

Topics covered in this section:

Field Type Definitions and Properties

Field Types Included with Solr

Working with Currencies and Exchange Rates

Working with Dates

Working with Enum Fields

Working with External Files and Processes

Field Properties by Use Case

Related Topics

SchemaXML-DataTypes
FieldType Javadoc

Field Type Definitions and Properties

A field type definition can include four types of information:

The name of the field type (mandatory)
An implementation class name (mandatory)
If the field type is , a description of the field analysis for the field typeTextField
Field type properties - depending on the implementation class, some properties may be mandatory.

Field Type Definitions in schema.xml

Field types are defined in . Each field type is defined between elements. They canschema.xml fieldType
optionally be grouped within a Here is an example of a field type definition for a type called types element. tex

:t_general

http://wiki.apache.org/solr/SchemaXml#Data_Types
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/schema/FieldType.html

51Apache Solr Reference Guide 6.1

<fieldType name="text_general" class="solr.TextField" positionIncrementGap="100">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
 <!-- in this example, we will only use synonyms at query time
 <filter class="solr.SynonymFilterFactory" synonyms="index_synonyms.txt"
ignoreCase="true" expand="false"/>
 -->
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true" words="stopwords.txt"
/>
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"
ignoreCase="true" expand="true"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

The first line in the example above contains the field type name, , and the name of thetext_general
implementing class, . The rest of the definition is about field analysis, described in solr.TextField Understand

.ing Analyzers, Tokenizers, and Filters

The implementing class is responsible for making sure the field is handled correctly. In the class names in schem
, the string is shorthand for or .a.xml solr org.apache.solr.schema org.apache.solr.analysis

Therefore, is really .solr.TextField org.apache.solr.schema.TextField.

Field Type Properties

The field type determines most of the behavior of a field type, but optional properties can also be defined.class
For example, the following definition of a date field type defines two properties, and sortMissingLast omitNo

.rms

<fieldType name="date" class="solr.TrieDateField"
 sortMissingLast="true" omitNorms="true"/>

The properties that can be specified for a given field type fall into three major categories:

Properties specific to the field type's class.
General Properties Solr supports for any field type.
Field Default Properties that can be specified on the field type that will be inherited by fields that use this
type instead of the default behavior.

General Properties

Property Description Values

name The name of the fieldType. This value gets used in field definitions,
in the "type" attribute. It is strongly recommended that names consist
of alphanumeric or underscore characters only and not start with a
digit. This is not currently strictly enforced.

52Apache Solr Reference Guide 6.1

class The class name that gets used to store and index the data for this
type. Note that you may prefix included class names with "solr." and
Solr will automatically figure out which packages to search for the
class - so "solr.TextField" will work. If you are using a third-party
class, you will probably need to have a fully qualified class name.
The fully qualified equivalent for "solr.TextField" is
"org.apache.solr.schema.TextField".

positionIncrementGap For multivalued fields, specifies a distance between multiple values,
which prevents spurious phrase matches

integer

autoGeneratePhraseQueries For text fields. If true, Solr automatically generates phrase queries for
adjacent terms. If false, terms must be enclosed in double-quotes to
be treated as phrases.

true or
false

docValuesFormat Defines a custom to use for fields of this type.DocValuesFormat
This requires that a schema-aware codec, such as the SchemaCode

 has been configured in solrconfig.xml.cFactory

n/a

postingsFormat Defines a custom to use for fields of this type.PostingsFormat
This requires that a schema-aware codec, such as the SchemaCode

 has been configured in solrconfig.xml.cFactory

n/a

Field Default Properties

These are properties that can be specified either on the field types, or on individual fields to override the values
provided by the field types. The default values for each property depend on the underlying class,FieldType
which in turn may depend on the attribute of the . The table below includes the defaultversion <schema/>
value for most implementations provided by Solr, assuming a that declares FieldType schema.xml version

.="1.6"

Property Description Values Implicit
Default

indexed If true, the value of the field can be used in queries to
retrieve matching documents.

true or
false

true

stored If true, the actual value of the field can be retrieved by
queries.

true or
false

true

docValues If true, the value of the field will be put in a column-oriented
 structure.DocValues

true or
false

false

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is not
present.

true or
false

false

multiValued If true, indicates that a single document might contain
multiple values for this field type.

true or
false

false

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the p
 or in your schema.xml, upgrading to a future version of Solr mayostingsFormat docValuesFormat

require you to either switch back to the default codec and optimize your index to rewrite it into the default
codec before upgrading, or re-build your entire index from scratch after upgrading.

53Apache Solr Reference Guide 6.1

omitNorms If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,

 Only full-text fields or fields thatdata, bool, and string.
need an index-time boost need norms.

true or
false

*

omitTermFreqAndPositions If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

true or
false

*

omitPositions Similar to but preservesomitTermFreqAndPositions
term frequency information.

true or
false

*

termVectors
termPositions
termOffsets
termPayloads

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

true or
false

false

required Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

true or
false

false

useDocValuesAsStored If the field has enabled, setting this to true woulddocValues
allow the field to be returned as if it were a stored field (even
if it has) when matching " " in an stored=false * fl

.parameter

true or
false

true

Field Type Similarity

A field type may optionally specify a that will be used when scoring documents that refer to<similarity/>
fields with this type, as long as the "global" similarity for the collection allows it. By default, any field type which
does not define a similarity, uses . For more details, and examples of configuring both globalBM25Similarity
& per-type Similarities, please see .Other Schema Elements

Field Types Included with Solr

The following table lists the field types that are available in Solr. The packageorg.apache.solr.schema
includes all the classes listed in this table.

Class Description

BinaryField Binary data.

BoolField Contains either true or false. Values of "1", "t", or "T" in the first
character are interpreted as true. Any other values in the first character
are interpreted as false.

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Other+Schema+Elements#OtherSchemaElements-Similarity

54Apache Solr Reference Guide 6.1

CollationField Supports Unicode collation for sorting and range queries.
ICUCollationField is a better choice if you can use ICU4J. See the
section .Unicode Collation

CurrencyField Supports currencies and exchange rates. See the section Working
.with Currencies and Exchange Rates

DateRangeField Supports indexing date ranges, to include point in time date instances
as well (single-millisecond durations). See the section Working with

 for more detail on using this field type. Consider using this fieldDates
type even if it's just for date instances, particularly when the queries
typically fall on UTC year/month/day/hour, etc., boundaries.

ExternalFileField Pulls values from a file on disk. See the section Working with External
.Files and Processes

EnumField Allows defining an enumerated set of values which may not be easily
sorted by either alphabetic or numeric order (such as a list of
severities, for example). This field type takes a configuration file, which
lists the proper order of the field values. See the section Working with

 for more information.Enum Fields

ICUCollationField Supports Unicode collation for sorting and range queries. See the
section .Unicode Collation

LatLonType Spatial Search: a latitude/longitude coordinate pair. The latitude is
specified first in the pair.

PointType Spatial Search: An arbitrary n-dimensional point, useful for searching
sources such as blueprints or CAD drawings.

PreAnalyzedField Provides a way to send to Solr serialized token streams, optionally
with independent stored values of a field, and have this information
stored and indexed without any additional text processing.
Configuration and usage of PreAnalyzedField is documented on the W

 page.orking with External Files and Processes

RandomSortField Does not contain a value. Queries that sort on this field type will return
results in random order. Use a dynamic field to use this feature.

SpatialRecursivePrefixTreeFieldType (RPT for short) : Accepts latitude comma longitudeSpatial Search
strings or other shapes in WKT format.

StrField String (UTF-8 encoded string or Unicode). Strings are intended for
small fields and are tokenized or analyzed in any way. They have anot
hard limit of slightly less than 32K.

TextField Text, usually multiple words or tokens.

TrieDateField Date field. Represents a point in time with millisecond precision. See
the section . enablesWorking with Dates precisionStep="0"
efficient date sorting and minimizes index size; precisionStep="8"
(the default) enables efficient range queries.

TrieDoubleField Double field (64-bit IEEE floating point). precisionStep="0" enable
s efficient numeric sorting and minimizes index size; precisionStep
="8" (the default) enables efficient range queries.

https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType
https://cwiki.apache.org/confluence/display/solr/Working+with+External+Files+and+Processes#WorkingwithExternalFilesandProcesses-ThePreAnalyzedFieldType

55Apache Solr Reference Guide 6.1

TrieField If this field type is used, a "type" attribute must also be specified, valid
values are: , , , , . Using this field isinteger long float double date
the same as using any of the Trie fields. precisionStep="0" enabl
es efficient numeric sorting and minimizes index size; precisionSte
p="8" (the default) enables efficient range queries.

TrieFloatField Floating point field (32-bit IEEE floating point). precisionStep="0"
enables efficient numeric sorting and minimizes index size; precisio
nStep="8" (the default) enables efficient range queries.

TrieIntField Integer field (32-bit signed integer). precisionStep="0" enables
efficient numeric sorting and minimizes index size; precisionStep=
"8" (the default) enables efficient range queries.

TrieLongField Long field (64-bit signed integer). precisionStep="0" enables
efficient numeric sorting and minimizes index size; precisionStep=
"8" (the default) enables efficient range queries.

UUIDField Universally Unique Identifier (UUID). Pass in a value of "NEW" and
Solr will create a new UUID. : configuring a UUIDField instanceNote
with a default value of "NEW" is not advisable for most users when
using SolrCloud (and not possible if the UUID value is configured as
the unique key field) since the result will be that each replica of each
document will get a unique UUID value. Using
UUIDUpdateProcessorFactory to generate UUID values when
documents are added is recommended instead.

Working with Currencies and Exchange Rates

The FieldType provides support for monetary values to Solr/Lucene with query-time currencycurrency
conversion and exchange rates. The following features are supported:

Point queries
Range queries
Function range queries
Sorting
Currency parsing by either currency code or symbol
Symmetric & asymmetric exchange rates (asymmetric exchange rates are useful if there are fees
associated with exchanging the currency)

Configuring Currencies

The field type is defined in . This is the default configuration of this type:currency schema.xml

<fieldType name="currency" class="solr.CurrencyField" precisionStep="8"
 defaultCurrency="USD" currencyConfig="currency.xml" />

In this example, we have defined the name and class of the field type, and defined the asdefaultCurrency
"USD", for U.S. Dollars. We have also defined a to use a file called "currency.xml". This is acurrencyConfig
file of exchange rates between our default currency to other currencies. There is an alternate implementation that
would allow regular downloading of currency data. See below for more.Exchange Rates

56Apache Solr Reference Guide 6.1

At indexing time, money fields can be indexed in a native currency. For example, if a product on an e-commerce
site is listed in Euros, indexing the price field as "1000,EUR" will index it appropriately. The price should be
separated from the currency by a comma, and the price must be encoded with a floating point value (a decimal
point).

During query processing, range and point queries are both supported.

Exchange Rates

You configure exchange rates by specifying a provider. Natively, two provider types are supported: FileExchan
 or .geRateProvider OpenExchangeRatesOrgProvider

FileExchangeRateProvider

This provider requires you to provide a file of exchange rates. It is the default, meaning that to use this provider
you only need to specify the file path and name as a value for in the definition for this type.currencyConfig

There is a sample file included with Solr, found in the same directory as the file.currency.xml schema.xml
Here is a small snippet from this file:

<currencyConfig version="1.0">
 <rates>
 <!-- Updated from http://www.exchangerate.com/ at 2011-09-27 -->
 <rate from="USD" to="ARS" rate="4.333871" comment="ARGENTINA Peso" />
 <rate from="USD" to="AUD" rate="1.025768" comment="AUSTRALIA Dollar" />
 <rate from="USD" to="EUR" rate="0.743676" comment="European Euro" />
 <rate from="USD" to="CAD" rate="1.030815" comment="CANADA Dollar" />

 <!-- Cross-rates for some common currencies -->
 <rate from="EUR" to="GBP" rate="0.869914" />
 <rate from="EUR" to="NOK" rate="7.800095" />
 <rate from="GBP" to="NOK" rate="8.966508" />

 <!-- Asymmetrical rates -->
 <rate from="EUR" to="USD" rate="0.5" />
 </rates>
</currencyConfig>

OpenExchangeRatesOrgProvider

You can configure Solr to download exchange rates from , with updates rates betweenOpenExchangeRates.Org
USD and 170 currencies hourly. These rates are symmetrical only.

In this case, you need to specify the in the definitions for the field type and sign up for an APIproviderClass
key. Here is an example:

<fieldType name="currency" class="solr.CurrencyField" precisionStep="8"
 providerClass="solr.OpenExchangeRatesOrgProvider"
 refreshInterval="60"

ratesFileLocation="http://www.openexchangerates.org/api/latest.json?app_id=yourPerso
nalAppIdKey"/>

The is minutes, so the above example will download the newest rates every 60 minutes.refreshInterval
The refresh interval may be increased, but not decreased.

http://www.OpenExchangeRates.Org

57Apache Solr Reference Guide 6.1

Working with Dates

Date Formatting

Solr's date fields (and) represents a point in time with millisecondTrieDateField DateRangeField
precision. The format used is a restricted form of the canonical representation of in the dateTime XML Schema

 – a restricted subset of . For those familiar with Java 8, Solr uses specification ISO-8601 DateTimeFormatter.IS
 for formatting, and parsing too with "leniency".O_INSTANT

YYYY-MM-DDThh:mm:ssZ

YYYY is the year.
MM is the month.
DD is the day of the month.
hh is the hour of the day as on a 24-hour clock.
mm is minutes.
ss is seconds.
Z is a literal 'Z' character indicating that this string representation of the date is in UTC

Note that no time zone can be specified; the String representations of dates is always expressed in Coordinated
Universal Time (UTC). Here is an example value:

1972-05-20T17:33:18Z

You can optionally include fractional seconds if you wish, although any precision beyond milliseconds will be
ignored. Here are example values with sub-seconds:

1972-05-20T17:33:18.772Z
1972-05-20T17:33:18.77Z
1972-05-20T17:33:18.7Z

There must be a leading ' ' for dates prior to year 0000, and Solr will format dates with a leading ' ' for years- +
after 9999. Year 0000 is considered year 1 BC; there is no such thing as year 0 AD or BC.

Date Range Formatting

Solr's supports the same point in time date syntax described above (with describeDateRangeField date math
d below) and more to express date ranges. One class of examples is truncated dates, which represent the entire
date span to the precision indicated. The other class uses the range syntax (). Here are some[TO]
examples:

2000-11 – The entire month of November, 2000.
2000-11T13 – Likewise but for the 13th hour of the day (1pm-2pm).
-0009 – The year 10 BC. A 0 in the year position is 0 AD, and is also considered 1 BC.

Query escaping may be required
As you can see, the date format includes colon characters separating the hours, minutes, and seconds.
Because the colon is a special character to Solr's most common query parsers, escaping is sometimes
required, depending on exactly what you are trying to do.

This is normally an invalid query:
datefield:1972-05-20T17:33:18.772Z

These are valid queries:
 datefield:1972-05-20T17\:33\:18.772Z
 datefield:"1972-05-20T17:33:18.772Z"

datefield:[1972-05-20T17:33:18.772 TO *]

http://www.w3.org/TR/xmlschema-2/#dateTime
http://www.w3.org/TR/xmlschema-2/#dateTime
https://en.wikipedia.org/wiki/ISO_8601
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#ISO_INSTANT
https://docs.oracle.com/javase/8/docs/api/java/time/format/DateTimeFormatter.html#ISO_INSTANT

58Apache Solr Reference Guide 6.1

[2000-11-01 TO 2014-12-01] – The specified date range at a day resolution.
[2014 TO 2014-12-01] – From the start of 2014 till the end of the first day of December.
[* TO 2014-12-01] – From the earliest representable time thru till the end of 2014-12-01.

Limitations: The range syntax doesn't support embedded date math. If you specify a date instance supported by
TrieDateField with date math truncating it, like , you still get the first millisecond of that day, not theNOW/DAY
entire day's range. Exclusive ranges (using & }) work in queries but not for indexing ranges.{

Date Math

Solr's date field types also supports expressions, which makes it easy to create times relative to fixeddate math
moments in time, include the current time which can be represented using the special value of " ".NOW

Date Math Syntax

Date math expressions consist either adding some quantity of time in a specified unit, or rounding the current
time by a specified unit. expressions can be chained and are evaluated left to right.

For example: this represents a point in time two months from now:

NOW+2MONTHS

This is one day ago:

NOW-1DAY

A slash is used to indicate rounding. This represents the beginning of the current hour:

NOW/HOUR

The following example computes (with millisecond precision) the point in time six months and three days into the
future and then rounds that time to the beginning of that day:

NOW+6MONTHS+3DAYS/DAY

Note that while date math is most commonly used relative to it can be applied to any fixed moment in timeNOW
as well:

1972-05-20T17:33:18.772Z+6MONTHS+3DAYS/DAY

Request Parameters That Affect Date Math

NOW

The parameter is used internally by Solr to ensure consistent date math expression parsing across multipleNOW
nodes in a distributed request. But it can be specified to instruct Solr to use an arbitrary moment in time (past or
future) to override for all situations where the the special value of " " would impact date math expressions.NOW

It must be specified as a (long valued) milliseconds since epoch

Example:

q=solr&fq=start_date:[* TO NOW]&NOW=1384387200000

TZ

By default, all date math expressions are evaluated relative to the UTC TimeZone, but the parameter can beTZ
specified to override this behaviour, by forcing all date based addition and rounding to be relative to the specified

.time zone

For example, the following request will use range faceting to facet over the current month, "per day" relative
UTC:

http://docs.oracle.com/javase/8/docs/api/java/util/TimeZone.html

59Apache Solr Reference Guide 6.1

http://localhost:8983/solr/my_collection/select?q=*:*&facet.range=my_date_field&face
t=true&facet.range.start=NOW/MONTH&facet.range.end=NOW/MONTH%2B1MONTH&facet.range.ga
p=%2B1DAY

<int name="2013-11-01T00:00:00Z">0</int>
<int name="2013-11-02T00:00:00Z">0</int>
<int name="2013-11-03T00:00:00Z">0</int>
<int name="2013-11-04T00:00:00Z">0</int>
<int name="2013-11-05T00:00:00Z">0</int>
<int name="2013-11-06T00:00:00Z">0</int>
<int name="2013-11-07T00:00:00Z">0</int>
...

While in this example, the "days" will be computed relative to the specified time zone - including any applicable
Daylight Savings Time adjustments:

http://localhost:8983/solr/my_collection/select?q=*:*&facet.range=my_date_field&face
t=true&facet.range.start=NOW/MONTH&facet.range.end=NOW/MONTH%2B1MONTH&facet.range.ga
p=%2B1DAY&TZ=America/Los_Angeles

<int name="2013-11-01T07:00:00Z">0</int>
<int name="2013-11-02T07:00:00Z">0</int>
<int name="2013-11-03T07:00:00Z">0</int>
<int name="2013-11-04T08:00:00Z">0</int>
<int name="2013-11-05T08:00:00Z">0</int>
<int name="2013-11-06T08:00:00Z">0</int>
<int name="2013-11-07T08:00:00Z">0</int>
...

More DateRangeField Details

DateRangeField is almost a drop-in replacement for places where is used. The onlyTrieDateField
difference is that Solr's XML or SolrJ response formats will expose the stored data as a String instead of a Date.
The underlying index data for this field will be a bit larger. Queries that align to units of time a second on up
should be faster than TrieDateField, especially if it's in UTC. But the main point of DateRangeField as it's name
suggests is to allow indexing date ranges. To do that, simply supply strings in the format shown above. It also
supports specifying 3 different relational predicates between the indexed data, and the query range: Intersect

 (default), , . You can specify the predicate by querying using the local-params parameters Contains Within op
like so:

fq={!field f=dateRange op=Contains}[2013 TO 2018]

In that example, it would find documents with indexed ranges that (or equals) the range 2013 thru 2018.contain
Multi-valued overlapping indexed ranges in a document are effectively coalesced.

For a DateRangeField example use-case and possibly other information, .see Solr's community wiki

Working with Enum Fields

The EnumField type allows defining a field whose values are a closed set, and the sort order is pre-determined

http://wiki.apache.org/solr/DateRangeField

60Apache Solr Reference Guide 6.1

but is not alphabetic nor numeric. Examples of this are severity lists, or risk definitions.

Defining an EnumField in schema.xml

The EnumField type definition is quite simple, as in this example defining field types for "priorityLevel" and
"riskLevel" enumerations:

<fieldType name="priorityLevel" class="solr.EnumField" enumsConfig="enumsConfig.xml"
enumName="priority"/>
<fieldType name="riskLevel" class="solr.EnumField" enumsConfig="enumsConfig.xml"
enumName="risk" />

Besides the and the , which are common to all field types, this type also takes two additionalname class
parameters:

enumsConfig: the name of a configuration file that contains the list of field values and their<enum/>
order that you wish to use with this field type. If a path to the file is not defined specified, the file should be
in the directory for the collection.conf
enumName: the name of the specific enumeration in the file to use for this type.enumsConfig

Defining the EnumField configuration file

The file named with the parameter can contain multiple enumeration value lists with differentenumsConfig
names if there are multiple uses for enumerations in your Solr schema.

In this example, there are two value lists defined. Each list is between opening and closing tags:enum

<?xml version="1.0" ?>
<enumsConfig>
 <enum name="priority">
 <value>Not Available</value>
 <value>Low</value>
 <value>Medium</value>
 <value>High</value>
 <value>Urgent</value>
 </enum>
 <enum name="risk">
 <value>Unknown</value>
 <value>Very Low</value>
 <value>Low</value>
 <value>Medium</value>
 <value>High</value>
 <value>Critical</value>
 </enum>
</enumsConfig>

Working with External Files and Processes

Changing Values
You cannot change the order, or remove, existing values in an without reindexing.<enum/>

You can however add new values to the end.

61Apache Solr Reference Guide 6.1

The ExternalFileField Type
Format of the External File
Reloading an External File

The PreAnalyzedField Type
JsonPreAnalyzedParser
SimplePreAnalyzedParser

The TypeExternalFileField

The type makes it possible to specify the values for a field in a file outside the Solr index.ExternalFileField
For such a field, the file contains mappings from a key field to the field value. Another way to think of this is that,
instead of specifying the field in documents as they are indexed, Solr finds values for this field in the external file.

The type is handy for cases where you want to update a particular field in manyExternalFileField
documents more often than you want to update the rest of the documents. For example, suppose you have
implemented a document rank based on the number of views. You might want to update the rank of all the
documents daily or hourly, while the rest of the contents of the documents might be updated much less
frequently. Without , you would need to update each document just to change the rank.ExternalFileField
Using is much more efficient because all document values for a particular field are storedExternalFileField
in an external file that can be updated as frequently as you wish.

In , the definition of this field type might look like this:schema.xml

<fieldType name="entryRankFile" keyField="pkId" defVal="0" stored="false"
indexed="false" class="solr.ExternalFileField" valType="pfloat"/>

The attribute defines the key that will be defined in the external file. It is usually the unique key for thekeyField
index, but it doesn't need to be as long as the can be used to identify documents in the index. A keyField defV

 defines a default value that will be used if there is no entry in the external file for a particular document.al

The attribute specifies the actual type of values that will be found in the file. The type specified must bevalType
either a float field type, so valid values for this attribute are , or . This attribute can bepfloat float tfloat
omitted.

Format of the External File

The file itself is located in Solr's index directory, which by default is . The name of the file$SOLR_HOME/data
should be or . For the example above, then, the file couldexternal_ fieldname external_ .*fieldname
be named or .external_entryRankFile external_entryRankFile.txt

The file contains entries that map a key field, on the left of the equals sign, to a value, on the right. Here are a
few example entries:

doc33=1.414
 doc34=3.14159

doc40=42

The keys listed in this file do not need to be unique. The file does not need to be sorted, but Solr will be able to

External fields are not searchable. They can be used only for function queries or display. For more
information on function queries, see the section on .Function Queries

If any files using the name pattern (such as) appear, the last (after being sorted by name) will.* .txt
be used and previous versions will be deleted. This behavior supports implementations on systems
where one may not be able to overwrite a file (for example, on Windows, if the file is in use).

62Apache Solr Reference Guide 6.1

perform the lookup faster if it is.

Reloading an External File

It's possible to define an event listener to reload an external file when either a searcher is reloaded or when a
new searcher is started. See the section for more information, but a sample definition inQuery-Related Listeners

 might look like this:solrconfig.xml

<listener event="newSearcher"
class="org.apache.solr.schema.ExternalFileFieldReloader"/>
<listener event="firstSearcher"
class="org.apache.solr.schema.ExternalFileFieldReloader"/>

The TypePreAnalyzedField

The type provides a way to send to Solr serialized token streams, optionally withPreAnalyzedField
independent stored values of a field, and have this information stored and indexed without any additional text
processing applied in Solr. This is useful if user wants to submit field content that was already processed by
some existing external text processing pipeline (e.g., it has been tokenized, annotated, stemmed, synonyms
inserted, etc.), while using all the rich attributes that Lucene's TokenStream provides (per-token attributes).

The serialization format is pluggable using implementations of PreAnalyzedParser interface. There are two
out-of-the-box implementations:

JsonPreAnalyzedParser: as the name suggests, it parses content that uses JSON to represent field's
content. This is the default parser to use if the field type is not configured otherwise.
SimplePreAnalyzedParser: uses a simple strict plain text format, which in some situations may be easier
to create than JSON.

There is only one configuration parameter, . The value of this parameter should be a fully qualifiedparserImpl
class name of a class that implements PreAnalyzedParser interface. The default value of this parameter is org.

.apache.solr.schema.JsonPreAnalyzedParser

By default, the query-time analyzer for fields of this type will be the same as the index-time analyzer, which
expects serialized pre-analyzed text. You must add a query type analyzer to your fieldType in order to perform
analysis on non-pre-analyzed queries. In the example below, the index-time analyzer expects the default JSON
serialization format, and the query-time analyzer will employ StandardTokenizer/LowerCaseFilter:

<fieldType name="pre_with_query_analyzer" class="solr.PreAnalyzedField">
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

JsonPreAnalyzedParser

This is the default serialization format used by PreAnalyzedField type. It uses a top-level JSON map with the
following keys:

Key Description Required?

v Version key. Currently the supported version is .1 required

str Stored string value of a field. You can use at most one of or .str bin optional

https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-Query-RelatedListeners

63Apache Solr Reference Guide 6.1

bin Stored binary value of a field. The binary value has to be Base64 encoded. optional

tokens serialized token stream. This is a JSON list. optional

Any other top-level key is silently ignored.

Token stream serialization

The token stream is expressed as a JSON list of JSON maps. The map for each token consists of the following
keys and values:

Key Description Lucene Attribute Value Required?

t token CharTermAttribute UTF-8 string representing the current token required

s start offset OffsetAttribute Non-negative integer optional

e end offset OffsetAttribute Non-negative integer optional

i position
increment

PositionIncrementAttribute Non-negative integer - default is 1 optional

p payload PayloadAttribute Base64 encoded payload optional

y lexical type TypeAttribute UTF-8 string optional

f flags FlagsAttribute String representing an integer value in
hexadecimal format

optional

Any other key is silently ignored.

Example

{
 "v":"1",
 "str":"test ó",
 "tokens": [
 {"t":"one","s":123,"e":128,"i":22,"p":"DQ4KDQsODg8=","y":"word"},
 {"t":"two","s":5,"e":8,"i":1,"y":"word"},
 {"t":"three","s":20,"e":22,"i":1,"y":"foobar"}
]
}

SimplePreAnalyzedParser

The fully qualified class name to use when specifying this format via the configuration parameter isparserImpl
.org.apache.solr.schema.SimplePreAnalyzedParser

Syntax

The serialization format supported by this parser is as follows:

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/CharTermAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html

64Apache Solr Reference Guide 6.1

content ::= version (stored)? tokens
version ::= digit+ " "
; stored field value - any "=" inside must be escaped!
stored ::= "=" text "="
tokens ::= (token ((" ") + token)*)*
token ::= text ("," attrib)*
attrib ::= name '=' value
name ::= text
value ::= text

Special characters in "text" values can be escaped using the escape character . The following escape\
sequences are recognized:

Escape
Sequence

Description

" "\ literal space character

" "\, literal character,

" "\= literal character=

" "\\ literal character\

" "\n newline

" "\r carriage return

" "\t horizontal tab

Please note that Unicode sequences (e.g.) are not supported.\u0001

Supported attribute names

The following token attributes are supported, and identified with short symbolic names:

Name Description Lucene attribute Value format

i position increment PositionIncrementAttribute integer

s start offset OffsetAttribute integer

e end offset OffsetAttribute integer

y lexical type TypeAttribute string

f flags FlagsAttribute hexadecimal integer

p payload PayloadAttribute bytes in hexadecimal format; whitespace is ignored

Token positions are tracked and implicitly added to the token stream - the start and end offsets consider only the
term text and whitespace, and exclude the space taken by token attributes.

Example token streams

Serialization format

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/PositionIncrementAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/OffsetAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/TypeAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/FlagsAttribute.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/analysis/tokenattributes/PayloadAttribute.html

65Apache Solr Reference Guide 6.1

1 one two three

version: 1
stored: null
token: (term= ,startOffset=0,endOffset=3)one
token: (term= ,startOffset=4,endOffset=7)two
token: (term= ,startOffset=8,endOffset=13)three

1 one two three

version: 1
stored: null
token: (term= ,startOffset=0,endOffset=3)one
token: (term= ,startOffset=5,endOffset=8)two
token: (term= ,startOffset=11,endOffset=16)three

1 one,s=123,e=128,i=22 two three,s=20,e=22

version: 1
stored: null
token: (term= ,positionIncrement=22,startOffset=123,endOffset=128)one
token: (term= ,positionIncrement=1,startOffset=5,endOffset=8)two
token: (term=three,positionIncrement=1,startOffset=20,endOffset=22)

1 \ one\ \,,i=22,a=\, two\=

\n,\ =\ \

version: 1
stored: null
token: (term= ,positionIncrement=22,startOffset=0,endOffset=6) one ,
token: (term= two=

,positionIncrement=1,startOffset=7,endOffset=15)
token: (term= ,positionIncrement=1,startOffset=17,endOffset=18)\

Note that unknown attributes and their values are ignored, so in this example, the " " attribute on thea
first token and the " " (escaped space) attribute on the second token are ignored, along with their
values, because they are not among the supported attribute names.

1 ,i=22 ,i=33,s=2,e=20 ,

version: 1
stored: null
token: (term=,positionIncrement=22,startOffset=0,endOffset=0)
token: (term=,positionIncrement=33,startOffset=2,endOffset=20)
token: (term=,positionIncrement=1,startOffset=2,endOffset=2)

66Apache Solr Reference Guide 6.1

1 =This is the stored part with \=
\n \t escapes.=one two three

version: 1
stored: "This is the stored part with =

"\t escapes.
token: (term= ,startOffset=0,endOffset=3)one
token: (term= ,startOffset=4,endOffset=7)two
token: (term= ,startOffset=8,endOffset=13)three

 Note that the " " in the above stored value is not literal; it's shown that way to visually indicate the\t
actual tab char that is in the stored value.

1 ==

version: 1
stored: ""
(no tokens)

1 =this is a test.=

version: 1
stored: "this is a test."
(no tokens)

Field Properties by Use Case

Here is a summary of common use cases, and the attributes the fields or field types should have to support the
case. An entry of true or false in the table indicates that the option must be set to the given value for the use
case to function correctly. If no entry is provided, the setting of that attribute has no impact on the case.

Use Case indexed stored multiValued omitNorms termVectors termPositions docValues

search within
field

true

retrieve
contents

 true

use as
unique key

true false

sort on field true7 false true 1 true7

use field
boosts 5

 false

document
boosts affect
searches
within field

 false

highlighting true 4 true true2 true 3

67Apache Solr Reference Guide 6.1

faceting 5 true7 true7

add multiple
values,
maintaining
order

 true

field length
affects doc
score

 false

MoreLikeThis
5

 true 6

Notes:

1 Recommended but not necessary.
 Will be used if present, but not necessary.2

 (if termVectors=true)3

 A tokenizer must be defined for the field, but it doesn't need to be indexed.4

 Described in .5 Understanding Analyzers, Tokenizers, and Filters
 Term vectors are not mandatory here. If not true, then a stored field is analyzed. So term vectors are6

recommended, but only required if .stored=false

 Either or must be true, but both are not required. can be more efficient in7 indexed docValues DocValues
many cases.

Defining Fields
Fields are defined in the fields element of . Once you have the field types set up, defining the fieldsschema.xml
themselves is simple.

Example

The following example defines a field named with a type named and a default value of ; the price float 0.0 i
 and properties are explicitly set to , while any other properties specified on the fielndexed stored true float

d type are inherited.

<field name="price" type="float" default="0.0" indexed="true" stored="true"/>

Field Properties

Property Description

name The name of the field. Field names should consist of alphanumeric or underscore characters only
and not start with a digit. This is not currently strictly enforced, but other field names will not have
first class support from all components and back compatibility is not guaranteed. Names with both
leading and trailing underscores (e.g.) are reserved. Every field must have a .version_ _ name

type The name of the for this field. This will be found in the " " attribute on the fieldType name field
 definition. Every field must have a .Type type

68Apache Solr Reference Guide 6.1

default A default value that will be added automatically to any document that does not have a value in this
field when it is indexed. If this property is not specified, there is no default.

Optional Field Type Override Properties

Fields can have many of the same properties as field types. Properties from the table below which are specified
on an individual field will override any explicit value for that property specified on the the of the<fieldType/>
field, or any implicit default property value provided by the underlying implementation. The tableFieldType
below is reproduced from , which has more details:Field Type Definitions and Properties

Property Description Values Implicit
Default

indexed If true, the value of the field can be used in queries to
retrieve matching documents.

true or
false

true

stored If true, the actual value of the field can be retrieved by
queries.

true or
false

true

docValues If true, the value of the field will be put in a column-oriented
 structure.DocValues

true or
false

false

sortMissingFirst
sortMissingLast

Control the placement of documents when a sort field is not
present.

true or
false

false

multiValued If true, indicates that a single document might contain
multiple values for this field type.

true or
false

false

omitNorms If true, omits the norms associated with this field (this
disables length normalization and index-time boosting for the
field, and saves some memory). Defaults to true for all
primitive (non-analyzed) field types, such as int, float,

 Only full-text fields or fields thatdata, bool, and string.
need an index-time boost need norms.

true or
false

*

omitTermFreqAndPositions If true, omits term frequency, positions, and payloads from
postings for this field. This can be a performance boost for
fields that don't require that information. It also reduces the
storage space required for the index. Queries that rely on
position that are issued on a field with this option will silently
fail to find documents. This property defaults to true for all
field types that are not text fields.

true or
false

*

omitPositions Similar to but preservesomitTermFreqAndPositions
term frequency information.

true or
false

*

termVectors
termPositions
termOffsets
termPayloads

These options instruct Solr to maintain full term vectors for
each document, optionally including position, offset and
payload information for each term occurrence in those
vectors. These can be used to accelerate highlighting and
other ancillary functionality, but impose a substantial cost in
terms of index size. They are not necessary for typical uses
of Solr.

true or
false

false

required Instructs Solr to reject any attempts to add a document
which does not have a value for this field. This property
defaults to false.

true or
false

false

69Apache Solr Reference Guide 6.1

useDocValuesAsStored If the field has enabled, setting this to true woulddocValues
allow the field to be returned as if it were a stored field (even
if it has) when matching " " in an stored=false * fl

.parameter

true or
false

true

Related Topics

SchemaXML-Fields
Field Options by Use Case

Copying Fields
You might want to interpret some document fields in more than one way. Solr has a mechanism for making
copies of fields so that you can apply several distinct field types to a single piece of incoming information.

The name of the field you want to copy is the , and the name of the copy is the . In source destination schema.xm
, it's very simple to make copies of fields:l

<copyField source="cat" dest="text" maxChars="30000" />

In this example, we want Solr to copy the field to a field named . Fields are copied before iscat text analysis
done, meaning you can have two fields with identical original content, but which use different analysis chains and
are stored in the index differently.

In the example above, if the destination field has data of its own in the input documents, the contents of thetext
 field will be added as additional values – just as if all of the values had originally been specified by the client.cat

Remember to configure your fields as if they will ultimately get multiple values (eithermultivalued="true"
from a multivalued source or from multiple directives).copyField

A common usage for this functionality is to create a single "search" field that will serve as the default query field
when users or clients do not specify a field to query. For example, , , , and maytitle author keywords body
all be fields that should be searched by default, with copy field rules for each field to copy to a fieldcatchall
(for example, it could be named anything). Later you can set a rule in to search the solrconfig.xml catchal

 field by default. One caveat to this is your index will grow when using copy fields. However, whether thisl
becomes problematic for you and the final size will depend on the number of fields being copied, the number of
destination fields being copied to, the analysis in use, and the available disk space.

The parameter, an parameter, establishes an upper limit for the number of characters to bemaxChars int
copied from the source value when constructing the value added to the destination field. This limit is useful for
situations in which you want to copy some data from the source field, but also control the size of index files.

Both the source and the destination of can contain either leading or trailing asterisks, which willcopyField
match anything. For example, the following line will copy the contents of all incoming fields that match the
wildcard pattern to the text field.:*_t

<copyField source="*_t" dest="text" maxChars="25000" />

The command can use a wildcard (*) character in the parameter only if the pcopyField dest source
arameter contains one as well. uses the matching glob from the source field for the fiecopyField dest
ld name into which the source content is copied.

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter
http://wiki.apache.org/solr/SchemaXml#Fields
http://wiki.apache.org/solr/FieldOptionsByUseCase

70Apache Solr Reference Guide 6.1

Dynamic Fields
Dynamic fields allow Solr to index fields that you did not explicitly define in your schema. This is useful if you
discover you have forgotten to define one or more fields. Dynamic fields can make your application less brittle by
providing some flexibility in the documents you can add to Solr.

A dynamic field is just like a regular field except it has a name with a wildcard in it. When you are indexing
documents, a field that does not match any explicitly defined fields can be matched with a dynamic field.

For example, suppose your schema includes a dynamic field with a name of . If you attempt to index a*_i
document with a field, but no explicit field is defined in the schema, then the field willcost_i cost_i cost_i
have the field type and analysis defined for .*_i

Like regular fields, dynamic fields have a name, a field type, and options.

<dynamicField name="*_i" type="int" indexed="true" stored="true"/>

It is recommended that you include basic dynamic field mappings (like that shown above) in your .schema.xml
The mappings can be very useful.

Related Topics

SchemaXML-Dynamic Fields

Other Schema Elements
This section describes several other important elements of .schema.xml

Unique Key

The element specifies which field is a unique identifier for documents. Although is notuniqueKey uniqueKey
required, it is nearly always warranted by your application design. For example, should be used ifuniqueKey
you will ever update a document in the index.

You can define the unique key field by naming it:

<uniqueKey>id</uniqueKey>

Schema defaults and cannot be used to populate the field. You also can't use copyFields uniqueKey UUIDU
 to have values generated automatically.pdateProcessorFactory uniqueKey

Further, the operation will fail if the field is used, but is multivalued (or inherits the multivaluenessuniqueKey
from the). However, will continue to work, as long as the field is properly used.fieldtype uniqueKey

Default Search Field & Query Operator

Although they have been deprecated for quite some time, Solr still has support for Schema based configuration
of a (which is superseded by the) and <defaultSearchField/> df parameter <solrQueryParser

 (which is superseded by the .defaultOperator="OR"/> parameterq.op

If you have these options specified in your Schema, you are strongly encouraged to replace them with request
parameters (or) as support for them may be removed from future Solr release.request parameter defaults

http://wiki.apache.org/solr/SchemaXml#Dynamic_fields

71Apache Solr Reference Guide 6.1

Similarity

Similarity is a Lucene class used to score a document in searching.

Each collection has one "global" Similarity, and by default Solr uses an implicit w SchemaSimilarityFactory
hich allows individual field types to be configured with a "per-type" specific Similarity and implicitly uses BM25Sim

 for any field type which does not have an explicit Similarity.ilarity

This default behavior can be overridden by declaring a top level element in your ,<similarity/> schema.xml
outside of any single field type. This similarity declaration can either refer directly to the name of a class with a
no-argument constructor, such as in this example showing :BM25Similarity

<similarity class="solr.BM25Similarity"/>

or by referencing a implementation, which may take optional initialization parameters:SimilarityFactory

<similarity class="solr.DFRSimilarityFactory">
 <str name="basicModel">P</str>
 <str name="afterEffect">L</str>
 <str name="normalization">H2</str>
 <float name="c">7</float>
</similarity>

In most cases, specifying global level similarity like this will cause an error if your also includesschema.xml
field type specific declarations. One key exception to this is that you may explicitly declare a <similarity/> S

and specify what that default behavior will be for all field types that do not declare chemaSimilarityFactory
an explicit Similarity using the name of field type (specified by) that configureddefaultSimFromFieldType is
with a specific similarity:

<similarity class="solr.SchemaSimilarityFactory">
 <str name="defaultSimFromFieldType">text_dfr</str>
<similarity>
<fieldType name="text_dfr" class="solr.TextField">
 <analyzer ... />
 <similarity class="solr.DFRSimilarityFactory">
 <str name="basicModel">I(F)</str>
 <str name="afterEffect">B</str>
 <str name="normalization">H3</str>
 <float name="mu">900</float>
 </similarity>
</fieldType>
<fieldType name="text_ib">
 <analyzer ... />
 <similarity class="solr.IBSimilarityFactory">
 <str name="distribution">SPL</str>
 <str name="lambda">DF</str>
 <str name="normalization">H2</str>
 </similarity>
</fieldType>
<fieldType name="text_other">
 <analyzer ... />
</fieldType>

In the example above (using the Information-Based model) will be used for any fieldsIBSimilarityFactory
of type , while (divergence from random) will be used for any fields of type text_ib DFRSimilarityFactory t

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/similarities/SchemaSimilarityFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/similarities/SchemaSimilarityFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/similarities/SchemaSimilarityFactory.html

72Apache Solr Reference Guide 6.1

, as well as any fields using a type that does not explicitly specify a .ext_dfr <similarity/>

If is explicitly declared with out configuring a ,SchemaSimilarityFactory defaultSimFromFieldType
then is implicitly used as the default.BM25Similarity

In addition to the various factories mentioned on this page, there are several other similarity implementations that
can be used such as the , , etc.... For details,SweetSpotSimilarityFactory ClassicSimilarityFactory
see the Solr Javadocs for the .similarity factories

Schema API
The Schema API provides read and write access to the Solr schema for each collection (or core, when using
standalone Solr). Read access to all schema elements is supported. Fields, dynamic fields, field types and
copyField rules may be added, removed or replaced. Future Solr releases will extend write access to allow more
schema elements to be modified.

To enable schema modification with this API, the schema will need to be managed and mutable. See the section
 for more information.Schema Factory Definition in SolrConfig

The API allows two output modes for all calls: JSON or XML. When requesting the complete schema, there is
another output mode which is XML modeled after the schema.xml file itself.

When modifying the schema with the API, a core reload will automatically occur in order for the changes to be
available immediately for documents indexed thereafter. Previously indexed documents will be automaticallynot
handled - they be re-indexed if they used schema elements that you changed.must

The base address for the API is . If for example youhttp://<host>:<port>/solr/<collection_name>
run Solr's " " example (via the command shown below), which creates a " "cloud bin/solr gettingstarted
collection, then the base URL (as in all the sample URLs in this section) would be: http://localhost:8983/

. solr/gettingstarted

bin/solr -e cloud -noprompt

API Entry Points
Modify the Schema

Add a New Field
Delete a Field
Replace a Field
Add a Dynamic Field Rule
Delete a Dynamic Field Rule
Replace a Dynamic Field Rule
Add a New Field Type
Delete a Field Type
Replace a Field Type
Add a New Copy Field Rule
Delete a Copy Field Rule
Multiple Commands in a Single POST

Re-index after schema modifications!
If you modify your schema, you will likely need to re-index all documents. If you do not, you may lose
access to documents, or not be able to interpret them properly, e.g. after replacing a field type.

Modifying your schema will never modify any documents that are already indexed. Again, you must
re-index documents in order to apply schema changes to them.

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/schema/SimilarityFactory.html

73Apache Solr Reference Guide 6.1

Schema Changes among Replicas
Retrieve Schema Information

Retrieve the Entire Schema
List Fields
List Dynamic Fields
List Field Types
List Copy Fields
Show Schema Name
Show the Schema Version
List UniqueKey
Show Global Similarity
Get the Default Query Operator

Manage Resource Data

API Entry Points

/schema: the schema, or the schema to add, remove, or replace fields, dynamic fields, copyretrieve modify
fields, or field types

: about all defined fields or a specific named field/schema/fields retrieve information
: about all dynamic field rules or a specific named dynamic rule/schema/dynamicfields retrieve information

: about all field types or a specific field type/schema/fieldtypes retrieve information
: about copy fields/schema/copyfields retrieve information

: the schema name/schema/name retrieve
: the schema version/schema/version retrieve

: the defined uniqueKey/schema/uniquekey retrieve
: the global similarity definition/schema/similarity retrieve

: the default operator/schema/solrqueryparser/defaultoperator retrieve

Modify the Schema

POST / /schemacollection

To add, remove or replace fields, dynamic field rules, copy field rules, or new field types, you can send a POST
request to the endpoint with a sequence of commands to perform the requested/collection/schema/
actions. The following commands are supported:

add-field: add a new field with parameters you provide.
delete-field: delete a field.
replace-field: replace an existing field with one that is differently configured.

add-dynamic-field: add a new dynamic field rule with parameters you provide.
delete-dynamic-field: delete a dynamic field rule.
replace-dynamic-field: replace an existing dynamic field rule with one that is differently configured.

add-field-type: add a new field type with parameters you provide.
delete-field-type: delete a field type.
replace-field-type: replace an existing field type with one that is differently configured.

add-copy-field: add a new copy field rule.
delete-copy-field: delete a copy field rule.

These commands can be issued in separate POST requests or in the same POST request. Commands are
executed in the order in which they are specified.

In each case, the response will include the status and the time to process the request, but will not include the
entire schema.

74Apache Solr Reference Guide 6.1

When modifying the schema with the API, a core reload will automatically occur in order for the

changes to be available immediately for documents indexed thereafter. Previously indexed documents

will not be automatically handled - they must be re-indexed if they used schema elements that you

changed.

Add a New Field

The command adds a new field definition to your schema. If a field with the same name exists anadd-field
error is thrown.

All of the properties available when defining a field with manual edits can be passed via the API.schema.xml
These request attributes are described in detail in the section . Defining Fields

For example, to define a new stored field named "sell-by", of type "tdate", you would POST the following request:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field":{
 "name":"sell-by",
 "type":"tdate",
 "stored":true }
}' http://localhost:8983/solr/gettingstarted/schema

Delete a Field

The command removes a field definition from your schema. If the field does not exist in thedelete-field
schema, or if the field is the source or destination of a copy field rule, an error is thrown.

For example, to delete a field named "sell-by", you would POST the following request:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "delete-field" : { "name":"sell-by" }
}' http://localhost:8983/solr/gettingstarted/schema

Replace a Field

The command replaces a field's definition. Note that you must supply the full definition for areplace-field
field - this command will partially modify a field's definition. If the field does not exist in the schema an errornot
is thrown.

All of the properties available when defining a field with manual edits can be passed via the API.schema.xml
These request attributes are described in detail in the section . Defining Fields

For example, to replace the definition of an existing field "sell-by", to make it be of type "date" and to not be
stored, you would POST the following request:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "replace-field":{
 "name":"sell-by",
 "type":"date",
 "stored":false }
}' http://localhost:8983/solr/gettingstarted/schema

75Apache Solr Reference Guide 6.1

Add a Dynamic Field Rule

The command adds a new dynamic field rule to your schema. add-dynamic-field

All of the properties available when editing can be passed with the POST request. The section schema.xml Dyn
 has details on all of the attributes that can be defined for a dynamic field rule.amic Fields

For example, to create a new dynamic field rule where all incoming fields ending with "_s" would be stored and
have field type "string", you can POST a request like this:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-dynamic-field":{
 "name":"*_s",
 "type":"string",
 "stored":true }
}' http://localhost:8983/solr/gettingstarted/schema

Delete a Dynamic Field Rule

The command deletes a dynamic field rule from your schema. If the dynamic fielddelete-dynamic-field
rule does not exist in the schema, or if the schema contains a copy field rule with a target or destination that
matches only this dynamic field rule, an error is thrown.

For example, to delete a dynamic field rule matching "*_s", you can POST a request like this:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "delete-dynamic-field":{ "name":"*_s" }
}' http://localhost:8983/solr/gettingstarted/schema

Replace a Dynamic Field Rule

The command replaces a dynamic field rule in your schema. Note that you mustreplace-dynamic-field
supply the full definition for a dynamic field rule - this command will partially modify a dynamic field rule'snot
definition. If the dynamic field rule does not exist in the schema an error is thrown.

All of the properties available when editing can be passed with the POST request. The section schema.xml Dyn
 has details on all of the attributes that can be defined for a dynamic field rule.amic Fields

For example, to replace the definition of the "*_s" dynamic field rule with one where the field type is
"text_general" and it's not stored, you can POST a request like this:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "replace-dynamic-field":{
 "name":"*_s",
 "type":"text_general",
 "stored":false }
}' http://localhost:8983/solr/gettingstarted/schema

Add a New Field Type

The command adds a new field type to your schema. add-field-type

All of the field type properties available when editing by hand are available for use in a POSTschema.xml

76Apache Solr Reference Guide 6.1

request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section .Solr Field Types

For example, to create a new field type named "myNewTxtField", you can POST a request as follows:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field-type" : {
 "name":"myNewTxtField",
 "class":"solr.TextField",
 "positionIncrementGap":"100",
 "analyzer" : {
 "charFilters":[{
 "class":"solr.PatternReplaceCharFilterFactory",
 "replacement":"$1$1",
 "pattern":"([a-zA-Z])\\\\1+" }],
 "tokenizer":{
 "class":"solr.WhitespaceTokenizerFactory" },
 "filters":[{
 "class":"solr.WordDelimiterFilterFactory",
 "preserveOriginal":"0" }]}}
}' http://localhost:8983/solr/gettingstarted/schema

Note in this example that we have only defined a single analyzer section that will apply to index analysis and
query analysis. If we wanted to define separate analysis, we would replace the section in the aboveanalyzer
example with separate sections for and . As in this example:indexAnalyzer queryAnalyzer

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field-type":{
 "name":"myNewTextField",
 "class":"solr.TextField",
 "indexAnalyzer":{
 "tokenizer":{
 "class":"solr.PathHierarchyTokenizerFactory",
 "delimiter":"/" }},
 "queryAnalyzer":{
 "tokenizer":{
 "class":"solr.KeywordTokenizerFactory" }}}
}' http://localhost:8983/solr/gettingstarted/schema

Delete a Field Type

The command removes a field type from your schema. If the field type does not exist indelete-field-type
the schema, or if any field or dynamic field rule in the schema uses the field type, an error is thrown.

For example, to delete the field type named "myNewTxtField", you can make a POST request as

follows:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "delete-field-type":{ "name":"myNewTxtField" }
}' http://localhost:8983/solr/gettingstarted/schema

Replace a Field Type

77Apache Solr Reference Guide 6.1

The command replaces a field type in your schema. Note that you must supply the fullreplace-field-type
definition for a field type - this command will partially modify a field type's definition. If the field type does notnot
exist in the schema an error is thrown.

All of the field type properties available when editing by hand are available for use in a POSTschema.xml
request. The structure of the command is a json mapping of the standard field type definition, including the
name, class, index and query analyzer definitions, etc. Details of all of the available options are described in the
section .Solr Field Types

For example, to replace the definition of a field type named "myNewTxtField", you can make a POST request as
follows:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "replace-field-type":{
 "name":"myNewTxtField",
 "class":"solr.TextField",
 "positionIncrementGap":"100",
 "analyzer":{
 "tokenizer":{
 "class":"solr.StandardTokenizerFactory" }}}
}' http://localhost:8983/solr/gettingstarted/schema

Add a New Copy Field Rule

The command adds a new copy field rule to your schema.add-copy-field

The attributes supported by the command are the same as when creating copy field rules by manually editing
the , as below: schema.xml

Name Required Description

source Yes The source field.

dest Yes A field or an array of fields to which the source field will be copied.

maxChars No The upper limit for the number of characters to be copied. The section Copying Fields
has more details.

For example, to define a rule to copy the field "shelf" to the "location" and "catchall" fields, you would POST the
following request:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-copy-field":{
 "source":"shelf",
 "dest":["location", "catchall"]}
}' http://localhost:8983/solr/gettingstarted/schema

Delete a Copy Field Rule

The command deletes a copy field rule from your schema. If the copy field rule does notdelete-copy-field
exist in the schema an error is thrown.

The and attributes are required by this command.source dest

For example, to delete a rule to copy the field "shelf" to the "location" field, you would POST the following
request:

78Apache Solr Reference Guide 6.1

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "delete-copy-field":{ "source":"shelf", "dest":"location" }
}' http://localhost:8983/solr/gettingstarted/schema

Multiple Commands in a Single POST

It is possible to perform one or more add requests in a single command. The API is transactional and all
commands in a single call either succeed or fail together.

The commands are executed in the order in which they are specified. This means that if you want to create a
new field type and in the same request use the field type on a new field, the section of the request that creates
the field type must come before the section that creates the new field. Similarly, since a field must exist for it to
be used in a copy field rule, a request to add a field must come before a request for the field to be used as either
the source or the destination for a copy field rule.

The syntax for making multiple requests supports several approaches. First, the commands can simply be made
serially, as in this request to create a new field type and then a field that uses that type:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field-type":{
 "name":"myNewTxtField",
 "class":"solr.TextField",
 "positionIncrementGap":"100",
 "analyzer":{
 "charFilters":[{
 "class":"solr.PatternReplaceCharFilterFactory",
 "replacement":"$1$1",
 "pattern":"([a-zA-Z])\\\\1+" }],
 "tokenizer":{
 "class":"solr.WhitespaceTokenizerFactory" },
 "filters":[{
 "class":"solr.WordDelimiterFilterFactory",
 "preserveOriginal":"0" }]}},
 "add-field" : {
 "name":"sell-by",
 "type":"myNewTxtField",
 "stored":true }
}' http://localhost:8983/solr/gettingstarted/schema

Or, the same command can be repeated, as in this example:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field":{
 "name":"shelf",
 "type":"myNewTxtField",
 "stored":true },
 "add-field":{
 "name":"location",
 "type":"myNewTxtField",
 "stored":true },
 "add-copy-field":{
 "source":"shelf",
 "dest":["location", "catchall"]}
}' http://localhost:8983/solr/gettingstarted/schema

79Apache Solr Reference Guide 6.1

Finally, repeated commands can be sent as an array:

curl -X POST -H 'Content-type:application/json' --data-binary '{
 "add-field":[
 { "name":"shelf",
 "type":"myNewTxtField",
 "stored":true },
 { "name":"location",
 "type":"myNewTxtField",
 "stored":true }]
}' http://localhost:8983/solr/gettingstarted/schema

Schema Changes among Replicas

When running in SolrCloud mode, changes made to the schema on one node will propagate to all replicas in the
collection. You can pass the parameter with your request to set the number of seconds toupdateTimeoutSecs
wait until all replicas confirm they applied the schema updates. This helps your client application be more robust
in that you can be sure that all replicas have a given schema change within a defined amount of time. If
agreement is not reached by all replicas in the specified time, then the request fails and the error message will
include information about which replicas had trouble. In most cases, the only option is to re-try the change after
waiting a brief amount of time. If the problem persists, then you'll likely need to investigate the server logs on the
replicas that had trouble applying the changes. If you do not supply an parameter, theupdateTimeoutSecs
default behavior is for the receiving node to return immediately after persisting the updates to ZooKeeper. All
other replicas will apply the updates asynchronously. Consequently, without supplying a timeout, your client
application cannot be sure that all replicas have applied the changes.

Retrieve Schema Information

The following endpoints allow you to read how your schema has been defined. You can GET the entire schema,
or only portions of it as needed.

To modify the schema, see the previous section .Modify the Schema

Retrieve the Entire Schema

GET / /schemacollection

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters should be added to the API request after '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are , or json xml schem
. If not specified, JSON will be returned by default.a.xml

OUTPUT

80Apache Solr Reference Guide 6.1

Output Content

The output will include all fields, field types, dynamic rules and copy field rules, in the format requested (JSON or
XML). The schema name and version are also included.

EXAMPLES

Get the entire schema in JSON.

curl http://localhost:8983/solr/gettingstarted/schema?wt=json

81Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":5},
 "schema":{
 "name":"example",
 "version":1.5,
 "uniqueKey":"id",
 "fieldTypes":[{
 "name":"alphaOnlySort",
 "class":"solr.TextField",
 "sortMissingLast":true,
 "omitNorms":true,
 "analyzer":{
 "tokenizer":{
 "class":"solr.KeywordTokenizerFactory"},
 "filters":[{
 "class":"solr.LowerCaseFilterFactory"},
 {
 "class":"solr.TrimFilterFactory"},
 {
 "class":"solr.PatternReplaceFilterFactory",
 "replace":"all",
 "replacement":"",
 "pattern":"([^a-z])"}]}},
...
 "fields":[{
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"author",
 "type":"text_general",
 "indexed":true,
 "stored":true},
 {
 "name":"cat",
 "type":"string",
 "multiValued":true,
 "indexed":true,
 "stored":true},
...
 "copyFields":[{
 "source":"author",
 "dest":"text"},
 {
 "source":"cat",
 "dest":"text"},
 {
 "source":"content",
 "dest":"text"},
...
 {
 "source":"author",
 "dest":"author_s"}]}}

82Apache Solr Reference Guide 6.1

Get the entire schema in XML.

curl http://localhost:8983/solr/gettingstarted/schema?wt=xml

<response>
<lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5</int>
</lst>
<lst name="schema">
 <str name="name">example</str>
 <float name="version">1.5</float>
 <str name="uniqueKey">id</str>
 <arr name="fieldTypes">
 <lst>
 <str name="name">alphaOnlySort</str>
 <str name="class">solr.TextField</str>
 <bool name="sortMissingLast">true</bool>
 <bool name="omitNorms">true</bool>
 <lst name="analyzer">
 <lst name="tokenizer">
 <str name="class">solr.KeywordTokenizerFactory</str>
 </lst>
 <arr name="filters">
 <lst>
 <str name="class">solr.LowerCaseFilterFactory</str>
 </lst>
 <lst>
 <str name="class">solr.TrimFilterFactory</str>
 </lst>
 <lst>
 <str name="class">solr.PatternReplaceFilterFactory</str>
 <str name="replace">all</str>
 <str name="replacement"/>
 <str name="pattern">([^a-z])</str>
 </lst>
 </arr>
 </lst>
 </lst>
...
 <lst>
 <str name="source">author</str>
 <str name="dest">author_s</str>
 </lst>
 </arr>
</lst>
</response>

Get the entire schema in "schema.xml" format.

curl http://localhost:8983/solr/gettingstarted/schema?wt=schema.xml

83Apache Solr Reference Guide 6.1

<schema name="example" version="1.5">
 <uniqueKey>id</uniqueKey>
 <types>
 <fieldType name="alphaOnlySort" class="solr.TextField" sortMissingLast="true"
omitNorms="true">
 <analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.TrimFilterFactory"/>
 <filter class="solr.PatternReplaceFilterFactory" replace="all"
replacement="" pattern="([^a-z])"/>
 </analyzer>
 </fieldType>
...
 <copyField source="url" dest="text"/>
 <copyField source="price" dest="price_c"/>
 <copyField source="author" dest="author_s"/>
</schema>

List Fields

GET / /schema/fieldscollection

GET / /schema/fields/collection fieldname

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

fieldname The specific fieldname (if limiting request to a single field).

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are orjson
. If not specified, JSON will be returned by default.xml

fl string No (all
fields)

Comma- or space-separated list of one or more fields to
return. If not specified, all fields will be returned by default.

includeDynamic boolean No false If , and if the query parameter is specified or the true fl field
 path parameter is used, matching dynamic fields arename

included in the response and identified with the dynamicBa
 property. If neither the query parameter nor the se fl fieldn

 path parameter is specified, the querame includeDynamic
y parameter is ignored. If , matching dynamic fieldsfalse
will not be returned.

84Apache Solr Reference Guide 6.1

showDefaults boolean No false If , all default field properties from each field's field typetrue
will be included in the response (e.g. tokenized for solr.Te

). If , only explicitly specified field properties willxtField false
be included.

OUTPUT

Output Content

The output will include each field and any defined configuration for each field. The defined configuration can vary
for each field, but will minimally include the field , the , if it is and if it is . If name type indexed stored multiVa

 is defined as either true or false (most likely true), that will also be shown. See the section flued Defining Fields
or more information about each parameter.

EXAMPLES

Get a list of all fields.

curl http://localhost:8983/solr/gettingstarted/schema/fields?wt=json

The sample output below has been truncated to only show a few fields.

{
 "fields": [
 {
 "indexed": true,
 "name": "_version_",
 "stored": true,
 "type": "long"
 },
 {
 "indexed": true,
 "name": "author",
 "stored": true,
 "type": "text_general"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "cat",
 "stored": true,
 "type": "string"
 },
...
],
 "responseHeader": {
 "QTime": 1,
 "status": 0
 }
}

List Dynamic Fields

GET / /schema/dynamicfieldscollection

GET / /schema/dynamicfields/collection name

85Apache Solr Reference Guide 6.1

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

name The name of the dynamic field rule (if limiting request to a single dynamic field rule).

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are json, xml
. If not specified, JSON will be returned by default.

showDefaults boolean No false If , all default field properties from each dynamic field'strue
field type will be included in the response (e.g. for tokenized

). If , only explicitly specified fieldsolr.TextField false
properties will be included.

OUTPUT

Output Content

The output will include each dynamic field rule and the defined configuration for each rule. The defined
configuration can vary for each rule, but will minimally include the dynamic field , the , if it is name type indexed
and if it is . See the section for more information about each parameter.stored Dynamic Fields

EXAMPLES

Get a list of all dynamic field declarations:

curl http://localhost:8983/solr/gettingstarted/schema/dynamicfields?wt=json

The sample output below has been truncated.

86Apache Solr Reference Guide 6.1

{
 "dynamicFields": [
 {
 "indexed": true,
 "name": "*_coordinate",
 "stored": false,
 "type": "tdouble"
 },
 {
 "multiValued": true,
 "name": "ignored_*",
 "type": "ignored"
 },
 {
 "name": "random_*",
 "type": "random"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "attr_*",
 "stored": true,
 "type": "text_general"
 },
 {
 "indexed": true,
 "multiValued": true,
 "name": "*_txt",
 "stored": true,
 "type": "text_general"
 }
...
],
 "responseHeader": {
 "QTime": 1,
 "status": 0
 }
}

List Field Types

GET / /schema/fieldtypescollection

GET / /schema/fieldtypes/collection name

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

name The name of the field type (if limiting request to a single field type).

Query Parameters

87Apache Solr Reference Guide 6.1

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or json x
. If not specified, JSON will be returned by default.ml

showDefaults boolean No false If , all default field properties from each field type will betrue
included in the response (e.g. for).tokenized solr.TextField
If , only explicitly specified field properties will befalse
included.

OUTPUT

Output Content

The output will include each field type and any defined configuration for the type. The defined configuration can
vary for each type, but will minimally include the field type and the . If query or index analyzers,name class
tokenizers, or filters are defined, those will also be shown with other defined parameters. See the section Solr

 for more information about how to configure various types of fields.Field Types

EXAMPLES

Get a list of all field types.

curl http://localhost:8983/solr/gettingstarted/schema/fieldtypes?wt=json

The sample output below has been truncated to show a few different field types from different parts of the list.

88Apache Solr Reference Guide 6.1

{
 "fieldTypes": [
 {
 "analyzer": {
 "class": "solr.TokenizerChain",
 "filters": [
 {
 "class": "solr.LowerCaseFilterFactory"
 },
 {
 "class": "solr.TrimFilterFactory"
 },
 {
 "class": "solr.PatternReplaceFilterFactory",
 "pattern": "([^a-z])",
 "replace": "all",
 "replacement": ""
 }
],
 "tokenizer": {
 "class": "solr.KeywordTokenizerFactory"
 }
 },
 "class": "solr.TextField",
 "dynamicFields": [],
 "fields": [],
 "name": "alphaOnlySort",
 "omitNorms": true,
 "sortMissingLast": true
 },
...
 {
 "class": "solr.TrieFloatField",
 "dynamicFields": [
 "*_fs",
 "*_f"
],
 "fields": [
 "price",
 "weight"
],
 "name": "float",
 "positionIncrementGap": "0",
 "precisionStep": "0"
 },
...
}

List Copy Fields

GET / /schema/copyfieldscollection

INPUT

Path Parameters

89Apache Solr Reference Guide 6.1

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . Ifjson xml
not specified, JSON will be returned by default.

source.fl string No (all
source
fields)

Comma- or space-separated list of one or more copyField source
fields to include in the response - copyField directives with all other
source fields will be excluded from the response. If not specified, all
copyField-s will be included in the response.

dest.fl string No (all dest
fields)

Comma- or space-separated list of one or more copyField dest fields
to include in the response - copyField directives with all other dest
fields will be excluded. If not specified, all copyField-s will be included
in the response.

OUTPUT

Output Content

The output will include the and ination of each copy field rule defined in . For moresource dest schema.xml
information about copying fields, see the section .Copying Fields

EXAMPLES

Get a list of all copyfields.

curl http://localhost:8983/solr/gettingstarted/schema/copyfields?wt=json

The sample output below has been truncated to the first few copy definitions.

90Apache Solr Reference Guide 6.1

{
 "copyFields": [
 {
 "dest": "text",
 "source": "author"
 },
 {
 "dest": "text",
 "source": "cat"
 },
 {
 "dest": "text",
 "source": "content"
 },
 {
 "dest": "text",
 "source": "content_type"
 },
...
],
 "responseHeader": {
 "QTime": 3,
 "status": 0
 }
}

Show Schema Name

GET / /schema/namecollection

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If notjson xml
specified, JSON will be returned by default.

OUTPUT

Output Content
The output will be simply the name given to the schema.

EXAMPLES

Get the schema name.

91Apache Solr Reference Guide 6.1

curl http://localhost:8983/solr/gettingstarted/schema/name?wt=json

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "name":"example"}

Show the Schema Version

GET / /schema/versioncollection

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If notjson xml
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will simply be the schema version in use.

EXAMPLES

Get the schema version

curl http://localhost:8983/solr/gettingstarted/schema/version?wt=json

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "version":1.5}

List UniqueKey

GET / /schema/uniquekeycollection

92Apache Solr Reference Guide 6.1

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If notjson xml
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include simply the field name that is defined as the uniqueKey for the index.

EXAMPLES

List the uniqueKey.

curl http://localhost:8983/solr/gettingstarted/schema/uniquekey?wt=json

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "uniqueKey":"id"}

Show Global Similarity

GET / /schema/similaritycollection

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If notjson xml
specified, JSON will be returned by default.

93Apache Solr Reference Guide 6.1

OUTPUT

Output Content

The output will include the class name of the global similarity defined (if any).

EXAMPLES

Get the similarity implementation.

curl http://localhost:8983/solr/gettingstarted/schema/similarity?wt=json

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "similarity":{
 "class":"org.apache.solr.search.similarities.DefaultSimilarityFactory"}}

Get the Default Query Operator

GET / /schema/solrqueryparser/defaultoperatorcollection

INPUT

Path Parameters

Key Description

collection The collection (or core) name.

Query Parameters

The query parameters can be added to the API request after a '?'.

Key Type Required Default Description

wt string No json Defines the format of the response. The options are or . If notjson xml
specified, JSON will be returned by default.

OUTPUT

Output Content

The output will include simply the default operator if none is defined by the user.

EXAMPLES

Get the default operator.

curl
http://localhost:8983/solr/gettingstarted/schema/solrqueryparser/defaultoperator?wt=
json

94Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":2},
 "defaultOperator":"OR"}

Manage Resource Data

The REST API provides a mechanism for any Solr plugin to expose resources that shouldManaged Resources
support CRUD (Create, Read, Update, Delete) operations. Depending on what Field Types and Analyzers are
configured in your Schema, additional REST API paths may exist. See the secti/schema/ Managed Resources
on for more information and examples.

Putting the Pieces Together
At the highest level, is structured as follows. This example is not real XML, but it gives you an ideaschema.xml
of the structure of the file.

<schema>
 <types>
 <fields>
 <uniqueKey>
 <copyField>
</schema>

Obviously, most of the excitement is in and , where the field types and the actual field definitionstypes fields
live. These are supplemented by . The must always be defined. In older Solr versionscopyFields uniqueKey
you would find defaultSearchField and solrQueryParser tags as well, but although these still work they
are deprecated and discouraged, see .Other Schema Elements

Choosing Appropriate Numeric Types

For general numeric needs, use , , , and TrieIntField TrieLongField TrieFloatField TrieDoubleFiel
 with . d precisionStep="0"

If you expect users to make frequent range queries on numeric types, use the default (by notprecisionStep
specifying it) or specify it as (which is the default). This offers faster speed for rangeprecisionStep="8"
queries at the expense of increasing index size.

Working With Text

Types and fields are optional tags
Note that the and sections are optional, meaning you are free to mix , types fields field dynamicF

, and definitions on the top level. This allows for a more logical groupingield copyField fieldType
of related tags in your schema.

95Apache Solr Reference Guide 6.1

Handling text properly will make your users happy by providing them with the best possible results for text
searches.

One technique is using a text field as a catch-all for keyword searching. Most users are not sophisticated about
their searches and the most common search is likely to be a simple keyword search. You can use tocopyField
take a variety of fields and funnel them all into a single text field for keyword searches. In the schema.xml file for
the " " example included with Solr, declarations are used to dump the contents of techproducts copyField ca

, , , , and into a single field, . In addition, it could be a good idea to copy t name manu features includes text
 into in case users wanted to search for a particular product by passing its product number to a keywordID text

search.

Another technique is using to use the same field in different ways. Suppose you have a field that iscopyField
a list of authors, like this:

Schildt, Herbert; Wolpert, Lewis; Davies, P.

For searching by author, you could tokenize the field, convert to lower case, and strip out punctuation:

schildt / herbert / wolpert / lewis / davies / p

For sorting, just use an untokenized field, converted to lower case, with punctuation stripped:

schildt herbert wolpert lewis davies p

Finally, for faceting, use the primary author only via a :StrField

Schildt, Herbert

Related Topics

SchemaXML

DocValues
DocValues are a way of recording field values internally that is more efficient for some purposes, such as sorting
and faceting, than traditional indexing.

Why DocValues?

The standard way that Solr builds the index is with an . This style builds a list of terms found in allinverted index
the documents in the index and next to each term is a list of documents that the term appears in (as well as how
many times the term appears in that document). This makes search very fast - since users search by terms,
having a ready list of term-to-document values makes the query process faster.

For other features that we now commonly associate with search, such as sorting, faceting, and highlighting, this
approach is not very efficient. The faceting engine, for example, must look up each term that appears in each
document that will make up the result set and pull the document IDs in order to build the facet list. In Solr, this is
maintained in memory, and can be slow to load (depending on the number of documents, terms, etc.).

In Lucene 4.0, a new approach was introduced. DocValue fields are now column-oriented fields with a
document-to-value mapping built at index time. This approach promises to relieve some of the memory
requirements of the fieldCache and make lookups for faceting, sorting, and grouping much faster.

Enabling DocValues

To use docValues, you only need to enable it for a field that you will use it with. As with all schema design, you
need to define a field type and then define fields of that type with docValues enabled. All of these actions are

http://wiki.apache.org/solr/SchemaXml

96Apache Solr Reference Guide 6.1

1.
2.

done in .schema.xml

Enabling a field for docValues only requires adding to the field (or field type) definition, asdocValues="true"
in this example from the of Solr's :schema.xml sample_techproducts_configs config set

<field name="manu_exact" type="string" indexed="false" stored="false"
docValues="true" />

DocValues are only available for specific field types. The types chosen determine the underlying Lucene
docValue type that will be used. The available Solr field types are:

StrField and .UUIDField
If the field is single-valued (i.e., multi-valued is false), Lucene will use the SORTED type.
If the field is multi-valued, Lucene will use the SORTED_SET type.

Any numeric fields, date fields and .Trie* EnumField
If the field is single-valued (i.e., multi-valued is false), Lucene will use the NUMERIC type.
If the field is multi-valued, Lucene will use the SORTED_SET type.

These Lucene types are related to how the values are sorted and stored.

There are two implications of multi-valued DocValues being stored as SORTED_SET types that should be kept
when combined with /export (and, by extension, -based functionality):in mind Streaming Expression

Values are returned in sorted order rather than the original input order.
If multiple, identical entries are in the field in a document, only one will be returned for thatsingle
document.

There is an additional configuration option available, which is to modify the docValuesFormat used by the field
. The default implementation employs a mixture of loading some things into memory and keeping some ontype

disk. In some cases, however, you may choose to specify an alternative . ForDocValuesFormat implementation
example, you could choose to keep everything in memory by specifying on adocValuesFormat="Memory"
field type:

<fieldType name="string_in_mem_dv" class="solr.StrField" docValues="true"
docValuesFormat="Memory" />

Please note that the option may change in future releases.docValuesFormat

Using DocValues

Sorting, Faceting & Functions

If for a field, then DocValues will automatically be used any time the field is used for docValues="true" sortin
, or .g faceting Function Queries

If you have already indexed data into your Solr index, you will need to completely re-index your content
after changing your field definitions in in order to successfully use docValues.schema.xml

Lucene index back-compatibility is only supported for the default codec. If you choose to customize the d
 in your schema.xml, upgrading to a future version of Solr may require you to eitherocValuesFormat

switch back to the default codec and optimize your index to rewrite it into the default codec before
upgrading, or re-build your entire index from scratch after upgrading.

https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-docValuesFormat
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/codecs/DocValuesFormat.html
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter

97Apache Solr Reference Guide 6.1

1.

2.

1.

2.

3.

Retrieving DocValues During Search

Field values retrieved during search queries are typically returned from stored values. However, non-stored
docValues fields will be also returned along with other stored fields when all fields (or pattern matching globs) are
specified to be returned (e.g. " ") for search queries depending on the effective value of the fl=* useDocValues

 parameter for each field. For schema versions >= 1.6, the implicit default is AsStored useDocValuesAsStor
. See & for more details.ed="true" Field Type Definitions and Properties Defining Fields

When , non-stored DocValues fields can still be explicitly requested byuseDocValuesAsStored="false"
name in the , but will not match glob patterns ().fl param "*"

Note that returning DocValues along with "regular" stored fields at query time has performance implications that
stored fields may not because DocValues are column-oriented and may therefore incur additional cost to retrieve
for each returned document. Also note that while returning non-stored fields from DocValues, the values of a
multi-valued field are returned in sorted order (and not insertion order). If you require the multi-valued fields to be
returned in the original insertion order, then make your multi-valued field as stored (such a change requires
re-indexing).

In cases where the query is returning docValues fields performance may improve since returning storedonly
fields requires disk reads and decompression whereas returning docValues fields in the fl list only requires
memory access.

When retrieving fields from their docValues form, two important differences between regular stored fields and
docValues fields must be understood:

Order is preserved. For simply retrieving stored fields, the insertion order is the return order. Fornot
docValues, it is the order.sorted
Multiple identical entries are collapsed into a single value. Thus if I insert values 4, 5, 2, 4, 1, my return will
be 1, 2, 4, 5.

Schemaless Mode
Schemaless Mode is a set of Solr features that, when used together, allow users to rapidly construct an effective
schema by simply indexing sample data, without having to manually edit the schema. These Solr features, all
controlled via , are:solrconfig.xml

Managed schema: Schema modifications are made at runtime through Solr APIs, which requires the use
of that supports these changes - see for moreschemaFactory Schema Factory Definition in SolrConfig
details.
Field value class guessing: Previously unseen fields are run through a cascading set of value-based
parsers, which guess the Java class of field values - parsers for Boolean, Integer, Long, Float, Double,
and Date are currently available.
Automatic schema field addition, based on field value class(es): Previously unseen fields are added to the
schema, based on field value Java classes, which are mapped to schema field types - see Solr Field

.Types

Using the Schemaless Example

The three features of schemaless mode are pre-configured in the idata_driven_schema_configs config set
n the Solr distribution. To start an example instance of Solr using these configs, run the following command:

bin/solr start -e schemaless

This will launch a Solr server, and automatically create a collection (named " ") that containsgettingstarted

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefl(FieldList)Parameter

98Apache Solr Reference Guide 6.1

only three fields in the initial schema: , , and .id _version_ _text_

You can use the to confirm this: /schema/fields Schema API curl http://localhost:8983/solr/get
will output: tingstarted/schema/fields

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "fields":[{
 "name":"_text_",
 "type":"text_general",
 "multiValued":true,
 "indexed":true,
 "stored":false},
 {
 "name":"_version_",
 "type":"long",
 "indexed":true,
 "stored":true},
 {
 "name":"id",
 "type":"string",
 "multiValued":false,
 "indexed":true,
 "required":true,
 "stored":true,
 "uniqueKey":true}]}

Configuring Schemaless Mode

As described above, there are three configuration elements that need to be in place to use Solr in schemaless
mode. In the config set included with Solr these are already configured. If,data_driven_schema_configs
however, you would like to implement schemaless on your own, you should make the following changes.

Enable Managed Schema

As described in the section , Managed Schema support is enabled bySchema Factory Definition in SolrConfig
default, unless your configuration specifies that should be used.ClassicIndexSchemaFactory

You can configure the (and control the resource file used, or disable futureManagedIndexSchemaFactory
modifications) by adding an explicit like the one below, please see <schemaFactory/> Schema Factory

 for more details on the options available.Definition in SolrConfig

Because the config set includes a directive that causesdata_driven_schema_configs copyField
all content to be indexed in a predefined "catch-all" field, to enable single-field search that_text_
includes all fields' content, the index will be larger than it would be without the . When youcopyField
nail down your schema, consider removing the field and the corresponding directiv_text_ copyField
e if you don't need it.

99Apache Solr Reference Guide 6.1

<schemaFactory class="ManagedIndexSchemaFactory">
 <bool name="mutable">true</bool>
 <str name="managedSchemaResourceName">managed-schema</str>
</schemaFactory>

Define an UpdateRequestProcessorChain

The UpdateRequestProcessorChain allows Solr to guess field types, and you can define the default field type
classes to use. To start, you should define it as follows (see the javadoc links below for update processor factory
documentation):

100Apache Solr Reference Guide 6.1

<updateRequestProcessorChain name="add-unknown-fields-to-the-schema">
 <!-- UUIDUpdateProcessorFactory will generate an id if none is present in the
incoming document -->
 <processor class="solr.UUIDUpdateProcessorFactory" />
 <processor class="solr.LogUpdateProcessorFactory"/>
 <processor class="solr.DistributedUpdateProcessorFactory"/>
 <processor class="solr.RemoveBlankFieldUpdateProcessorFactory"/>
 <processor class="solr.FieldNameMutatingUpdateProcessorFactory">
 <str name="pattern">[^\w-\.]</str>
 <str name="replacement">_</str>
 </processor>
 <processor class="solr.ParseBooleanFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseLongFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseDoubleFieldUpdateProcessorFactory"/>
 <processor class="solr.ParseDateFieldUpdateProcessorFactory">
 <arr name="format">
 <str>yyyy-MM-dd'T'HH:mm:ss.SSSZ</str>
 <str>yyyy-MM-dd'T'HH:mm:ss,SSSZ</str>
 <str>yyyy-MM-dd'T'HH:mm:ss.SSS</str>
 <str>yyyy-MM-dd'T'HH:mm:ss,SSS</str>
 <str>yyyy-MM-dd'T'HH:mm:ssZ</str>
 <str>yyyy-MM-dd'T'HH:mm:ss</str>
 <str>yyyy-MM-dd'T'HH:mmZ</str>
 <str>yyyy-MM-dd'T'HH:mm</str>
 <str>yyyy-MM-dd HH:mm:ss.SSSZ</str>
 <str>yyyy-MM-dd HH:mm:ss,SSSZ</str>
 <str>yyyy-MM-dd HH:mm:ss.SSS</str>
 <str>yyyy-MM-dd HH:mm:ss,SSS</str>
 <str>yyyy-MM-dd HH:mm:ssZ</str>
 <str>yyyy-MM-dd HH:mm:ss</str>
 <str>yyyy-MM-dd HH:mmZ</str>
 <str>yyyy-MM-dd HH:mm</str>
 <str>yyyy-MM-dd</str>
 </arr>
 </processor>
 <processor class="solr.AddSchemaFieldsUpdateProcessorFactory">
 <str name="defaultFieldType">strings</str>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Boolean</str>
 <str name="fieldType">booleans</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.util.Date</str>
 <str name="fieldType">tdates</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Long</str>
 <str name="valueClass">java.lang.Integer</str>
 <str name="fieldType">tlongs</str>
 </lst>
 <lst name="typeMapping">
 <str name="valueClass">java.lang.Number</str>
 <str name="fieldType">tdoubles</str>
 </lst>
 </processor>
 <processor class="solr.RunUpdateProcessorFactory"/>
</updateRequestProcessorChain>

101Apache Solr Reference Guide 6.1

Javadocs for update processor factories mentioned above:

UUIDUpdateProcessorFactory
RemoveBlankFieldUpdateProcessorFactory
FieldNameMutatingUpdateProcessorFactory
ParseBooleanFieldUpdateProcessorFactory
ParseLongFieldUpdateProcessorFactory
ParseDoubleFieldUpdateProcessorFactory
ParseDateFieldUpdateProcessorFactory
AddSchemaFieldsUpdateProcessorFactory

Make the UpdateRequestProcessorChain the Default for the UpdateRequestHandler

Once the UpdateRequestProcessorChain has been defined, you must instruct your UpdateRequestHandlers to
use it when working with index updates (i.e., adding, removing, replacing documents). Here is an example using

 to set the defaults on all request handlers:InitParams /update

<initParams path="/update/**">
 <lst name="defaults">
 <str name="update.chain">add-unknown-fields-to-the-schema</str>
 </lst>
 </initParams>

Examples of Indexed Documents

Once the schemaless mode has been enabled (whether you configured it manually or are using data_driven_
), documents that include fields that are not defined in your schema should be added to the schema_configs

index, and the new fields added to the schema.

For example, adding a CSV document will cause its fields that are not in the schema to be added, with
fieldTypes based on values:

curl "http://localhost:8983/solr/gettingstarted/update?commit=true" -H
"Content-type:application/csv" -d '
id,Artist,Album,Released,Rating,FromDistributor,Sold
44C,Old Shews,Mead for Walking,1988-08-13,0.01,14,0'

Output indicating success:

<response>
 <lst name="responseHeader"><int name="status">0</int><int
name="QTime">106</int></lst>
</response>

The fields now in the schema (output from curl http://localhost:8983/solr/gettingstarted/sche
): ma/fields

After each of these changes have been made, Solr should be restarted (or, you can reload the cores to
load the new definitions).solrconfig.xml

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UUIDUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/RemoveBlankFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/FieldNameMutatingUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseBooleanFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseLongFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseDoubleFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseDateFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/AddSchemaFieldsUpdateProcessorFactory.html

102Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":1},
 "fields":[{
 "name":"Album",
 "type":"strings"}, // Field value guessed as String -> strings fieldType
 {
 "name":"Artist",
 "type":"strings"}, // Field value guessed as String -> strings fieldType
 {
 "name":"FromDistributor",
 "type":"tlongs"}, // Field value guessed as Long -> tlongs fieldType
 {
 "name":"Rating",
 "type":"tdoubles"}, // Field value guessed as Double -> tdoubles fieldType
 {
 "name":"Released",
 "type":"tdates"}, // Field value guessed as Date -> tdates fieldType
 {
 "name":"Sold",
 "type":"tlongs"}, // Field value guessed as Long -> tlongs fieldType
 {
 "name":"_text_",
...
 },
 {
 "name":"_version_",
...
 },
 {
 "name":"id",
...
 }]}

Once a field has been added to the schema, its field type is fixed. As a consequence, adding documents with
field value(s) that conflict with the previously guessed field type will fail. For example, after adding the above
document, the " " field has the fieldType , but the document below has a non-integral decimalSold tlongs

value in this field:

curl "http://localhost:8983/solr/gettingstarted/update?commit=true" -H
"Content-type:application/csv" -d '
id,Description,Sold
19F,Cassettes by the pound,4.93'

This document will fail, as shown in this output:

You Can Still Be Explicit
Even if you want to use schemaless mode for most fields, you can still use the toSchema API
pre-emptively create some fields, with explicit types, before you index documents that use them.

Internally, the Schema API and the Schemaless Update Processors both use the same Managed
 functionality.Schema

103Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">400</int>
 <int name="QTime">7</int>
 </lst>
 <lst name="error">
 <str name="msg">ERROR: [doc=19F] Error adding field 'Sold'='4.93' msg=For input
string: "4.93"</str>
 <int name="code">400</int>
 </lst>
</response>

104Apache Solr Reference Guide 6.1

Understanding Analyzers, Tokenizers, and Filters
The following sections describe how Solr breaks down and works with textual data. There are three main
concepts to understand: analyzers, tokenizers, and filters.

Field analyzers are used both during ingestion, when a document is indexed, and at query time. An analyzer
examines the text of fields and generates a token stream. Analyzers may be a single class or they may be
composed of a series of tokenizer and filter classes.

Tokenizers break field data into lexical units, or .tokens

Filters examine a stream of tokens and keep them, transform or discard them, or create new ones. Tokenizers
and filters may be combined to form pipelines, or , where the output of one is input to the next. Such achains
sequence of tokenizers and filters is called an and the resulting output of an analyzer is used to matchanalyzer
query results or build indices.

Using Analyzers, Tokenizers, and Filters

Although the analysis process is used for both indexing and querying, the same analysis process need not be
used for both operations. For indexing, you often want to simplify, or normalize, words. For example, setting all
letters to lowercase, eliminating punctuation and accents, mapping words to their stems, and so on. Doing so
can increase recall because, for example, "ram", "Ram" and "RAM" would all match a query for "ram". To
increase query-time precision, a filter could be employed to narrow the matches by, for example, ignoring all-cap
acronyms if you're interested in male sheep, but not Random Access Memory.

The tokens output by the analysis process define the values, or , of that field and are used either to build anterms
index of those terms when a new document is added, or to identify which documents contain the terms you are
querying for.

For More Information

These sections will show you how to configure field analyzers and also serves as a reference for the details of
configuring each of the available tokenizer and filter classes. It also serves as a guide so that you can configure
your own analysis classes if you have special needs that cannot be met with the included filters or tokenizers.

For Analyzers, see:

Analyzers: Detailed conceptual information about Solr analyzers.
Running Your Analyzer: Detailed information about testing and running your Solr analyzer.

For Tokenizers, see:

About Tokenizers: Detailed conceptual information about Solr tokenizers.
Tokenizers: Information about configuring tokenizers, and about the tokenizer factory classes included in
this distribution of Solr.

For Filters, see:

About Filters: Detailed conceptual information about Solr filters.
Filter Descriptions: Information about configuring filters, and about the filter factory classes included in this
distribution of Solr.
CharFilterFactories: Information about filters for pre-processing input characters.

To find out how to use Tokenizers and Filters with various languages, see:

Language Analysis: Information about tokenizers and filters for character set conversion or for use with
specific languages.

105Apache Solr Reference Guide 6.1

Analyzers
An analyzer examines the text of fields and generates a token stream. Analyzers are specified as a child of the <

 element in the configuration file (in the same directory as)fieldType> schema.xml conf/ solrconfig.xml
.

In normal usage, only fields of type will specify an analyzer. The simplest way to configure ansolr.TextField
analyzer is with a single element whose class attribute is a fully qualified Java class name. The<analyzer>
named class must derive from . For example:org.apache.lucene.analysis.Analyzer

<fieldType name="nametext" class="solr.TextField">
 <analyzer class="org.apache.lucene.analysis.core.WhitespaceAnalyzer"/>
</fieldType>

In this case a single class, , is responsible for analyzing the content of the named textWhitespaceAnalyzer
field and emitting the corresponding tokens. For simple cases, such as plain English prose, a single analyzer
class like this may be sufficient. But it's often necessary to do more complex analysis of the field content.

Even the most complex analysis requirements can usually be decomposed into a series of discrete, relatively
simple processing steps. As you will soon discover, the Solr distribution comes with a large selection of
tokenizers and filters that covers most scenarios you are likely to encounter. Setting up an analyzer chain is very
straightforward; you specify a simple element (no class attribute) with child elements that name<analyzer>
factory classes for the tokenizer and filters to use, in the order you want them to run.

For example:

<fieldType name="nametext" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"/>
 </analyzer>
</fieldType>

Note that classes in the package may be referred to here with the shorthand org.apache.solr.analysis so
 prefix.lr.

In this case, no Analyzer class was specified on the element. Rather, a sequence of more<analyzer>
specialized classes are wired together and collectively act as the Analyzer for the field. The text of the field is
passed to the first item in the list (), and the tokens that emerge from thesolr.StandardTokenizerFactory
last one () are the terms that are used for indexing or querying anysolr.EnglishPorterFilterFactory
fields that use the "nametext" .fieldType

Field Values versus Indexed Terms
The output of an Analyzer affects the indexed in a given field (and the terms used when parsingterms
queries against those fields) but it has no impact on the value for the fields. For example: anstored
analyzer might split "Brown Cow" into two indexed terms "brown" and "cow", but the stored value will still
be a single String: "Brown Cow"

106Apache Solr Reference Guide 6.1

Analysis Phases

Analysis takes place in two contexts. At index time, when a field is being created, the token stream that results
from analysis is added to an index and defines the set of terms (including positions, sizes, and so on) for the
field. At query time, the values being searched for are analyzed and the terms that result are matched against
those that are stored in the field's index.

In many cases, the same analysis should be applied to both phases. This is desirable when you want to query
for exact string matches, possibly with case-insensitivity, for example. In other cases, you may want to apply
slightly different analysis steps during indexing than those used at query time.

If you provide a simple definition for a field type, as in the examples above, then it will be used for<analyzer>
both indexing and queries. If you want distinct analyzers for each phase, you may include two defi<analyzer>
nitions distinguished with a type attribute. For example:

<fieldType name="nametext" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
 <filter class="solr.SynonymFilterFactory" synonyms="syns.txt"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

In this theoretical example, at index time the text is tokenized, the tokens are set to lowercase, any that are not
listed in are discarded and those that remain are mapped to alternate values as defined by thekeepwords.txt
synonym rules in the file . This essentially builds an index from a restricted set of possible values andsyns.txt
then normalizes them to values that may not even occur in the original text.

At query time, the only normalization that happens is to convert the query terms to lowercase. The filtering and
mapping steps that occur at index time are not applied to the query terms. Queries must then, in this example, be
very precise, using only the normalized terms that were stored at index time.

Analysis for Multi-Term Expansion

In some types of queries (ie: Prefix, Wildcard, Regex, etc...) the input provided by the user is not natural
language intended for Analysis. Things like Synonyms or Stop word filtering do not work in a logical way in these
types of Queries.

The analysis factories that work in these types of queries (such as Lowercasing, or Normalizing Factories)can
are known as . When Solr needs to perform analysis for a query that resultsMultiTermAwareComponents
in Multi-Term expansion, only the used in the analyzer are used, FactoryMultiTermAwareComponents query
that is not Multi-Term aware will be skipped.

For most use cases, this provides the best possible behavior, but if you wish for absolute control over the
analysis performed on these types of queries, you may explicitly define a analyzer to use, such as inmultiterm
the following example:

http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/util/MultiTermAwareComponent.html

107Apache Solr Reference Guide 6.1

<fieldType name="nametext" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
 <filter class="solr.SynonymFilterFactory" synonyms="syns.txt"/>
 </analyzer>
 <analyzer type="query">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
 <!-- No analysis at all when doing queries that involved Multi-Term expansion -->
 <analyzer type="multiterm">
 <tokenizer class="solr.KeywordTokenizerFactory" />
 </analyzer>
</fieldType>

About Tokenizers
The job of a is to break up a stream of text into tokens, where each token is (usually) a sub-sequencetokenizer
of the characters in the text. An analyzer is aware of the field it is configured for, but a tokenizer is not.
Tokenizers read from a character stream (a Reader) and produce a sequence of Token objects (a
TokenStream).

Characters in the input stream may be discarded, such as whitespace or other delimiters. They may also be
added to or replaced, such as mapping aliases or abbreviations to normalized forms. A token contains various
metadata in addition to its text value, such as the location at which the token occurs in the field. Because a
tokenizer may produce tokens that diverge from the input text, you should not assume that the text of the token is
the same text that occurs in the field, or that its length is the same as the original text. It's also possible for more
than one token to have the same position or refer to the same offset in the original text. Keep this in mind if you
use token metadata for things like highlighting search results in the field text.

<fieldType name="text" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 </analyzer>
</fieldType>

The class named in the tokenizer element is not the actual tokenizer, but rather a class that implements the Tok
 API. This factory class will be called upon to create new tokenizer instances as needed.enizerFactory

Objects created by the factory must derive from , which indicates that they produce sequences ofTokenizer
tokens. If the tokenizer produces tokens that are usable as is, it may be the only component of the analyzer.
Otherwise, the tokenizer's output tokens will serve as input to the first filter stage in the pipeline.

A is available that creates a that filters tokens based on theirTypeTokenFilterFactory TypeTokenFilter
TypeAttribute, which is set in .factory.getStopTypes

For a complete list of the available TokenFilters, see the section .Tokenizers

When To use a CharFilter vs. a TokenFilter

There are several pairs of CharFilters and TokenFilters that have related (ie: and MappingCharFilter ASCIIF
) or nearly identical (ie: and oldingFilter PatternReplaceCharFilterFactory PatternReplaceFilte

108Apache Solr Reference Guide 6.1

) functionality and it may not always be obvious which is the best choice.rFactory

The decision about which to use depends largely on which Tokenizer you are using, and whether you need to
preprocess the stream of characters.

For example, suppose you have a tokenizer such as and although you are pretty happyStandardTokenizer
with how it works overall, you want to customize how some specific characters behave. You could modify the
rules and re-build your own tokenizer with JFlex, but it might be easier to simply map some of the characters
before tokenization with a .CharFilter

About Filters
Like , consume input and produce a stream of tokens. Filters also derive from tokenizers filters org.apache.lu

. Unlike tokenizers, a filter's input is another TokenStream. The job of a filter iscene.analysis.TokenStream
usually easier than that of a tokenizer since in most cases a filter looks at each token in the stream sequentially
and decides whether to pass it along, replace it or discard it.

A filter may also do more complex analysis by looking ahead to consider multiple tokens at once, although this is
less common. One hypothetical use for such a filter might be to normalize state names that would be tokenized
as two words. For example, the single token "california" would be replaced with "CA", while the token pair
"rhode" followed by "island" would become the single token "RI".

Because filters consume one and produce a new , they can be chained one afterTokenStream TokenStream
another indefinitely. Each filter in the chain in turn processes the tokens produced by its predecessor. The order
in which you specify the filters is therefore significant. Typically, the most general filtering is done first, and later
filtering stages are more specialized.

<fieldType name="text" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.EnglishPorterFilterFactory"/>
 </analyzer>
</fieldType>

This example starts with Solr's standard tokenizer, which breaks the field's text into tokens. Those tokens then
pass through Solr's standard filter, which removes dots from acronyms, and performs a few other common
operations. All the tokens are then set to lowercase, which will facilitate case-insensitive matching at query time.

The last filter in the above example is a stemmer filter that uses the Porter stemming algorithm. A stemmer is
basically a set of mapping rules that maps the various forms of a word back to the base, or , word fromstem
which they derive. For example, in English the words "hugs", "hugging" and "hugged" are all forms of the stem
word "hug". The stemmer will replace all of these terms with "hug", which is what will be indexed. This means
that a query for "hug" will match the term "hugged", but not "huge".

Conversely, applying a stemmer to your query terms will allow queries containing non stem terms, like "hugging",
to match documents with different variations of the same stem word, such as "hugged". This works because both
the indexer and the query will map to the same stem ("hug").

Word stemming is, obviously, very language specific. Solr includes several language-specific stemmers created
by the generator that are based on the Porter stemming algorithm. The generic Snowball PorterSnowball
Stemmer Filter can be used to configure any of these language stemmers. Solr also includes a convenience
wrapper for the English Snowball stemmer. There are also several purpose-built stemmers for non-English
languages. These stemmers are described in .Language Analysis

Tokenizers

http://snowball.tartarus.org/

109Apache Solr Reference Guide 6.1

You configure the tokenizer for a text field type in with a element, as a child of schema.xml <tokenizer> <an
:alyzer>

<fieldType name="text" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 </analyzer>
</fieldType>

The class attribute names a factory class that will instantiate a tokenizer object when needed. Tokenizer factory
classes implement the . A TokenizerFactory's org.apache.solr.analysis.TokenizerFactory create()
method accepts a Reader and returns a TokenStream. When Solr creates the tokenizer it passes a Reader
object that provides the content of the text field.

Tokenizers discussed in this section:
Standard Tokenizer
Classic Tokenizer
Keyword Tokenizer
Letter Tokenizer
Lower Case Tokenizer
N-Gram Tokenizer
Edge N-Gram Tokenizer
ICU Tokenizer
Path Hierarchy Tokenizer
Regular Expression Pattern Tokenizer
UAX29 URL Email Tokenizer
White Space Tokenizer
Related Topics

Arguments may be passed to tokenizer factories by setting attributes on the element.<tokenizer>

<fieldType name="semicolonDelimited" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.PatternTokenizerFactory" pattern="; "/>
 </analyzer>
</fieldType>

The following sections describe the tokenizer factory classes included in this release of Solr.

For more information about Solr's tokenizers, see .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

Standard Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token, including Internet domain
names.
The "@" character is among the set of token-splitting punctuation, so email addresses are preservednot
as single tokens.

Note that words are split at hyphens.

The Standard Tokenizer supports word boundaries with the following tokenUnicode standard annex UAX#29
types: , , , , and .<ALPHANUM> <NUM> <SOUTHEAST_ASIAN> <IDEOGRAPHIC> <HIRAGANA>

Factory class: solr.StandardTokenizerFactory

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
http://unicode.org/reports/tr29/#Word_Boundaries

110Apache Solr Reference Guide 6.1

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
.maxTokenLength

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe", "foo.com", "by", "03", "09", "re", "m37", "xq"

Classic Tokenizer

The Classic Tokenizer preserves the same behavior as the Standard Tokenizer of Solr versions 3.1 and
previous. It does not use the word boundary rules that the Standard TokenizerUnicode standard annex UAX#29
uses. This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is not split and
the numbers and hyphen(s) are preserved.

Recognizes Internet domain names and email addresses and preserves them as a single token.

Factory class: solr.ClassicTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
.maxTokenLength

Example:

<analyzer>
 <tokenizer class="solr.ClassicTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please", "email", "john.doe@foo.com", "by", "03-09", "re", "m37-xq"

Keyword Tokenizer

This tokenizer treats the entire text field as a single token.

Factory class: solr.KeywordTokenizerFactory

Arguments: None

Example:

http://unicode.org/reports/tr29/#Word_Boundaries

111Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.KeywordTokenizerFactory"/>
</analyzer>

In: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Out: "Please, email john.doe@foo.com by 03-09, re: m37-xq."

Letter Tokenizer

This tokenizer creates tokens from strings of contiguous letters, discarding all non-letter characters.

Factory class: solr.LetterTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.LetterTokenizerFactory"/>
</analyzer>

In: "I can't."

Out: "I", "can", "t"

Lower Case Tokenizer

Tokenizes the input stream by delimiting at non-letters and then converting all letters to lowercase. Whitespace
and non-letters are discarded.

Factory class: solr.LowerCaseTokenizerFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.LowerCaseTokenizerFactory"/>
</analyzer>

In: "I just my iPhone!"LOVE

Out: "i", "just", "love", "my", "iphone"

N-Gram Tokenizer

Reads the field text and generates n-gram tokens of sizes in the given range.

Factory class: solr.NGramTokenizerFactory

Arguments:

minGramSize: (integer, default 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default 2) The maximum n-gram size, must be >= .minGramSize

112Apache Solr Reference Guide 6.1

Example:

Default behavior. Note that this tokenizer operates over the whole field. It does not break the field at whitespace.
As a result, the space character is included in the encoding.

<analyzer>
 <tokenizer class="solr.NGramTokenizerFactory"/>
</analyzer>

In: "hey man"

Out: "h", "e", "y", " ", "m", "a", "n", "he", "ey", "y ", " m", "ma", "an"

Example:

With an n-gram size range of 4 to 5:

<analyzer>
 <tokenizer class="solr.NGramTokenizerFactory" minGramSize="4" maxGramSize="5"/>
</analyzer>

In: "bicycle"

Out: "bicy", "bicyc", "icyc", "icycl", "cycl", "cycle", "ycle"

Edge N-Gram Tokenizer

Reads the field text and generates edge n-gram tokens of sizes in the given range.

Factory class: solr.EdgeNGramTokenizerFactory

Arguments:

minGramSize: (integer, default is 1) The minimum n-gram size, must be > 0.

maxGramSize: (integer, default is 1) The maximum n-gram size, must be >= .minGramSize

side: ("front" or "back", default is "front") Whether to compute the n-grams from the beginning (front) of the text
or from the end (back).

Example:

Default behavior (min and max default to 1):

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory"/>
</analyzer>

In: "babaloo"

Out: "b"

Example:

Edge n-gram range of 2 to 5

113Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2"
maxGramSize="5"/>
</analyzer>

In: "babaloo"

Out:"ba", "bab", "baba", "babal"

Example:

Edge n-gram range of 2 to 5, from the back side:

<analyzer>
 <tokenizer class="solr.EdgeNGramTokenizerFactory" minGramSize="2" maxGramSize="5"
side="back"/>
</analyzer>

In: "babaloo"

Out: "oo", "loo", "aloo", "baloo"

ICU Tokenizer

This tokenizer processes multilingual text and tokenizes it appropriately based on its script attribute.

You can customize this tokenizer's behavior by specifying . To add per-script rules, add a per-script rule files rul
 argument, which should contain a comma-separated list of pairs in the followingefiles code:rulefile

format: four-letter ISO 15924 script code, followed by a colon, then a resource path. For example, to specify rules
for Latin (script code "Latn") and Cyrillic (script code "Cyrl"), you would enter Latn:my.Latin.rules.rbbi,C

.yrl:my.Cyrillic.rules.rbbi

The default provides UAX#29 word break rules tokenization (like solr.ICUTokenizerFactory solr.Stand
), but also includes custom tailorings for Hebrew (specializing handling of double and singleardTokenizer

quotation marks), and for syllable tokenization for Khmer, Lao, and Myanmar.

Factory class: solr.ICUTokenizerFactory

Arguments:

rulefile: a comma-separated list of pairs in the following format: four-letter ISO 15924 scriptcode:rulefile
code, followed by a colon, then a resource path.

Example:

<analyzer>
 <!-- no customization -->
 <tokenizer class="solr.ICUTokenizerFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.ICUTokenizerFactory"
 rulefiles="Latn:my.Latin.rules.rbbi,Cyrl:my.Cyrillic.rules.rbbi"/>
</analyzer>

http://userguide.icu-project.org/boundaryanalysis#TOC-RBBI-Rules

114Apache Solr Reference Guide 6.1

Path Hierarchy Tokenizer

This tokenizer creates synonyms from file path hierarchies.

Factory class: solr.PathHierarchyTokenizerFactory

Arguments:

delimiter: (character, no default) You can specify the file path delimiter and replace it with a delimiter you
provide. This can be useful for working with backslash delimiters.

replace: (character, no default) Specifies the delimiter character Solr uses in the tokenized output.

Example:

<fieldType name="text_path" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.PathHierarchyTokenizerFactory" delimiter="\"
replace="/"/>
 </analyzer>
</fieldType>

In: "c:\usr\local\apache"

Out: "c:", "c:/usr", "c:/usr/local", "c:/usr/local/apache"

Regular Expression Pattern Tokenizer

This tokenizer uses a Java regular expression to break the input text stream into tokens. The expression
provided by the pattern argument can be interpreted either as a delimiter that separates tokens, or to match
patterns that should be extracted from the text as tokens.

See for more information on Java regular expression syntax.the Javadocs for java.util.regex.Pattern

Factory class: solr.PatternTokenizerFactory

Arguments:

pattern: (Required) The regular expression, as defined by in .java.util.regex.Pattern

group: (Optional, default -1) Specifies which regex group to extract as the token(s). The value -1 means the
regex should be treated as a delimiter that separates tokens. Non-negative group numbers (>= 0) indicate that
character sequences matching that regex group should be converted to tokens. Group zero refers to the entire
regex, groups greater than zero refer to parenthesized sub-expressions of the regex, counted from left to right.

Example:

A comma separated list. Tokens are separated by a sequence of zero or more spaces, a comma, and zero or
more spaces.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern="\s*,\s*"/>
</analyzer>

In: "fee,fie, foe , fum, foo"

Out: "fee", "fie", "foe", "fum", "foo"

Example:

http://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

115Apache Solr Reference Guide 6.1

Extract simple, capitalized words. A sequence of at least one capital letter followed by zero or more letters of
either case is extracted as a token.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern="[A-Z][A-Za-z]*"
group="0"/>
</analyzer>

In: "Hello. My name is Inigo Montoya. You killed my father. Prepare to die."

Out: "Hello", "My", "Inigo", "Montoya", "You", "Prepare"

Example:

Extract part numbers which are preceded by "SKU", "Part" or "Part Number", case sensitive, with an optional
semi-colon separator. Part numbers must be all numeric digits, with an optional hyphen. Regex capture groups
are numbered by counting left parenthesis from left to right. Group 3 is the subexpression "[0-9-]+", which
matches one or more digits or hyphens.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory"
pattern="(SKU|Part(\sNumber)?):?\s(\[0-9-\]+)" group="3"/>
</analyzer>

In: "SKU: 1234, Part Number 5678, Part: 126-987"

Out: "1234", "5678", "126-987"

UAX29 URL Email Tokenizer

This tokenizer splits the text field into tokens, treating whitespace and punctuation as delimiters. Delimiter
characters are discarded, with the following exceptions:

Periods (dots) that are not followed by whitespace are kept as part of the token.

Words are split at hyphens, unless there is a number in the word, in which case the token is not split and
the numbers and hyphen(s) are preserved.

Recognizes and preserves as single tokens the following:
Internet domain names containing top-level domains validated against the white list in the IANA

 when the tokenizer was generatedRoot Zone Database
email addresses
file://, , and URLshttp(s):// ftp://
IPv4 and IPv6 addresses

The UAX29 URL Email Tokenizer supports word boundaries with the followingUnicode standard annex UAX#29
token types: , , , , , , and <ALPHANUM> <NUM> <URL> <EMAIL> <SOUTHEAST_ASIAN> <IDEOGRAPHIC> <HIRAGAN

.A>

Factory class: solr.UAX29URLEmailTokenizerFactory

Arguments:

maxTokenLength: (integer, default 255) Solr ignores tokens that exceed the number of characters specified by
.maxTokenLength

Example:

http://www.internic.net/zones/root.zone
http://www.internic.net/zones/root.zone
http://unicode.org/reports/tr29/#Word_Boundaries

116Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.UAX29URLEmailTokenizerFactory"/>
</analyzer>

In: "Visit http://accarol.com/contact.htm?from=external&a=10 or e-mail bob.cratchet@accarol.com"

Out: "Visit", "http://accarol.com/contact.htm?from=external&a=10", "or", "e", "mail", "bob.cratchet@accarol.com"

White Space Tokenizer

Simple tokenizer that splits the text stream on whitespace and returns sequences of non-whitespace characters
as tokens. Note that any punctuation be included in the tokens.will

Factory class: solr.WhitespaceTokenizerFactory

Arguments: : Specifies how to define whitespace for the purpose of tokenization. Valid values:rule

java: (Default) Uses Character.isWhitespace(int)
unicode: Uses Unicode's WHITESPACE property

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory" rule="java" />
</analyzer>

In: "To be, or what?"

Out: "To", "be,", "or", "what?"

Related Topics

TokenizerFactories

Filter Descriptions
You configure each filter with a element in as a child of , following the <filter> schema.xml <analyzer> <t

 element. Filter definitions should follow a tokenizer or another filter definition because they take a okenizer> T
 as input. For example.okenStream

<fieldType name="text" class="solr.TextField">
 <analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>...
 </analyzer>
</fieldType>

The class attribute names a factory class that will instantiate a filter object as needed. Filter factory classes must
implement the interface. Like tokenizers, filters areorg.apache.solr.analysis.TokenFilterFactory
also instances of TokenStream and thus are producers of tokens. Unlike tokenizers, filters also consume tokens
from a TokenStream. This allows you to mix and match filters, in any order you prefer, downstream of a
tokenizer.

Arguments may be passed to tokenizer factories to modify their behavior by setting attributes on the e<filter>

https://docs.oracle.com/javase/8/docs/api/java/lang/Character.html#isWhitespace-int-
http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenizerFactories

117Apache Solr Reference Guide 6.1

lement. For example:

<fieldType name="semicolonDelimited" class="solr.TextField">
 <analyzer type="query">
 <tokenizer class="solr.PatternTokenizerFactory" pattern="; " />
 <filter class="solr.LengthFilterFactory" min="2" max="7"/>
 </analyzer>
</fieldType>

The following sections describe the filter factories that are included in this release of Solr.

For more information about Solr's filters, see .http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters
Filters discussed in this section:

ASCII Folding Filter
Beider-Morse Filter
Classic Filter
Common Grams Filter
Collation Key Filter
Daitch-Mokotoff Soundex Filter
Double Metaphone Filter
Edge N-Gram Filter
English Minimal Stem Filter
Fingerprint Filter
Hunspell Stem Filter
Hyphenated Words Filter
ICU Folding Filter
ICU Normalizer 2 Filter
ICU Transform Filter
Keep Word Filter
KStem Filter
Length Filter
Lower Case Filter
Managed Stop Filter
Managed Synonym Filter
N-Gram Filter
Numeric Payload Token Filter
Pattern Replace Filter
Phonetic Filter
Porter Stem Filter
Remove Duplicates Token Filter
Reversed Wildcard Filter
Shingle Filter
Snowball Porter Stemmer Filter
Standard Filter
Stop Filter
Suggest Stop Filter
Synonym Filter
Token Offset Payload Filter
Trim Filter
Type As Payload Filter
Type Token Filter
Word Delimiter Filter
Related Topics

ASCII Folding Filter

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters

118Apache Solr Reference Guide 6.1

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the Basic Latin
Unicode block (the first 127 ASCII characters) to their ASCII equivalents, if one exists. This filter converts
characters from the following Unicode blocks:

C1 Controls and Latin-1 Supplement (PDF)
Latin Extended-A (PDF)
Latin Extended-B (PDF)
Latin Extended Additional (PDF)
Latin Extended-C (PDF)
Latin Extended-D (PDF)
IPA Extensions (PDF)
Phonetic Extensions (PDF)
Phonetic Extensions Supplement (PDF)
General Punctuation (PDF)
Superscripts and Subscripts (PDF)
Enclosed Alphanumerics (PDF)
Dingbats (PDF)
Supplemental Punctuation (PDF)
Alphabetic Presentation Forms (PDF)
Halfwidth and Fullwidth Forms (PDF)

Factory class: solr.ASCIIFoldingFilterFactory

Arguments: None

Example:

<analyzer>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
</analyzer>

In: "á" (Unicode character 00E1)

Out: "a" (ASCII character 97)

Beider-Morse Filter

Implements the Beider-Morse Phonetic Matching (BMPM) algorithm, which allows identification of similar names,
even if they are spelled differently or in different languages. More information about how this works is available in
the section on .Phonetic Matching

Factory class: solr.BeiderMorseFilterFactory

Arguments:

nameType: Types of names. Valid values are GENERIC, ASHKENAZI, or SEPHARDIC. If not processing
Ashkenazi or Sephardic names, use GENERIC.

ruleType: Types of rules to apply. Valid values are APPROX or EXACT.

concat: Defines if multiple possible matches should be combined with a pipe ("|").

languageSet: The language set to use. The value "auto" will allow the Filter to identify the language, or a
comma-separated list can be supplied.

BeiderMorseFilter changed its behavior in Solr 5.0 (version 3.04 of the BMPM algorithm is implemented,
while previous Solr versions implemented BMPM version 3.00 - see http://stevemorse.org/phoneticinfo.h

), so any index built using this filter with earlier versions of Solr will need to be rebuilt.tm

http://www.unicode.org/charts/PDF/U0080.pdf
http://www.unicode.org/charts/PDF/U0100.pdf
http://www.unicode.org/charts/PDF/U0180.pdf
http://www.unicode.org/charts/PDF/U1E00.pdf
http://www.unicode.org/charts/PDF/U2C60.pdf
http://www.unicode.org/charts/PDF/UA720.pdf
http://www.unicode.org/charts/PDF/U0250.pdf
http://www.unicode.org/charts/PDF/U1D00.pdf
http://www.unicode.org/charts/PDF/U1D80.pdf
http://www.unicode.org/charts/PDF/U2000.pdf
http://www.unicode.org/charts/PDF/U2070.pdf
http://www.unicode.org/charts/PDF/U2460.pdf
http://www.unicode.org/charts/PDF/U2700.pdf
http://www.unicode.org/charts/PDF/U2E00.pdf
http://www.unicode.org/charts/PDF/UFB00.pdf
http://www.unicode.org/charts/PDF/UFF00.pdf
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phoneticinfo.htm

119Apache Solr Reference Guide 6.1

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.BeiderMorseFilterFactory" nameType="GENERIC" ruleType="APPROX"

 concat="true" languageSet="auto">
 </filter>
</analyzer>

Classic Filter

This filter takes the output of the and strips periods from acronyms and "'s" from possessives.Classic Tokenizer

Factory class: solr.ClassicFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.ClassicTokenizerFactory"/>
 <filter class="solr.ClassicFilterFactory"/>
</analyzer>

In: "I.B.M. cat's can't"

Tokenizer to Filter: "I.B.M", "cat's", "can't"

Out: "IBM", "cat", "can't"

Common Grams Filter

This filter creates word shingles by combining common tokens such as stop words with regular tokens. This is
useful for creating phrase queries containing common words, such as "the cat." Solr normally ignores stop words
in queried phrases, so searching for "the cat" would return all matches for the word "cat."

Factory class: solr.CommonGramsFilterFactory

Arguments:

words: (a common word file in .txt format) Provide the name of a common word file, such as .stopwords.txt

format: (optional) If the stopwords list has been formatted for Snowball, you can specify format="snowball"
so Solr can read the stopwords file.

ignoreCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word
file. The default is false.

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.CommonGramsFilterFactory" words="stopwords.txt"
ignoreCase="true"/>
</analyzer>

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-ClassicTokenizer

120Apache Solr Reference Guide 6.1

In: "the Cat"

Tokenizer to Filter: "the", "Cat"

Out: "the_cat"

Collation Key Filter

Collation allows sorting of text in a language-sensitive way. It is usually used for sorting, but can also be used
with advanced searches. We've covered this in much more detail in the section on .Unicode Collation

Daitch-Mokotoff Soundex Filter

Implements the Daitch-Mokotoff Soundex algorithm, which allows identification of similar names, even if they are
spelled differently. More information about how this works is available in the section on .Phonetic Matching

Factory class: solr.DaitchMokotoffSoundexFilterFactory

Arguments:

 inject : (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens

are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DaitchMokotoffSoundexFilterFactory" inject="true"/>
</analyzer>

Double Metaphone Filter

This filter creates tokens using the encoding algorithm from commons-codec. For more DoubleMetaphone
information, see the section.Phonetic Matching

Factory class: solr.DoubleMetaphoneFilterFactory

Arguments:

inject: (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens
are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

maxCodeLength: (integer) The maximum length of the code to be generated.

Example:

Default behavior for inject (true): keep the original token and add phonetic token(s) at the same position.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DoubleMetaphoneFilterFactory"/>
</analyzer>

In: "four score and Kuczewski"

https://cwiki.apache.org/confluence/display/solr/Language+Analysis#LanguageAnalysis-UnicodeCollation
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html

121Apache Solr Reference Guide 6.1

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "Kuczewski"(4)

Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "Kuczewski"(4), "KSSK"(4), "KXFS"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the
token they were derived from (immediately preceding). Note that "Kuczewski" has two encodings, which are
added at the same position.

Example:

Discard original token ().inject="false"

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DoubleMetaphoneFilterFactory" inject="false"/>
</analyzer>

In: "four score and Kuczewski"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "Kuczewski"(4)

Out: "FR"(1), "SKR"(2), "ANT"(3), "KSSK"(4), "KXFS"(4)

Note that "Kuczewski" has two encodings, which are added at the same position.

Edge N-Gram Filter

This filter generates edge n-gram tokens of sizes within the given range.

Factory class: solr.EdgeNGramFilterFactory

Arguments:

minGramSize: (integer, default 1) The minimum gram size.

maxGramSize: (integer, default 1) The maximum gram size.

Example:

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "f", "s", "a", "t"

Example:

A range of 1 to 4.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="1" maxGramSize="4"/>
</analyzer>

122Apache Solr Reference Guide 6.1

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "fo", "fou", "four", "s", "sc", "sco", "scor"

Example:

A range of 4 to 6.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.EdgeNGramFilterFactory" minGramSize="4" maxGramSize="6"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four", "score", "and", "twenty"

Out: "four", "scor", "score", "twen", "twent", "twenty"

English Minimal Stem Filter

This filter stems plural English words to their singular form.

Factory class: solr.EnglishMinimalStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
</analyzer>

In: "dogs cats"

Tokenizer to Filter: "dogs", "cats"

Out: "dog", "cat"

Fingerprint Filter

This filter outputs a single token which is a concatenation of the sorted and de-duplicated set of input tokens.
This can be useful for clustering/linking use cases.

Factory class: solr.FingerprintFilterFactory

Arguments:

 separator : The character used to separate tokens combined into the single output token. Defaults to " " (a
space character).

 maxOutputTokenSize : The maximum length of the summarized output token. If exceeded, no output token is
emitted. Defaults to 1024.

Example:

123Apache Solr Reference Guide 6.1

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.FingerprintFilterFactory" separator="_" />
</analyzer>

In: "the quick brown fox jumped over the lazy dog"

Tokenizer to Filter: "the", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "dog"

Out: "brown_dog_fox_jumped_lazy_over_quick_the"

Hunspell Stem Filter

The provides support for several languages. You must provide the dictionary () andHunspell Stem Filter .dic
rules () files for each language you wish to use with the Hunspell Stem Filter. You can download those.aff
language files . Be aware that your results will vary widely based on the quality of the provided dictionaryhere
and rules files. For example, some languages have only a minimal word list with no morphological information.
On the other hand, for languages that have no stemmer but do have an extensive dictionary file, the Hunspell
stemmer may be a good choice.

Factory class: solr.HunspellStemFilterFactory

Arguments:

dictionary: (required) The path of a dictionary file.

affix: (required) The path of a rules file.

ignoreCase: (boolean) controls whether matching is case sensitive or not. The default is false.

strictAffixParsing: (boolean) controls whether the affix parsing is strict or not. If true, an error while
reading an affix rule causes a ParseException, otherwise is ignored. The default is true.

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.HunspellStemFilterFactory"
 dictionary="en_GB.dic"
 affix="en_GB.aff"
 ignoreCase="true"
 strictAffixParsing="true" />
</analyzer>

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Hyphenated Words Filter

This filter reconstructs hyphenated words that have been tokenized as two tokens because of a line break or
other intervening whitespace in the field test. If a token ends with a hyphen, it is joined with the following token
and the hyphen is discarded. Note that for this filter to work properly, the upstream tokenizer must not remove
trailing hyphen characters. This filter is generally only useful at index time.

http://wiki.apache.org/solr/Hunspell
http://wiki.services.openoffice.org/wiki/Dictionaries

124Apache Solr Reference Guide 6.1

Factory class: solr.HyphenatedWordsFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.HyphenatedWordsFilterFactory"/>
</analyzer>

In: "A hyphen- ated word"

Tokenizer to Filter: "A", "hyphen-", "ated", "word"

Out: "A", "hyphenated", "word"

ICU Folding Filter

This filter is a custom Unicode normalization form that applies the foldings specified in Unicode Technical Report
 in addition to the normalization form as described in . This filter is a30 NFKC_Casefold ICU Normalizer 2 Filter

better substitute for the combined behavior of the , , and ASCII Folding Filter Lower Case Filter ICU Normalizer 2
.Filter

To use this filter, see for instructions on which jars yousolr/contrib/analysis-extras/README.txt
need to add to your .solr_home/lib

Factory class: solr.ICUFoldingFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUFoldingFilterFactory"/>
</analyzer>

For detailed information on this normalization form, see .http://www.unicode.org/reports/tr30/tr30-4.html

ICU Normalizer 2 Filter

This filter factory normalizes text according to one of five Unicode Normalization Forms as described in Unicode
:Standard Annex #15

NFC: (name="nfc" mode="compose") Normalization Form C, canonical decomposition
NFD: (name="nfc" mode="decompose") Normalization Form D, canonical decomposition, followed by
canonical composition
NFKC: (name="nfkc" mode="compose") Normalization Form KC, compatibility decomposition
NFKD: (name="nfkc" mode="decompose") Normalization Form KD, compatibility decomposition, followed
by canonical composition
NFKC_Casefold: (name="nfkc_cf" mode="compose") Normalization Form KC, with additional Unicode
case folding. Using the ICU Normalizer 2 Filter is a better-performing substitution for the Lower Case Filter
and NFKC normalization.

Factory class: solr.ICUNormalizer2FilterFactory

Arguments:

http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html
http://www.unicode.org/reports/tr30/tr30-4.html
http://unicode.org/reports/tr15/
http://unicode.org/reports/tr15/

125Apache Solr Reference Guide 6.1

name: (string) The name of the normalization form; , , , , nfc nfd nfkc nfkd nfkc_cf

mode: (string) The mode of Unicode character composition and decomposition; or compose decompose

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUNormalizer2FilterFactory" name="nfkc_cf" mode="compose"/>
</analyzer>

For detailed information about these Unicode Normalization Forms, see .http://unicode.org/reports/tr15/

To use this filter, see for instructions on which jars yousolr/contrib/analysis-extras/README.txt
need to add to your .solr_home/lib

ICU Transform Filter

This filter applies to text. This filter supports only ICU System Transforms. Custom rule sets areICU Tranforms
not supported.

Factory class: solr.ICUTransformFilterFactory

Arguments:

id: (string) The identifier for the ICU System Transform you wish to apply with this filter. For a full list of ICU
System Transforms, see http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.ht

.ml

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ICUTransformFilterFactory" id="Traditional-Simplified"/>
</analyzer>

For detailed information about ICU Transforms, see .http://userguide.icu-project.org/transforms/general

To use this filter, see for instructions on which jars yousolr/contrib/analysis-extras/README.txt
need to add to your .solr_home/lib

Keep Word Filter

This filter discards all tokens except those that are listed in the given word list. This is the inverse of the Stop
Words Filter. This filter can be useful for building specialized indices for a constrained set of terms.

Factory class: solr.KeepWordFilterFactory

Arguments:

words: (required) Path of a text file containing the list of keep words, one per line. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or a simple filename in the Solr config directory.

ignoreCase: (true/false) If then comparisons are done case-insensitively. If this argument is true, then thetrue
words file is assumed to contain only lowercase words. The default is .false

enablePositionIncrements: if is or earlier and luceneMatchVersion 4.3 enablePositionIncrement
, no position holes will be left by this filter when it removes tokens. s="false" This argument is invalid if luc

http://unicode.org/reports/tr15/
http://userguide.icu-project.org/transforms/general
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://demo.icu-project.org/icu-bin/translit?TEMPLATE_FILE=data/translit_rule_main.html
http://userguide.icu-project.org/transforms/general

126Apache Solr Reference Guide 6.1

 is or later.eneMatchVersion 5.0

Example:

Where contains:keepwords.txt

happy
funny
silly

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Out: "funny"

Example:

Same , case insensitive:keepwords.txt

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"
ignoreCase="true"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Out: "Happy", "funny"

Example:

Using LowerCaseFilterFactory before filtering for keep words, no flag.ignoreCase

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.KeepWordFilterFactory" words="keepwords.txt"/>
</analyzer>

In: "Happy, sad or funny"

Tokenizer to Filter: "Happy", "sad", "or", "funny"

Filter to Filter: "happy", "sad", "or", "funny"

Out: "happy", "funny"

KStem Filter

KStem is an alternative to the Porter Stem Filter for developers looking for a less aggressive stemmer. KStem
was written by Bob Krovetz, ported to Lucene by Sergio Guzman-Lara (UMASS Amherst). This stemmer is only

127Apache Solr Reference Guide 6.1

appropriate for English language text.

Factory class: solr.KStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.KStemFilterFactory"/>
</analyzer>

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Length Filter

This filter passes tokens whose length falls within the min/max limit specified. All other tokens are discarded.

Factory class: solr.LengthFilterFactory

Arguments:

min: (integer, required) Minimum token length. Tokens shorter than this are discarded.

max: (integer, required, must be >= min) Maximum token length. Tokens longer than this are discarded.

enablePositionIncrements: if is or earlier and luceneMatchVersion 4.3 enablePositionIncrement
, no position holes will be left by this filter when it removes tokens. s="false" This argument is invalid if luc

 is or later.eneMatchVersion 5.0

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LengthFilterFactory" min="3" max="7"/>
</analyzer>

In: "turn right at Albuquerque"

Tokenizer to Filter: "turn", "right", "at", "Albuquerque"

Out: "turn", "right"

Lower Case Filter

Converts any uppercase letters in a token to the equivalent lowercase token. All other characters are left
unchanged.

Factory class: solr.LowerCaseFilterFactory

Arguments: None

Example:

128Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
</analyzer>

In: "Down With CamelCase"

Tokenizer to Filter: "Down", "With", "CamelCase"

Out: "down", "with", "camelcase"

Managed Stop Filter

This is specialized version of the that uses a set of stop words that are Stop Words Filter Factory managed from
a REST API.

Arguments:

managed: The name that should be used for this set of stop words in the managed REST API.

Example:

With this configuration the set of words is named "english" and can be managed via /solr/collection_name
/schema/analysis/stopwords/english

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ManagedStopFilterFactory" managed="english"/>
</analyzer>

See for example input/output.Stop Filter

Managed Synonym Filter

This is specialized version of the that uses a mapping on synonyms that is Synonym Filter Factory managed
from a REST API.

Arguments:

managed: The name that should be used for this mapping on synonyms in the managed REST API.

Example:

With this configuration the set of mappings is named "english" and can be managed via /solr/collection_n
ame/schema/analysis/synonyms/english

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ManagedSynonymFilterFactory" managed="english"/>
</analyzer>

See for example input/output.Synonym Filter

129Apache Solr Reference Guide 6.1

N-Gram Filter

Generates n-gram tokens of sizes in the given range. Note that tokens are ordered by position and then by gram
size.

Factory class: solr.NGramFilterFactory

Arguments:

minGramSize: (integer, default 1) The minimum gram size.

maxGramSize: (integer, default 2) The maximum gram size.

Example:

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "o", "u", "r", "fo", "ou", "ur", "s", "c", "o", "r", "e", "sc", "co", "or", "re"

Example:

A range of 1 to 4.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="1" maxGramSize="4"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "f", "fo", "fou", "four", "s", "sc", "sco", "scor"

Example:

A range of 3 to 5.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.NGramFilterFactory" minGramSize="3" maxGramSize="5"/>
</analyzer>

In: "four score"

Tokenizer to Filter: "four", "score"

Out: "fou", "four", "our", "sco", "scor", "score", "cor", "core", "ore"

Numeric Payload Token Filter

130Apache Solr Reference Guide 6.1

This filter adds a numeric floating point payload value to tokens that match a given type. Refer to the Javadoc for
the class for more information about token types and payloads.org.apache.lucene.analysis.Token

Factory class: solr.NumericPayloadTokenFilterFactory

Arguments:

payload: (required) A floating point value that will be added to all matching tokens.

typeMatch: (required) A token type name string. Tokens with a matching type name will have their payload set
to the above floating point value.

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.NumericPayloadTokenFilterFactory" payload="0.75"
typeMatch="word"/>
</analyzer>

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0.75], "bang"[0.75], "boom"[0.75]

Pattern Replace Filter

This filter applies a regular expression to each token and, for those that match, substitutes the given replacement
string in place of the matched pattern. Tokens which do not match are passed though unchanged.

Factory class: solr.PatternReplaceFilterFactory

Arguments:

pattern: (required) The regular expression to test against each token, as per .java.util.regex.Pattern

replacement: (required) A string to substitute in place of the matched pattern. This string may contain
references to capture groups in the regex pattern. See the Javadoc for .java.util.regex.Matcher

replace: ("all" or "first", default "all") Indicates whether all occurrences of the pattern in the token should be
replaced, or only the first.

Example:

Simple string replace:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilterFactory" pattern="cat" replacement="dog"/>
</analyzer>

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"

Out: "dog", "condogenate", "dogydog"

Example:

String replacement, first occurrence only:

131Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilterFactory" pattern="cat" replacement="dog"
replace="first"/>
</analyzer>

In: "cat concatenate catycat"

Tokenizer to Filter: "cat", "concatenate", "catycat"

Out: "dog", "condogenate", "dogycat"

Example:

More complex pattern with capture group reference in the replacement. Tokens that start with non-numeric
characters and end with digits will have an underscore inserted before the numbers. Otherwise the token is
passed through.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PatternReplaceFilterFactory" pattern="(\D+)(\d+)$"
replacement="$1_$2"/>
</analyzer>

In: "cat foo1234 9987 blah1234foo"

Tokenizer to Filter: "cat", "foo1234", "9987", "blah1234foo"

Out: "cat", "foo_1234", "9987", "blah1234foo"

Phonetic Filter

This filter creates tokens using one of the phonetic encoding algorithms in the org.apache.commons.codec.
 package. For more information, see the section on .language Phonetic Matching

Factory class: solr.PhoneticFilterFactory

Arguments:

encoder: (required) The name of the encoder to use. The encoder name must be one of the following (case
insensitive): " ", " ", " ", " ", " " (v2.0), "DoubleMetaphone Metaphone Soundex RefinedSoundex Caverphone CologneP

", or " ".honetic Nysiis

inject: (true/false) If true (the default), then new phonetic tokens are added to the stream. Otherwise, tokens
are replaced with the phonetic equivalent. Setting this to false will enable phonetic matching, but the exact
spelling of the target word may not match.

maxCodeLength: (integer) The maximum length of the code to be generated by the Metaphone or Double
Metaphone encoders.

Example:

Default behavior for DoubleMetaphone encoding.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"/>
</analyzer>

http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/DoubleMetaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Metaphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Soundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/RefinedSoundex.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/Caverphone.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html
http://commons.apache.org/codec/apidocs/org/apache/commons/codec/language/ColognePhonetic.html
http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/Nysiis.html

132Apache Solr Reference Guide 6.1

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "four"(1), "FR"(1), "score"(2), "SKR"(2), "and"(3), "ANT"(3), "twenty"(4), "TNT"(4)

The phonetic tokens have a position increment of 0, which indicates that they are at the same position as the
token they were derived from (immediately preceding).

Example:

Discard original token.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="DoubleMetaphone"
inject="false"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "FR"(1), "SKR"(2), "ANT"(3), "TWNT"(4)

Example:

Default Soundex encoder.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.PhoneticFilterFactory" encoder="Soundex"/>
</analyzer>

In: "four score and twenty"

Tokenizer to Filter: "four"(1), "score"(2), "and"(3), "twenty"(4)

Out: "four"(1), "F600"(1), "score"(2), "S600"(2), "and"(3), "A530"(3), "twenty"(4), "T530"(4)

Porter Stem Filter

This filter applies the Porter Stemming Algorithm for English. The results are similar to using the Snowball Porter
Stemmer with the argument. But this stemmer is coded directly in Java and is not basedlanguage="English"
on Snowball. It does not accept a list of protected words and is only appropriate for English language text.
However, it has been benchmarked as than the English Snowball stemmer, so can provide afour times faster
performance enhancement.

Factory class: solr.PorterStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.PorterStemFilterFactory"/>
</analyzer>

http://markmail.org/thread/d2c443z63z37rwf6

133Apache Solr Reference Guide 6.1

In: "jump jumping jumped"

Tokenizer to Filter: "jump", "jumping", "jumped"

Out: "jump", "jump", "jump"

Remove Duplicates Token Filter

The filter removes duplicate tokens in the stream. Tokens are considered to be duplicates if they have the same
text and position values.

Factory class: solr.RemoveDuplicatesTokenFilterFactory

Arguments: None

Example:

One example of where is in situations where a synonym file isRemoveDuplicatesTokenFilterFactory
being used in conjuntion with a stemmer causes some synonyms to be reduced to the same stem. Consider the
following entry from a file:synonyms.txt

 Television, Televisions, TV, TVs

When used in the following configuration:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="synonyms.txt"/>
 <filter class="solr.EnglishMinimalStemFilterFactory"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>

In: "Watch TV"

Tokenizer to Synonym Filter: "Watch"(1) "TV"(2)

Synonym Filter to Stem Filter: "Watch"(1) "Television"(2) "Televisions"(2) "TV"(2) "TVs"(2)

Stem Filter to Remove Dups Filter: "Watch"(1) "Television"(2) "Television"(2) "TV"(2) "TV"(2)

Out: "Watch"(1) "Television"(2) "TV"(2)

Reversed Wildcard Filter

This filter reverses tokens to provide faster leading wildcard and prefix queries. Tokens without wildcards are not
reversed.

Factory class: solr.ReversedWildcardFilterFactory

Arguments:

withOriginal (boolean) If true, the filter produces both original and reversed tokens at the same positions. If
false, produces only reversed tokens.

maxPosAsterisk (integer, default = 2) The maximum position of the asterisk wildcard ('*') that triggers the
reversal of the query term. Terms with asterisks at positions above this value are not reversed.

maxPosQuestion (integer, default = 1) The maximum position of the question mark wildcard ('?') that triggers
the reversal of query term. To reverse only pure suffix queries (queries with a single leading asterisk), set this to

134Apache Solr Reference Guide 6.1

0 and to 1.maxPosAsterisk

maxFractionAsterisk (float, default = 0.0) An additional parameter that triggers the reversal if asterisk ('*')
position is less than this fraction of the query token length.

minTrailing (integer, default = 2) The minimum number of trailing characters in a query token after the last
wildcard character. For good performance this should be set to a value larger than 1.

Example:

<analyzer type="index">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.ReversedWildcardFilterFactory" withOriginal="true"
 maxPosAsterisk="2" maxPosQuestion="1" minTrailing="2" maxFractionAsterisk="0"/>
</analyzer>

In: "*foo *bar"

Tokenizer to Filter: "*foo", "*bar"

Out: "oof*", "rab*"

Shingle Filter

This filter constructs shingles, which are token n-grams, from the token stream. It combines runs of tokens into a
single token.

Factory class: solr.ShingleFilterFactory

Arguments:

minShingleSize: (integer, default 2) The minimum number of tokens per shingle.

maxShingleSize: (integer, must be >= 2, default 2) The maximum number of tokens per shingle.

outputUnigrams: (true/false) If true (the default), then each individual token is also included at its original
position.

outputUnigramsIfNoShingles: (true/false) If false (the default), then individual tokens will be output if no
shingles are possible.

tokenSeparator: (string, default is " ") The default string to use when joining adjacent tokens to form a shingle.

Example:

Default behavior.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ShingleFilterFactory"/>
</analyzer>

In: "To be, or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "To be"(1), "be"(2), "be or"(2), "or"(3), "or what"(3), "what"(4)

Example:

A shingle size of four, do not include original token.

135Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ShingleFilterFactory" maxShingleSize="4"
outputUnigrams="false"/>
</analyzer>

In: "To be, or not to be."

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "not"(4), "to"(5), "be"(6)

Out: "To be"(1), "To be or"(1), "To be or not"(1), "be or"(2), "be or not"(2), "be or not to"(2), "or not"(3), "or not
to"(3), "or not to be"(3), "not to"(4), "not to be"(4), "to be"(5)

Snowball Porter Stemmer Filter

This filter factory instantiates a language-specific stemmer generated by Snowball. Snowball is a software
package that generates pattern-based word stemmers. This type of stemmer is not as accurate as a table-based
stemmer, but is faster and less complex. Table-driven stemmers are labor intensive to create and maintain and
so are typically commercial products.

Solr contains Snowball stemmers for Armenian, Basque, Catalan, Danish, Dutch, English, Finnish, French,
German, Hungarian, Italian, Norwegian, Portuguese, Romanian, Russian, Spanish, Swedish and Turkish. For
more information on Snowball, visit .http://snowball.tartarus.org/

StopFilterFactory, , and canCommonGramsFilterFactory CommonGramsQueryFilterFactory
optionally read stopwords in Snowball format (specify in the configuration of thoseformat="snowball"
FilterFactories).

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (default "English") The name of a language, used to select the appropriate Porter stemmer to use.
Case is significant. This string is used to select a package name in the "org.tartarus.snowball.ext" class
hierarchy.

protected: Path of a text file containing a list of protected words, one per line. Protected words will not be
stemmed. Blank lines and lines that begin with "#" are ignored. This may be an absolute path, or a simple file
name in the Solr config directory.

Example:

Default behavior:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory"/>
</analyzer>

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"

Out: "flip", "flip", "flip"

Example:

French stemmer, English words:

http://snowball.tartarus.org/

136Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="French"/>
</analyzer>

In: "flip flipped flipping"

Tokenizer to Filter: "flip", "flipped", "flipping"

Out: "flip", "flipped", "flipping"

Example:

Spanish stemmer, Spanish words:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Spanish"/>
</analyzer>

In: "cante canta"

Tokenizer to Filter: "cante", "canta"

Out: "cant", "cant"

Standard Filter

This filter removes dots from acronyms and the substring "'s" from the end of tokens. This filter depends on the
tokens being tagged with the appropriate term-type to recognize acronyms and words with apostrophes.

Factory class: solr.StandardFilterFactory

Arguments: None

Stop Filter

This filter discards, or analysis of, tokens that are on the given stop words list. A standard stop words list isstops
included in the Solr config directory, named , which is appropriate for typical English languagestopwords.txt
text.

Factory class: solr.StopFilterFactory

Arguments:

words: (optional) The path to a file that contains a list of stop words, one per line. Blank lines and lines that
begin with "#" are ignored. This may be an absolute path, or path relative to the Solr config directory.

format: (optional) If the stopwords list has been formatted for Snowball, you can specify format="snowball"
so Solr can read the stopwords file.

ignoreCase: (true/false, default false) Ignore case when testing for stop words. If true, the stop list should
contain lowercase words.

This filter is no longer operational in Solr when the (in) isluceneMatchVersion solrconfig.xml
higher than "3.1".

137Apache Solr Reference Guide 6.1

enablePositionIncrements: if is or earlier and luceneMatchVersion 4.4 enablePositionIncrement
, no position holes will be left by this filter when it removes tokens. s="false" This argument is invalid if luc

 is or later.eneMatchVersion 5.0

Example:

Case-sensitive matching, capitalized words not stopped. Token positions skip stopped words.

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt"/>
</analyzer>

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "To"(1), "what"(4)

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StopFilterFactory" words="stopwords.txt" ignoreCase="true"/>
</analyzer>

In: "To be or what?"

Tokenizer to Filter: "To"(1), "be"(2), "or"(3), "what"(4)

Out: "what"(4)

Suggest Stop Filter

Like , this filter discards, or analysis of, tokens that are on the given stop words list. SuggestStop Filter stops
Stop Filter differs from Stop Filter in that it will not remove the last token unless it is followed by a token
separator. For example, a query " " would preserve the ' ' since it was not followed by a space,find the the
punctuation etc., and mark it as a so that following filters will not change or remove it. By contrast, aKEYWORD
query like " " would remove " " as a stopword, since it's followed by a space. Whenfind the popsicle the
using one of the analyzing suggesters, you would normally use the ordinary in your indexStopFilterFactory
analyzer and then SuggestStopFilter in your query analyzer.

Factory class: solr.SuggestStopFilterFactory

Arguments:

words: (optional; default:) The name of a stopwords file to StopAnalyzer#ENGLISH_STOP_WORDS_SET
parse.

format: (optional; default:) Defines how the words file will be parsed. If is not specified, then wordset words f
 must not be specified. The valid values for the format option are:ormat

wordset: This is the default format, which supports one word per line (including any intra-word
whitespace) and allows whole line comments begining with the " " character. Blank lines are ignored.#
snowball: This format allows for multiple words specified on each line, and trailing comments may be
specified using the vertical line (" "). Blank lines are ignored.|

ignoreCase: (optional; default:) If , matching is case-insensitive.false true

http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/core/StopAnalyzer.html#ENGLISH_STOP_WORDS_SET

138Apache Solr Reference Guide 6.1

Example:

<analyzer type="query">
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SuggestStopFilterFactory" ignoreCase="true"
 words="stopwords.txt" format="wordset"/>
</analyzer>

In: "The The"

Tokenizer to Filter: "the"(1), "the"(2)

Out: "the"(2)

Synonym Filter

This filter does synonym mapping. Each token is looked up in the list of synonyms and if a match is found, then
the synonym is emitted in place of the token. The position value of the new tokens are set such they all occur at
the same position as the original token.

Factory class: solr.SynonymFilterFactory

Arguments:

synonyms: (required) The path of a file that contains a list of synonyms, one per line. In the (default) formasolr
t - see the argument below for alternatives - blank lines and lines that begin with " " are ignored. Thisformat #
may be an absolute path, or path relative to the Solr config directory. There are two ways to specify synonym
mappings:

A comma-separated list of words. If the token matches any of the words, then all the words in the list are
substituted, which will include the original token.

Two comma-separated lists of words with the symbol "=>" between them. If the token matches any word
on the left, then the list on the right is substituted. The original token will not be included unless it is also in
the list on the right.

ignoreCase: (optional; default:) If , synonyms will be matched case-insensitively.false true

expand: (optional; default:) If , a synonym will be expanded to all equivalent synonyms. If , alltrue true false
equivalent synonyms will be reduced to the first in the list.

format: (optional; default:) Controls how the synonyms will be parsed. The short names (for solr solr SolrS
 and (for) are supported, or you may alternatively supply)ynonymParser wordnet WordnetSynonymParser

the name of your own subclass. SynonymMap.Builder

tokenizerFactory: (optional; default:) The name of the tokenizer factoryWhitespaceTokenizerFactory
to use when parsing the synonyms file. Arguments with the name prefix " will betokenizerFactory."
supplied as init params to the specified tokenizer factory. Any arguments not consumed by the synonym filter
factory, including those without the " " prefix, will also be supplied as init params to thetokenizerFactory.
tokenizer factory. If is specified, then may not be, and vice versa.tokenizerFactory analyzer

analyzer: (optional; default:) The name of the analyzer class to use whenWhitespaceTokenizerFactory
parsing the synonyms file. If is specified, then may not be, and vice versa.analyzer tokenizerFactory

For the following examples, assume a synonyms file named :mysynonyms.txt

http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/synonym/SolrSynonymParser.html
http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/synonym/SolrSynonymParser.html
http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/synonym/WordnetSynonymParser.html
http://lucene.apache.org/core/6_1_0/analyzers-common/org/apache/lucene/analysis/synonym/SynonymMap.Builder.html

139Apache Solr Reference Guide 6.1

couch,sofa,divan
teh => the
huge,ginormous,humungous => large
small => tiny,teeny,weeny

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>
</analyzer>

In: "teh small couch"

Tokenizer to Filter: "teh"(1), "small"(2), "couch"(3)

Out: "the"(1), "tiny"(2), "teeny"(2), "weeny"(2), "couch"(3), "sofa"(3), "divan"(3)

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.SynonymFilterFactory" synonyms="mysynonyms.txt"/>
</analyzer>

In: "teh ginormous, humungous sofa"

Tokenizer to Filter: "teh"(1), "ginormous"(2), "humungous"(3), "sofa"(4)

Out: "the"(1), "large"(2), "large"(3), "couch"(4), "sofa"(4), "divan"(4)

Token Offset Payload Filter

This filter adds the numeric character offsets of the token as a payload value for that token.

Factory class: solr.TokenOffsetPayloadTokenFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.TokenOffsetPayloadTokenFilterFactory"/>
</analyzer>

In: "bing bang boom"

Tokenizer to Filter: "bing", "bang", "boom"

Out: "bing"[0,4], "bang"[5,9], "boom"[10,14]

Trim Filter

This filter trims leading and/or trailing whitespace from tokens. Most tokenizers break tokens at whitespace, so

140Apache Solr Reference Guide 6.1

this filter is most often used for special situations.

Factory class: solr.TrimFilterFactory

Arguments:

updateOffsets: if is or earlier and , trimmed tokens'luceneMatchVersion 4.3 updateOffsets="true"
start and end offsets will be updated to those of the first and last characters (plus one) remaining in the token. T
his argument is invalid if is or later.luceneMatchVersion 5.0

Example:

The PatternTokenizerFactory configuration used here splits the input on simple commas, it does not remove
whitespace.

<analyzer>
 <tokenizer class="solr.PatternTokenizerFactory" pattern=","/>
 <filter class="solr.TrimFilterFactory"/>
</analyzer>

In: "one, two , three ,four "

Tokenizer to Filter: "one", " two ", " three ", "four "

Out: "one", "two", "three", "four"

Type As Payload Filter

This filter adds the token's type, as an encoded byte sequence, as its payload.

Factory class: solr.TypeAsPayloadTokenFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.TypeAsPayloadTokenFilterFactory"/>
</analyzer>

In: "Pay Bob's I.O.U."

Tokenizer to Filter: "Pay", "Bob's", "I.O.U."

Out: "Pay"[<ALPHANUM>], "Bob's"[<APOSTROPHE>], "I.O.U."[<ACRONYM>]

Type Token Filter

This filter blacklists or whitelists a specified list of token types, assuming the tokens have type metadata
associated with them. For example, the emits "<URL>" and "<EMAIL>" typedUAX29 URL Email Tokenizer
tokens, as well as other types. This filter would allow you to pull out only e-mail addresses from text as tokens, if
you wish.

Factory class: solr.TypeTokenFilterFactory

Arguments:

types: Defines the location of a file of types to filter.

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-UAX29URLEmailTokenizer

141Apache Solr Reference Guide 6.1

useWhitelist: If , the file defined in should be used as include list. If , or undefined, the filetrue types false
defined in is used as a blacklist.types

enablePositionIncrements: if is or earlier and luceneMatchVersion 4.3 enablePositionIncrement
, no position holes will be left by this filter when it removes tokens. s="false" This argument is invalid if luc

 is or later.eneMatchVersion 5.0

Example:

<analyzer>
 <filter class="solr.TypeTokenFilterFactory" types="stoptypes.txt"
useWhitelist="true"/>
</analyzer>

Word Delimiter Filter

This filter splits tokens at word delimiters. The rules for determining delimiters are determined as follows:

A change in case within a word: "CamelCase" "Camel", "Case". This can be disabled by setting -> split
.OnCaseChange="0"

A transition from alpha to numeric characters or vice versa: "Gonzo5000" "Gonzo", "5000" "4500XL" -> ->
"4500", "XL". This can be disabled by setting .splitOnNumerics="0"

Non-alphanumeric characters (discarded): "hot-spot" "hot", "spot"->

A trailing "'s" is removed: "O'Reilly's" "O", "Reilly"->

Any leading or trailing delimiters are discarded: "--hot-spot--" "hot", "spot"->

Factory class: solr.WordDelimiterFilterFactory

Arguments:

generateWordParts: (integer, default 1) If non-zero, splits words at delimiters. For example:"CamelCase",
"hot-spot" "Camel", "Case", "hot", "spot"->

generateNumberParts: (integer, default 1) If non-zero, splits numeric strings at delimiters:"1947-32" "1947",->
"32"

splitOnCaseChange: (integer, default 1) If 0, words are not split on camel-case changes:"BugBlaster-XL" "B->
ugBlaster", "XL". Example 1 below illustrates the default (non-zero) splitting behavior.

splitOnNumerics: (integer, default 1) If 0, don't split words on transitions from alpha to numeric:"FemBot3000"
 "Fem", "Bot3000"->

catenateWords: (integer, default 0) If non-zero, maximal runs of word parts will be joined: "hot-spot-sensor's" -
 "hotspotsensor">

catenateNumbers: (integer, default 0) If non-zero, maximal runs of number parts will be joined: 1947-32" "1->
94732"

catenateAll: (0/1, default 0) If non-zero, runs of word and number parts will be joined: "Zap-Master-9000" "->
ZapMaster9000"

preserveOriginal: (integer, default 0) If non-zero, the original token is preserved: "Zap-Master-9000" "Zap->
-Master-9000", "Zap", "Master", "9000"

protected: (optional) The pathname of a file that contains a list of protected words that should be passed
through without splitting.

142Apache Solr Reference Guide 6.1

stemEnglishPossessive: (integer, default 1) If 1, strips the possessive "'s" from each subword.

Example:

Default behavior. The whitespace tokenizer is used here to preserve non-alphanumeric characters.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory"/>
</analyzer>

In: "hot-spot RoboBlaster/9000 100XL"

Tokenizer to Filter: "hot-spot", "RoboBlaster/9000", "100XL"

Out: "hot", "spot", "Robo", "Blaster", "9000", "100", "XL"

Example:

Do not split on case changes, and do not generate number parts. Note that by not generating number parts,
tokens containing only numeric parts are ultimately discarded.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" generateNumberParts="0"
splitOnCaseChange="0"/>
</analyzer>

In: "hot-spot RoboBlaster/9000 100-42"

Tokenizer to Filter: "hot-spot", "RoboBlaster/9000", "100-42"

Out: "hot", "spot", "RoboBlaster", "9000"

Example:

Concatenate word parts and number parts, but not word and number parts that occur in the same token.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" catenateWords="1"
catenateNumbers="1"/>
</analyzer>

In: "hot-spot 100+42 XL40"

Tokenizer to Filter: "hot-spot"(1), "100+42"(2), "XL40"(3)

Out: "hot"(1), "spot"(2), "hotspot"(2), "100"(3), "42"(4), "10042"(4), "XL"(5), "40"(6)

Example:

Concatenate all. Word and/or number parts are joined together.

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" catenateAll="1"/>
</analyzer>

In: "XL-4000/ES"

143Apache Solr Reference Guide 6.1

Tokenizer to Filter: "XL-4000/ES"(1)

Out: "XL"(1), "4000"(2), "ES"(3), "XL4000ES"(3)

Example:

Using a protected words list that contains "AstroBlaster" and "XL-5000" (among others).

<analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.WordDelimiterFilterFactory" protected="protwords.txt"/>
</analyzer>

In: "FooBar AstroBlaster XL-5000 ==ES-34-"

Tokenizer to Filter: "FooBar", "AstroBlaster", "XL-5000", "==ES-34-"

Out: "FooBar", "FooBar", "AstroBlaster", "XL-5000", "ES", "34"

Related Topics

TokenFilterFactories

CharFilterFactories
Char Filter is a component that pre-processes input characters. Char Filters can be chained like Token Filters
and placed in front of a Tokenizer. Char Filters can add, change, or remove characters while preserving the
original character offsets to support features like highlighting.

Topics discussed in this section:
solr.MappingCharFilterFactory
solr.HTMLStripCharFilterFactory
solr.ICUNormalizer2CharFilterFactory
solr.PatternReplaceCharFilterFactory
Related Topics

solr.MappingCharFilterFactory

This filter creates , which can be used for changingorg.apache.lucene.analysis.MappingCharFilter
one string to another (for example, for normalizing to .).é e

This filter requires specifying a argument, which is the path and name of a file containing the mappingsmapping
to perform.

Example:

<analyzer>
 <charFilter class="solr.MappingCharFilterFactory"
mapping="mapping-FoldToASCII.txt"/>
 <tokenizer ...>
 [...]
</analyzer>

Mapping file syntax:

Comment lines beginning with a hash mark (), as well as blank lines, are ignored.#

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#TokenFilterFactories

144Apache Solr Reference Guide 6.1

Each non-comment, non-blank line consists of a mapping of the form: "source" => "target"
Double-quoted source string, optional whitespace, an arrow (), optional whitespace,=>
double-quoted target string.

Trailing comments on mapping lines are not allowed.
The source string must contain at least one character, but the target string may be empty.
The following character escape sequences are recognized within source and target strings:

Escape
sequence

Resulting character (aliaECMA-48
s)

Unicode
character

Example mapping line

\\ \ U+005C "\\" => "/"

\" " U+0022 "\"and\"" => "'and'"

\b backspace (BS) U+0008 "\b" => " "

\t tab (HT) U+0009 "\t" => ","

\n newline (LF) U+000A "\n" => "
"

\f form feed (FF) U+000C "\f" => "\n"

\r carriage return (CR) U+000D "\r" =>
"/carriage-return/"

\uXXXX Unicode char referenced by the 4 hex
digits

U+XXXX "\uFEFF" => ""

A backslash followed by any other character is interpreted as if the character were present without
the backslash.

solr.HTMLStripCharFilterFactory

This filter creates . This Char Filter strips HTML fromorg.apache.solr.analysis.HTMLStripCharFilter
the input stream and passes the result to another Char Filter or a Tokenizer.

This filter:

Removes HTML/XML tags while preserving other content.
Removes attributes within tags and supports optional attribute quoting.
Removes XML processing instructions, such as: <?foo bar?>
Removes XML comments.
Removes XML elements starting with <!>.
Removes contents of <script> and <style> elements.
Handles XML comments inside these elements (normal comment processing will not always work).
Replaces numeric character entities references like ; or ; with the corresponding character.A
The terminating ';' is optional if the entity reference at the end of the input; otherwise the terminating ';' is
mandatory, to avoid false matches on something like "Alpha&Omega Corp".
Replaces all named character entity references with the corresponding character.
 is replaced with a space instead of the 0xa0 character.
Newlines are substituted for block-level elements.
<CDATA> sections are recognized.
Inline tags, such as , , or will be removed. <i>
Uppercase character entities like , , and are recognized and handled as lowercase.quot gt lt amp

The input need not be an HTML document. The filter removes only constructs that look like HTML. If the
input doesn't include anything that looks like HTML, the filter won't remove any input.

http://www.ecma-international.org/publications/standards/Ecma-048.htm

145Apache Solr Reference Guide 6.1

The table below presents examples of HTML stripping.

Input Output

my link my link

hello<!--comment--> hello

hello<script><!-- f('<!--internal--></script>'); --></script> hello

if a<b then print a; if a<b then print a;

hello <td height=22 nowrap align="left"> hello

a<b A Alpha&Omega a<b A Alpha&Omega

Example:

<analyzer>
 <charFilter class="solr.HTMLStripCharFilterFactory"/>
 <tokenizer ...>
 [...]
</analyzer>

solr.ICUNormalizer2CharFilterFactory

This filter performs pre-tokenization Unicode normalization using .ICU4J

Arguments:

name: A , one of , , . Default is .Unicode Normalization Form nfc nfkc nfkc_cf nfkc_cf

mode: Either or . Default is . Use with or compose decompose compose decompose name="nfc" name="nfkc
 to get NFD or NFKD, respectively."

filter: A pattern. Codepoints outside the set are always left unchanged. Default is (the null set,UnicodeSet []
no filtering - all codepoints are subject to normalization).

Example:

<analyzer>
 <charFilter class="solr.ICUNormalizer2CharFilterFactory"/>
 <tokenizer ...>
 [...]
</analyzer>

solr.PatternReplaceCharFilterFactory

This filter uses to replace or change character patterns.regular expressions

Arguments:

pattern: the regular expression pattern to apply to the incoming text.

replacement: the text to use to replace matching patterns.

http://site.icu-project.org
http://unicode.org/reports/tr15/
http://www.icu-project.org/apiref/icu4j/com/ibm/icu/text/UnicodeSet.html
http://www.regular-expressions.info/reference.html

146Apache Solr Reference Guide 6.1

You can configure this filter in like this:schema.xml

<analyzer>
 <charFilter class="solr.PatternReplaceCharFilterFactory"
 pattern="([nN][oO]\.)\s*(\d+)" replacement="$1$2"/>
 <tokenizer ...>
 [...]
</analyzer>

The table below presents examples of regex-based pattern replacement:

Input pattern replacement Output Description

see-ing looking (\w+)(ing) $1 see-ing look Removes "ing" from the end of
word.

see-ing looking (\w+)ing $1 see-ing look Same as above. 2nd
parentheses can be omitted.

No.1 NO. no.
543

[nN][oO]\.\s*(\d+) #$1 #1 NO. #543 Replace some string literals

abc=1234=5678 (\w+)=(\d+)=(\d+) $3=$1=$2 5678=abc=1234 Change the order of the
groups.

Related Topics

CharFilterFactories

Language Analysis
This section contains information about tokenizers and filters related to character set conversion or for use with
specific languages. For the European languages, tokenization is fairly straightforward. Tokens are delimited by
white space and/or a relatively small set of punctuation characters. In other languages the tokenization rules are
often not so simple. Some European languages may require special tokenization rules as well, such as rules for
decompounding German words.

For information about language detection at index time, see .Detecting Languages During Indexing
Topics discussed in this section:

KeywordMarkerFilterFactory
KeywordRepeatFilterFactory
StemmerOverrideFilterFactory
Dictionary Compound Word Token Filter
Unicode Collation
ASCII & Decimal Folding Filters
Language-Specific Factories
Related Topics

KeywordMarkerFilterFactory

Protects words from being modified by stemmers. A customized protected word list may be specified with the
"protected" attribute in the schema. Any words in the protected word list will not be modified by any stemmer in
Solr.

A sample Solr with comments can be found in the protwords.txt sample_techproducts_configs config

http://wiki.apache.org/solr/AnalyzersTokenizersTokenFilters#CharFilterFactories

147Apache Solr Reference Guide 6.1

 directory:set

<fieldtype name="myfieldtype" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.KeywordMarkerFilterFactory" protected="protwords.txt" />
 <filter class="solr.PorterStemFilterFactory" />
 </analyzer>
</fieldtype>

KeywordRepeatFilterFactory

Emits each token twice, one with the attribute and once without. If placed before a stemmer, the resultKEYWORD
will be that you will get the unstemmed token preserved on the same position as the stemmed one. Queries
matching the original exact term will get a better score while still maintaining the recall benefit of stemming.
Another advantage of keeping the original token is that wildcard truncation will work as expected.

To configure, add the early in the analysis chain. It is recommended to alsoKeywordRepeatFilterFactory
include to avoid duplicates when tokens are not stemmed.RemoveDuplicatesTokenFilterFactory

 A sample fieldType configuration could look like this:

<fieldtype name="english_stem_preserve_original" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.KeywordRepeatFilterFactory" />
 <filter class="solr.PorterStemFilterFactory" />
 <filter class="solr.RemoveDuplicatesTokenFilterFactory" />
 </analyzer>
</fieldtype>

StemmerOverrideFilterFactory

Overrides stemming algorithms by applying a custom mapping, then protecting these terms from being modified
by stemmers.

A customized mapping of words to stems, in a tab-separated file, can be specified to the "dictionary" attribute in
the schema. Words in this mapping will be stemmed to the stems from the file, and will not be further changed by
any stemmer.

A sample with comments can be found in the Source Repository.stemdict.txt

<fieldtype name="myfieldtype" class="solr.TextField">
 <analyzer>
 <tokenizer class="solr.WhitespaceTokenizerFactory"/>
 <filter class="solr.StemmerOverrideFilterFactory" dictionary="stemdict.txt" />
 <filter class="solr.PorterStemFilterFactory" />
 </analyzer>
</fieldtype>

When adding the same token twice, it will also score twice (double), so you may have to re-tune your
ranking rules.

http://svn.apache.org/repos/asf/lucene/dev/trunk/solr/core/src/test-files/solr/collection1/conf/stemdict.txt

148Apache Solr Reference Guide 6.1

Dictionary Compound Word Token Filter

This filter splits, or , compound words into individual words using a dictionary of the componentdecompounds
words. Each input token is passed through unchanged. If it can also be decompounded into subwords, each
subword is also added to the stream at the same logical position.

Compound words are most commonly found in Germanic languages.

Factory class: solr.DictionaryCompoundWordTokenFilterFactory

Arguments:

dictionary: (required) The path of a file that contains a list of simple words, one per line. Blank lines and lines
that begin with "#" are ignored. This path may be an absolute path, or path relative to the Solr config directory.

minWordSize: (integer, default 5) Any token shorter than this is not decompounded.

minSubwordSize: (integer, default 2) Subwords shorter than this are not emitted as tokens.

maxSubwordSize: (integer, default 15) Subwords longer than this are not emitted as tokens.

onlyLongestMatch: (true/false) If true (the default), only the longest matching subwords will generate new
tokens.

Example:

Assume that contains at least the following words: germanwords.txt dumm kopf donau dampf schiff

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DictionaryCompoundWordTokenFilterFactory"
dictionary="germanwords.txt"/>
</analyzer>

In: "Donaudampfschiff dummkopf"

Tokenizer to Filter: "Donaudampfschiff"(1), "dummkopf"(2),

Out: "Donaudampfschiff"(1), "Donau"(1), "dampf"(1), "schiff"(1), "dummkopf"(2), "dumm"(2), "kopf"(2)

Unicode Collation

Unicode Collation is a language-sensitive method of sorting text that can also be used for advanced search
purposes.

Unicode Collation in Solr is fast, because all the work is done at index time.

Rather than specifying an analyzer within , the <fieldtype ... class="solr.TextField"> solr.Colla
 and field type classes provide this functionality. tionField solr.ICUCollationField solr.ICUCollatio

, which is backed by , provides more flexible configuration, has more locales, isnField the ICU4J library
significantly faster, and requires less memory and less index space, since its keys are smaller than those
produced by the JDK implementation that backs .solr.CollationField

solr.ICUCollationField is included in the Solr contrib - see analysis-extras solr/contrib/analys
 for instructions on which jars you need to add to your in order tois-extras/README.txt SOLR_HOME/lib

use it.

solr.ICUCollationField and fields can be created in two ways:solr.CollationField

Based upon a system collator associated with a Locale.

http://site.icu-project.org

149Apache Solr Reference Guide 6.1

Based upon a tailored ruleset.RuleBasedCollator

Arguments for , specified as attributes within the element:solr.ICUCollationField <fieldtype>

Using a System collator:

locale: (required) locale ID. See for a list of supported locales.RFC 3066 the ICU locale explorer

strength: Valid values are , , , , or . See primary secondary tertiary quaternary identical Comparison
 for more information.Levels in ICU Collation Concepts

decomposition: Valid values are or . See for moreno canonical Normalization in ICU Collation Concepts
information.

Using a Tailored ruleset:

custom: (required) Path to a UTF-8 text file containing rules supported by the ICU RuleBasedCollator

strength: Valid values are , , , , or . See primary secondary tertiary quaternary identical Comparison
 for more information.Levels in ICU Collation Concepts

decomposition: Valid values are or . See for moreno canonical Normalization in ICU Collation Concepts
information.

Expert options:

alternate: Valid values are or . Can be used to ignore punctuation/whitespace.shifted non-ignorable

caseLevel: (true/false) If true, in combination with , accents are ignored but case isstrength="primary"
taken into account. The default is false. See for more information.CaseLevel in ICU Collation Concepts

caseFirst: Valid values are or . Useful to control which is sorted first when case is not ignored.lower upper

numeric: (true/false) If true, digits are sorted according to numeric value, e.g. foobar-9 sorts before foobar-10.
The default is false.

variableTop: Single character or contraction. Controls what is variable for alternate

Sorting Text for a Specific Language

In this example, text is sorted according to the default German rules provided by ICU4J.

Locales are typically defined as a combination of language and country, but you can specify just the language if
you want. For example, if you specify "de" as the language, you will get sorting that works well for the German
language. If you specify "de" as the language and "CH" as the country, you will get German sorting specifically
tailored for Switzerland.

<!-- Define a field type for German collation -->
<fieldType name="collatedGERMAN" class="solr.ICUCollationField"
 locale="de"
 strength="primary" />
...
<!-- Define a field to store the German collated manufacturer names. -->
<field name="manuGERMAN" type="collatedGERMAN" indexed="false" stored="false"
docValues="true"/>
...
<!-- Copy the text to this field. We could create French, English, Spanish versions
too,
 and sort differently for different users! -->
<copyField source="manu" dest="manuGERMAN"/>

http://www.rfc-editor.org/rfc/rfc3066.txt
http://demo.icu-project.org/icu-bin/locexp
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://icu-project.org/apiref/icu4j/com/ibm/icu/text/RuleBasedCollator.html
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Comparison-Levels
http://userguide.icu-project.org/collation/concepts#TOC-Normalization
http://userguide.icu-project.org/collation/concepts#TOC-CaseLevel

150Apache Solr Reference Guide 6.1

In the example above, we defined the strength as "primary". The strength of the collation determines how strict
the sort order will be, but it also depends upon the language. For example, in English, "primary" strength ignores
differences in case and accents.

Another example:

<fieldType name="polishCaseInsensitive" class="solr.ICUCollationField"
 locale="pl_PL"
 strength="secondary" />
...
<field name="city" type="text_general" indexed="true" stored="true"/>
...
<field name="city_sort" type="polishCaseInsensitive" indexed="true" stored="false"/>
...
<copyField source="city" dest="city_sort"/>

The type will be used for the fields where the data contains Polish text. The "secondary" strength will ignore case
differences, but, unlike "primary" strength, a letter with diacritic(s) will be sorted differently from the same base
letter without diacritics.

An example using the "city_sort" field to sort:

q=*:*&fl=city&sort=city_sort+asc

Sorting Text for Multiple Languages

There are two approaches to supporting multiple languages: if there is a small list of languages you wish to
support, consider defining collated fields for each language and using . However, adding a largecopyField
number of sort fields can increase disk and indexing costs. An alternative approach is to use the Unicode defau

 collator.lt

The Unicode or locale has rules that are designed to work well for most languages. To use the default ROOT d
 locale, simply define the locale as the empty string. This Unicode default sort is still significantly moreefault

advanced than the standard Solr sort.

<fieldType name="collatedROOT" class="solr.ICUCollationField"
 locale=""
 strength="primary" />

Sorting Text with Custom Rules

You can define your own set of sorting rules. It's easiest to take existing rules that are close to what you want
and customize them.

In the example below, we create a custom rule set for German called DIN 5007-2. This rule set treats umlauts in
German differently: it treats ö as equivalent to oe, ä as equivalent to ae, and ü as equivalent to ue. For more
information, see the .ICU RuleBasedCollator javadocs

This example shows how to create a custom rule set for and dump it to a file:solr.ICUCollationField

http://icu-project.org/apiref/icu4j/com/ibm/icu/text/RuleBasedCollator.html

151Apache Solr Reference Guide 6.1

// get the default rules for Germany
// these are called DIN 5007-1 sorting
RuleBasedCollator baseCollator = (RuleBasedCollator) Collator.getInstance(new
ULocale("de", "DE"));

// define some tailorings, to make it DIN 5007-2 sorting.
// For example, this makes ö equivalent to oe
String DIN5007_2_tailorings =
 "& ae , a\u0308 & AE , A\u0308"+
 "& oe , o\u0308 & OE , O\u0308"+
 "& ue , u\u0308 & UE , u\u0308";

// concatenate the default rules to the tailorings, and dump it to a String
RuleBasedCollator tailoredCollator = new RuleBasedCollator(baseCollator.getRules() +
DIN5007_2_tailorings);
String tailoredRules = tailoredCollator.getRules();

// write these to a file, be sure to use UTF-8 encoding!!!
FileOutputStream os = new FileOutputStream(new
File("/solr_home/conf/customRules.dat"));
IOUtils.write(tailoredRules, os, "UTF-8");

This rule set can now be used for custom collation in Solr:

<fieldType name="collatedCUSTOM" class="solr.ICUCollationField"
 custom="customRules.dat"
 strength="primary" />

JDK Collation

As mentioned above, ICU Unicode Collation is better in several ways than JDK Collation, but if you cannot use
ICU4J for some reason, you can use .solr.CollationField

The principles of JDK Collation are the same as those of ICU Collation; you just specify , anlanguage country
d arguments instead of the combined argument.variant locale

Arguments for , specified as attributes within the element:solr.CollationField <fieldtype>

Using a System collator (see):Oracle's list of locales supported in Java 8

language: (required) language codeISO-639

country: country codeISO-3166

variant: Vendor or browser-specific code

strength: Valid values are , , or . See primary secondary tertiary identical Oracle Java 8 Collator
 for more information.javadocs

decomposition: Valid values are , , or . See for moreno canonical full Oracle Java 8 Collator javadocs
information.

Using a Tailored ruleset:

custom: (required) Path to a UTF-8 text file containing rules supported by the JDK RuleBasedCollator

strength: Valid values are , , or . See primary secondary tertiary identical Oracle Java 8 Collator
 for more information.javadocs

http://www.oracle.com/technetwork/java/javase/java8locales-2095355.html
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/RuleBasedCollator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html
http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

152Apache Solr Reference Guide 6.1

decomposition: Valid values are , , or . See for moreno canonical full Oracle Java 8 Collator javadocs
information.

A example:solr.CollationField

<fieldType name="collatedGERMAN" class="solr.CollationField"
 language="de"
 country="DE"
 strength="primary" /> <!-- ignore Umlauts and letter case when sorting
-->
...
<field name="manuGERMAN" type="collatedGERMAN" indexed="false" stored="false"
docValues="true" />
...
<copyField source="manu" dest="manuGERMAN"/>

ASCII & Decimal Folding Filters

Ascii Folding

This filter converts alphabetic, numeric, and symbolic Unicode characters which are not in the first 127 ASCII
characters (the "Basic Latin" Unicode block) into their ASCII equivalents, if one exists. Only those characters with
reasonable ASCII alternatives are converted.

This can increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Factory class: solr.ASCIIFoldingFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ASCIIFoldingFilterFactory"/>
</analyzer>

In: "Björn Ångström"

Tokenizer to Filter: "Björn", "Ångström"

Out: "Bjorn", "Angstrom"

Decimal Digit Folding

This filter converts any character in the Unicode "Decimal Number" general category () into their equivalent"Nd"
Basic Latin digits (0-9).

This can increase recall by causing more matches. On the other hand, it can reduce precision because
language-specific character differences may be lost.

Factory class: solr.DecimalDigitFilterFactory

Arguments: None

Example:

http://docs.oracle.com/javase/8/docs/api/java/text/Collator.html

153Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.DecimalDigitFilterFactory"/>
</analyzer>

Language-Specific Factories

These factories are each designed to work with specific languages. The languages covered here are:
Arabic
Brazilian Portuguese
Bulgarian
Catalan
Chinese
Simplified Chinese
CJK
Czech
Danish
Dutch
Finnish
French
Galician
German
Greek
Hebrew, Lao, Myanmar, Khmer
Hindi
Indonesian
Italian
Irish
Japanese
Latvian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Scandinavian
Serbian
Spanish
Swedish
Thai
Turkish

Arabic

Solr provides support for the (PDF) stemming algorithm, and Lucene includes an example stopword list.Light-10

This algorithm defines both character normalization and stemming, so these are split into two filters to provide
more flexibility.

Factory classes: , solr.ArabicStemFilterFactory solr.ArabicNormalizationFilterFactory

Arguments: None

http://www.mtholyoke.edu/~lballest/Pubs/arab_stem05.pdf

154Apache Solr Reference Guide 6.1

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ArabicNormalizationFilterFactory"/>
 <filter class="solr.ArabicStemFilterFactory"/>
</analyzer>

Brazilian Portuguese

This is a Java filter written specifically for stemming the Brazilian dialect of the Portuguese language. It uses the
Lucene class . Although that stemmer can beorg.apache.lucene.analysis.br.BrazilianStemmer
configured to use a list of protected words (which should not be stemmed), this factory does not accept any
arguments to specify such a list.

Factory class: solr.BrazilianStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.BrazilianStemFilterFactory"/>
</analyzer>

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Bulgarian

Solr includes a light stemmer for Bulgarian, following (PDF), and Lucene includes an examplethis algorithm
stopword list.

Factory class: solr.BulgarianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.BulgarianStemFilterFactory"/>
</analyzer>

Catalan

Solr can stem Catalan using the Snowball Porter Stemmer with an argument of . Solrlanguage="Catalan"
includes a set of contractions for Catalan, which can be stripped using .solr.ElisionFilterFactory

Factory class: solr.SnowballPorterFilterFactory

http://members.unine.ch/jacques.savoy/Papers/BUIR.pdf

155Apache Solr Reference Guide 6.1

Arguments:

language: (required) stemmer language, "Catalan" in this case

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"
 articles="lang/contractions_ca.txt"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Catalan" />
</analyzer>

In: "llengües llengua"

Tokenizer to Filter: "llengües"(1) "llengua"(2),

Out: "llengu"(1), "llengu"(2)

Chinese

Chinese Tokenizer

The Chinese Tokenizer is deprecated as of Solr 3.4. Use the instead. solr.StandardTokenizerFactory

Factory class: solr.ChineseTokenizerFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.ChineseTokenizerFactory"/>
</analyzer>

Chinese Filter Factory

The Chinese Filter Factory is deprecated as of Solr 3.4. Use the instead. solr.StopFilterFactory

Factory class: solr.ChineseFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ChineseFilterFactory"/>
</analyzer>

Simplified Chinese

For Simplified Chinese, Solr provides support for Chinese sentence and word segmentation with the solr.HMMC
 in the contrib module. This component includes a largehineseTokenizerFactory analysis-extras

dictionary and segments Chinese text into words with the Hidden Markov Model. To use this filter, see solr/co

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-StandardTokenizer
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-StopFilter

156Apache Solr Reference Guide 6.1

 for instructions on which jars you need to add to your ntrib/analysis-extras/README.txt solr_home/l
.ib

Factory class: solr.HMMChineseTokenizerFactory

Arguments: None

Examples:

To use the default setup with fallback to English Porter stemmer for English words, use:

<analyzer class="org.apache.lucene.analysis.cn.smart. "/>SmartChineseAnalyzer

Or to configure your own analysis setup, use the along with yoursolr.HMMChineseTokenizerFactory
custom filter setup.

<analyzer>
 <tokenizer class="solr.HMMChineseTokenizerFactory"/>
 <filter class="solr.StopFilterFactory
 words="org/apache/lucene/analysis/cn/smart/stopwords.txt"/>
 <filter class="solr.PorterStemFilterFactory"/>
</analyzer>

CJK

This tokenizer breaks Chinese, Japanese and Korean language text into tokens. These are not whitespace
delimited languages. The tokens generated by this tokenizer are "doubles", overlapping pairs of CJK characters
found in the field text.

Factory class: solr.CJKTokenizerFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.CJKTokenizerFactory"/>
</analyzer>

Czech

Solr includes a light stemmer for Czech, following , and Lucene includes an example stopword list.this algorithm

Factory class: solr.CzechStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.CzechStemFilterFactory"/>
<analyzer>

In: "prezidenští, prezidenta, prezidentského"

Tokenizer to Filter: "prezidenští", "prezidenta", "prezidentského"

https://dl.acm.org/citation.cfm?id=1598600

157Apache Solr Reference Guide 6.1

Out: "preziden", "preziden", "preziden"

Danish

Solr can stem Danish using the Snowball Porter Stemmer with an argument of .language="Danish"

Also relevant are the .Scandinavian normalization filters

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (required) stemmer language, "Danish" in this case

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Danish" />
</analyzer>

In: "undersøg undersøgelse"

Tokenizer to Filter: "undersøg"(1) "undersøgelse"(2),

Out: "undersøg"(1), "undersøg"(2)

Dutch

Solr can stem Dutch using the Snowball Porter Stemmer with an argument of .language="Dutch"

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (required) stemmer language, "Dutch" in this case

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Dutch"/>
</analyzer>

In: "kanaal kanalen"

Tokenizer to Filter: "kanaal", "kanalen"

Out: "kanal", "kanal"

Finnish

Solr includes support for stemming Finnish, and Lucene includes an example stopword list.

Factory class: solr.FinnishLightStemFilterFactory

158Apache Solr Reference Guide 6.1

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.FinnishLightStemFilterFactory"/>
</analyzer>

In: "kala kalat"

Tokenizer to Filter: "kala", "kalat"

Out: "kala", "kala"

French

Elision Filter

Removes article elisions from a token stream. This filter can be useful for languages such as French, Catalan,
Italian, and Irish.

Factory class: solr.ElisionFilterFactory

Arguments:

articles: The pathname of a file that contains a list of articles, one per line, to be stripped. Articles are words
such as "le", which are commonly abbreviated, such as in (the plane). This file should include thel'avion
abbreviated form, which precedes the apostrophe. In this case, simply " ". If no attribute is specified, al articles
default set of French articles is used.

ignoreCase: (boolean) If true, the filter ignores the case of words when comparing them to the common word
file. Defaults to false

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ElisionFilterFactory"
 ignoreCase="true"
 articles="lang/contractions_fr.txt"/>
</analyzer>

In: "L'histoire d'art"

Tokenizer to Filter: "L'histoire", "d'art"

Out: "histoire", "art"

French Light Stem Filter

Solr includes three stemmers for French: one in the , a lightersolr.SnowballPorterFilterFactory
stemmer called , and an even less aggressive stemmer called solr.FrenchLightStemFilterFactory solr

. Lucene includes an example stopword list..FrenchMinimalStemFilterFactory

Factory classes: , solr.FrenchLightStemFilterFactory solr.FrenchMinimalStemFilterFactory

Arguments: None

159Apache Solr Reference Guide 6.1

Examples:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"
 articles="lang/contractions_fr.txt"/>
 <filter class="solr.FrenchLightStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"
 articles="lang/contractions_fr.txt"/>
 <filter class="solr.FrenchMinimalStemFilterFactory"/>
</analyzer>

In: "le chat, les chats"

Tokenizer to Filter: "le", "chat", "les", "chats"

Out: "le", "chat", "le", "chat"

Galician

Solr includes a stemmer for Galician following , and Lucene includes an example stopword list.this algorithm

Factory class: solr.GalicianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.GalicianStemFilterFactory"/>
</analyzer>

In: "felizmente Luzes"

Tokenizer to Filter: "felizmente", "luzes"

Out: "feliz", "luz"

German

Solr includes four stemmers for German: one in the solr.SnowballPorterFilterFactory
, a stemmer called , a lighter stemmer called language="German" solr.GermanStemFilterFactory solr.

, and an even less aggressive stemmer called GermanLightStemFilterFactory solr.GermanMinimalSt
. Lucene includes an example stopword list.emFilterFactory

Factory classes: , , solr.GermanStemFilterFactory solr.LightGermanStemFilterFactory solr.M
inimalGermanStemFilterFactory

Arguments: None

http://bvg.udc.es/recursos_lingua/stemming.jsp

160Apache Solr Reference Guide 6.1

Examples:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.GermanStemFilterFactory"/>
</analyzer>

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.GermanLightStemFilterFactory"/>
</analyzer>

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory "/>
 <filter class="solr.GermanMinimalStemFilterFactory"/>
</analyzer>

In: "haus häuser"

Tokenizer to Filter: "haus", "häuser"

Out: "haus", "haus"

Greek

This filter converts uppercase letters in the Greek character set to the equivalent lowercase character.

Factory class: solr.GreekLowerCaseFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.GreekLowerCaseFilterFactory"/>
</analyzer>

Hindi

Solr includes support for stemming Hindi following (PDF), support for common spelling differencesthis algorithm
through the , support for encoding differences through the solr.HindiNormalizationFilterFactory solr

 following , and Lucene includes an example stopword.IndicNormalizationFilterFactory this algorithm
list.

Factory classes: , solr.IndicNormalizationFilterFactory solr.HindiNormalizationFilterFac
, tory solr.HindiStemFilterFactory

Arguments: None

Use of custom charsets is not longer supported as of Solr 3.1. If you need to index text in these
encodings, please use Java's character set conversion facilities (InputStreamReader, and so on.) during
I/O, so that Lucene can analyze this text as Unicode instead.

http://computing.open.ac.uk/Sites/EACLSouthAsia/Papers/p6-Ramanathan.pdf
http://ldc.upenn.edu/myl/IndianScriptsUnicode.html

161Apache Solr Reference Guide 6.1

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.IndicNormalizationFilterFactory"/>
 <filter class="solr.HindiNormalizationFilterFactory"/>
 <filter class="solr.HindiStemFilterFactory"/>
</analyzer>

Indonesian

Solr includes support for stemming Indonesian (Bahasa Indonesia) following (PDF), and Lucenethis algorithm
includes an example stopword list.

Factory class: solr.IndonesianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.IndonesianStemFilterFactory" stemDerivational="true" />
</analyzer>

In: "sebagai sebagainya"

Tokenizer to Filter: "sebagai", "sebagainya"

Out: "bagai", "bagai"

Italian

Solr includes two stemmers for Italian: one in the solr.SnowballPorterFilterFactory
, and a lighter stemmer called . Lucenelanguage="Italian" solr.ItalianLightStemFilterFactory

includes an example stopword list.

Factory class: solr.ItalianStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ElisionFilterFactory"
 articles="lang/contractions_it.txt"/>
 <filter class="solr.ItalianLightStemFilterFactory"/>
</analyzer>

In: "propaga propagare propagamento"

Tokenizer to Filter: "propaga", "propagare", "propagamento"

Out: "propag", "propag", "propag"

http://www.illc.uva.nl/Publications/ResearchReports/MoL-2003-02.text.pdf

162Apache Solr Reference Guide 6.1

Irish

Solr can stem Irish using the Snowball Porter Stemmer with an argument of . Solr includes language="Irish"
, which can handle Irish-specific constructs. Solr also includes a setsolr.IrishLowerCaseFilterFactory

of contractions for Irish which can be stripped using .solr.ElisionFilterFactory

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (required) stemmer language, "Irish" in this case

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ElisionFilterFactory"
 articles="lang/contractions_ga.txt"/>
 <filter class="solr.IrishLowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Irish" />
</analyzer>

In: "siopadóireacht síceapatacha b'fhearr m'athair"

Tokenizer to Filter: "siopadóireacht", "síceapatacha", "b'fhearr", "m'athair"

Out: "siopadóir", "síceapaite", "fearr", "athair"

Japanese

Solr includes support for analyzing Japanese, via the Lucene Kuromoji morphological analyzer, which includes
several analysis components - more details on each below:

JapaneseIterationMarkCharFilter normalizes Japanese horizontal iteration marks (odoriji) to their
expanded form.
JapaneseTokenizer tokenizes Japanese using morphological analysis, and annotates each term with
part-of-speech, base form (a.k.a. lemma), reading and pronunciation.
JapaneseBaseFormFilter replaces original terms with their base forms (a.k.a. lemmas).
JapanesePartOfSpeechStopFilter removes terms that have one of the configured parts-of-speech.
JapaneseKatakanaStemFilter normalizes common katakana spelling variations ending in a long
sound character (U+30FC) by removing the long sound character.

Also useful for Japanese analysis, from lucene-analyzers-common:

CJKWidthFilter folds fullwidth ASCII variants into the equivalent Basic Latin forms, and folds halfwidth
Katakana variants into their equivalent fullwidth forms.

Japanese Iteration Mark CharFilter

Normalizes horizontal Japanese iteration marks (odoriji) to their expanded form. Vertical iteration marks are not
supported.

Factory class: JapaneseIterationMarkCharFilterFactory

Arguments:

normalizeKanji: set to to not normalize kanji iteration marks (default is)false true

normalizeKana: set to to not normalize kana iteration marks (default is)false true

163Apache Solr Reference Guide 6.1

Japanese Tokenizer

Tokenizer for Japanese that uses morphological analysis, and annotates each term with part-of-speech, base
form (a.k.a. lemma), reading and pronunciation.

JapaneseTokenizer has a mode (the default) that does segmentation useful for search: a heuristic issearch
used to segment compound terms into their constituent parts while also keeping the original compound terms as
synonyms.

Factory class: solr.JapaneseTokenizerFactory

Arguments:

mode: Use mode to get a noun-decompounding effect useful for search. mode improvessearch search
segmentation for search at the expense of part-of-speech accuracy. Valid values for are:mode

normal: default segmentation
search: segmentation useful for search (extra compound splitting)
extended: search mode plus unigramming of unknown words (experimental)

For some applications it might be good to use mode for indexing and mode for queries tosearch normal
increase precision and prevent parts of compounds from being matched and highlighted.

userDictionary: filename for a user dictionary, which allows overriding the statistical model with your own
entries for segmentation, part-of-speech tags and readings without a need to specify weights. See lang/userd

 for a sample user dictionary file.ict_ja.txt

userDictionaryEncoding: user dictionary encoding (default is UTF-8)

discardPunctuation: set to to keep punctuation, to discard (the default)false true

Japanese Base Form Filter

Replaces original terms' text with the corresponding base form (lemma). (annotatesJapaneseTokenizer
each term with its base form.)

Factory class: JapaneseBaseFormFilterFactory

(no arguments)

Japanese Part Of Speech Stop Filter

Removes terms with one of the configured parts-of-speech. annotates terms withJapaneseTokenizer
parts-of-speech.

Factory class : JapanesePartOfSpeechStopFilterFactory

Arguments:

tags: filename for a list of parts-of-speech for which to remove terms; see inconf/lang/stoptags_ja.txt
the for an example.sample_techproducts_config config set

enablePositionIncrements: if is or earlier and luceneMatchVersion 4.3 enablePositionIncrement
, no position holes will be left by this filter when it removes tokens. s="false" This argument is invalid if luc

 is or later.eneMatchVersion 5.0

Japanese Katakana Stem Filter

Normalizes common katakana spelling variations ending in a long sound character (U+30FC) by removing the
long sound character.

164Apache Solr Reference Guide 6.1

CJKWidthFilterFactory should be specified prior to this filter to normalize half-width katakana to full-width.

Factory class: JapaneseKatakanaStemFilterFactory

Arguments:

minimumLength: terms below this length will not be stemmed. Default is 4, value must be 2 or more.

CJK Width Filter

Folds fullwidth ASCII variants into the equivalent Basic Latin forms, and folds halfwidth Katakana variants into
their equivalent fullwidth forms.

Factory class: CJKWidthFilterFactory

(no arguments)

Example:

<fieldType name="text_ja" positionIncrementGap="100"
autoGeneratePhraseQueries="false">
 <analyzer>
 <!-- Uncomment if you need to handle iteration marks: -->
 <!-- <charFilter class="solr.JapaneseIterationMarkCharFilterFactory" /> -->
 <tokenizer class="solr.JapaneseTokenizerFactory" mode="search"
userDictionary="lang/userdict_ja.txt"/>
 <filter class="solr.JapaneseBaseFormFilterFactory"/>
 <filter class="solr.JapanesePartOfSpeechStopFilterFactory"
tags="lang/stoptags_ja.txt"/>
 <filter class="solr.CJKWidthFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_ja.txt"/>
 <filter class="solr.JapaneseKatakanaStemFilterFactory" minimumLength="4"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

Hebrew, Lao, Myanmar, Khmer

Lucene provides support, in addition to UAX#29 word break rules, for Hebrew's use of the double and single
quote characters, and for segmenting Lao, Myanmar, and Khmer into syllables with the solr.ICUTokenizerF

 in the contrib module. To use this tokenizer, see actory analysis-extras solr/contrib/analysis-ext
 instructions on which jars you need to add to your .ras/README.txt for solr_home/lib

See for more information.the ICUTokenizer

Latvian

Solr includes support for stemming Latvian, and Lucene includes an example stopword list.

Factory class: solr.LatvianStemFilterFactory

Arguments: None

Example:

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-ICUTokenizer

165Apache Solr Reference Guide 6.1

<fieldType name="text_lvstem" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.LatvianStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "tirgiem tirgus"

Tokenizer to Filter: "tirgiem", "tirgus"

Out: "tirg", "tirg"

Norwegian

Solr includes two classes for stemming Norwegian, and NorwegianLightStemFilterFactory NorwegianM
. Lucene includes an example stopword list.inimalStemFilterFactory

Another option is to use the Snowball Porter Stemmer with an argument of language="Norwegian".

Also relevant are the .Scandinavian normalization filters

Norwegian Light Stemmer

The requires a "two-pass" sort for the -dom and -het endings. ThisNorwegianLightStemFilterFactory
means that in the first pass the word "kristendom" is stemmed to "kristen", and then all the general rules apply so
it will be further stemmed to "krist". The effect of this is that "kristen," "kristendom," "kristendommen," and
"kristendommens" will all be stemmed to "krist."

The second pass is to pick up -dom and -het endings. Consider this example:

One pass Two passes

Before After Before After

forlegen forleg forlegen forleg

forlegenhet forlegen forlegenhet forleg

forlegenheten forlegen forlegenheten forleg

forlegenhetens forlegen forlegenhetens forleg

firkantet firkant firkantet firkant

firkantethet firkantet firkantethet firkant

firkantetheten firkantet firkantetheten firkant

Factory class: solr.NorwegianLightStemFilterFactory

Arguments: Choose the Norwegian language variant to use. Valid values are:variant:

nb: Bokmål (default)
nn: Nynorsk
no: both

Example:

166Apache Solr Reference Guide 6.1

<fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_no.txt" format="snowball"/>
 <filter class="solr.NorwegianLightStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "Forelskelsen"

Tokenizer to Filter: "forelskelsen"

Out: "forelske"

Norwegian Minimal Stemmer

The stems plural forms of Norwegian nouns only.NorwegianMinimalStemFilterFactory

Factory class: solr.NorwegianMinimalStemFilterFactory

Arguments: Choose the Norwegian language variant to use. Valid values are:variant:

nb: Bokmål (default)
nn: Nynorsk
no: both

Example:

<fieldType name="text_no" class="solr.TextField" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StopFilterFactory" ignoreCase="true"
words="lang/stopwords_no.txt" format="snowball"/>
 <filter class="solr.NorwegianMinimalStemFilterFactory"/>
 </analyzer>
</fieldType>

In: "Bilens"

Tokenizer to Filter: "bilens"

Out: "bil"

Persian

Persian Filter Factories

Solr includes support for normalizing Persian, and Lucene includes an example stopword list.

Factory class: solr.PersianNormalizationFilterFactory

Arguments: None

Example:

167Apache Solr Reference Guide 6.1

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ArabicNormalizationFilterFactory"/>
 <filter class="solr.PersianNormalizationFilterFactory">
</analyzer>

Polish

Solr provides support for Polish stemming with the , and solr.StempelPolishStemFilterFactory solr.M
 for lemmatization, in the module. The orphologikFilterFactory contrib/analysis-extras solr.Ste

 component includes an algorithmic stemmer with tables for Polish. To usempelPolishStemFilterFactory
either of these filters, see for instructions on which jars yousolr/contrib/analysis-extras/README.txt
need to add to your .solr_home/lib

Factory class: and solr.StempelPolishStemFilterFactory solr.MorfologikFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.StempelPolishStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.MorfologikFilterFactory" dictionary-resource="pl"/>
</analyzer>

In: ""studenta studenci"

Tokenizer to Filter: "studenta", "studenci"

Out: "student", "student"

More information about the Stempel stemmer is available in .the Lucene javadocs

The Morfologik param value is a constant specifying which dictionary to choose.dictionary-resource
The dictionary resource must be named andmorfologik/dictionaries/{dictionaryResource}.dict
have an associated metadata file. See for details..info the Morfologik project

Portuguese

Solr includes four stemmers for Portuguese: one in the , ansolr.SnowballPorterFilterFactory
alternative stemmer called , a lighter stemmer called solr.PortugueseStemFilterFactory solr.Portugu

, and an even less aggressive stemmer called eseLightStemFilterFactory solr.PortugueseMinimalS
. Lucene includes an example stopword list.temFilterFactory

Factory classes: , solr.PortugueseStemFilterFactory solr.PortugueseLightStemFilterFactor
, y solr.PortugueseMinimalStemFilterFactory

http://lucene.apache.org/core/6_1_0/analyzers-stempel/index.html
http://morfologik.blogspot.com/

168Apache Solr Reference Guide 6.1

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseLightStemFilterFactory"/>
</analyzer>

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.PortugueseMinimalStemFilterFactory"/>
</analyzer>

In: "praia praias"

Tokenizer to Filter: "praia", "praias"

Out: "pra", "pra"

Romanian

Solr can stem Romanian using the Snowball Porter Stemmer with an argument of .language="Romanian"

Factory class: solr.SnowballPorterFilterFactory

Arguments:

language: (required) stemmer language, "Romanian" in this case

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Romanian" />
</analyzer>

Russian

Russian Stem Filter

Solr includes two stemmers for Russian: one in the solr.SnowballPorterFilterFactory
, and a lighter stemmer called . Lucenelanguage="Russian" solr.RussianLightStemFilterFactory

includes an example stopword list.

169Apache Solr Reference Guide 6.1

Factory class: solr.RussianLightStemFilterFactory

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.RussianLightStemFilterFactory"/>
</analyzer>

Scandinavian

Scandinavian is a language group spanning three languages , and which are veryNorwegian Swedish Danish
similar.

Swedish å,ä,ö are in fact the same letters as Norwegian and Danish å,æ,ø and thus interchangeable when used
between these languages. They are however folded differently when people type them on a keyboard lacking
these characters.

In that situation almost all Swedish people use a, a, o instead of å, ä, ö. Norwegians and Danes on the other
hand usually type aa, ae and oe instead of å, æ and ø. Some do however use a, a, o, oo, ao and sometimes
permutations of everything above.

There are two filters for helping with normalization between Scandinavian languages: one is solr.Scandinavi
 trying to preserve the special characters (æäöå) and another anNormalizationFilterFactory solr.Scan
 which folds these to the more broad ø/ö->o etc.dinavianFoldingFilterFactory

See also each language section for other relevant filters.

Scandinavian Normalization Filter

This filter normalize use of the interchangeable Scandinavian characters æÆäÄöÖøØ and folded variants (aa,
ao, ae, oe and oo) by transforming them to åÅæÆøØ.

It's a semantically less destructive solution than , most useful when a personScandinavianFoldingFilter
with a Norwegian or Danish keyboard queries a Swedish index and vice versa. This filter does perform thenot
common Swedish folds of å and ä to a nor ö to o.

Factory class: solr.ScandinavianNormalizationFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ScandinavianNormalizationFilterFactory"/>
</analyzer>

In: "blåbærsyltetøj blåbärsyltetöj blaabaarsyltetoej blabarsyltetoj"

Use of custom charsets is no longer supported as of Solr 3.4. If you need to index text in these
encodings, please use Java's character set conversion facilities (InputStreamReader, and so on.) during
I/O, so that Lucene can analyze this text as Unicode instead.

170Apache Solr Reference Guide 6.1

Tokenizer to Filter: "blåbærsyltetøj", "blåbärsyltetöj", "blaabaersyltetoej", "blabarsyltetoj"

Out: "blåbærsyltetøj", "blåbærsyltetøj", "blåbærsyltetøj", "blabarsyltetoj"

Scandinavian Folding Filter

This filter folds Scandinavian characters åÅäæÄÆ->a and öÖøØ->o. It also discriminate against use of double
vowels aa, ae, ao, oe and oo, leaving just the first one.

It's is a semantically more destructive solution than , but can inScandinavianNormalizationFilter
addition help with matching raksmorgas as räksmörgås.

Factory class: solr.ScandinavianFoldingFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.ScandinavianFoldingFilterFactory"/>
</analyzer>

In: "blåbærsyltetøj blåbärsyltetöj blaabaarsyltetoej blabarsyltetoj"

Tokenizer to Filter: "blåbærsyltetøj", "blåbärsyltetöj", "blaabaersyltetoej", "blabarsyltetoj"

Out: "blabarsyltetoj", "blabarsyltetoj", "blabarsyltetoj", "blabarsyltetoj"

Serbian

Serbian Normalization Filter

Solr includes a filter that normalizes Serbian Cyrillic and Latin characters. Note that this filter only works with
lowercased input.

See the Solr wiki for tips & advice on using this filter: https://wiki.apache.org/solr/SerbianLanguageSupport

Factory class: solr.SerbianNormalizationFilterFactory

Arguments: : Select the extend of normalization. Valid values are:haircut

bald: (Default behavior) Cyrillic characters are first converted to Latin; then, Latin characters have their
diacritics removed, with the exception of " " (U+0111) which isLATIN SMALL LETTER D WITH STROKE
converted to " "dj
regular: Only Cyrillic to Latin normalization will be applied, preserving the Latin diatrics

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SerbianNormalizationFilterFactory" haircut="bald"/>
</analyzer>

https://wiki.apache.org/solr/SerbianLanguageSupport
https://en.wikipedia.org/wiki/D_with_stroke

171Apache Solr Reference Guide 6.1

Spanish

Solr includes two stemmers for Spanish: one in the solr.SnowballPorterFilterFactory
, and a lighter stemmer called . Lucenelanguage="Spanish" solr.SpanishLightStemFilterFactory

includes an example stopword list.

Factory class: solr.SpanishStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SpanishLightStemFilterFactory"/>
</analyzer>

In: "torear toreara torearlo"

Tokenizer to Filter: "torear", "toreara", "torearlo"

Out: "tor", "tor", "tor"

Swedish

Swedish Stem Filter

Solr includes two stemmers for Swedish: one in the solr.SnowballPorterFilterFactory
, and a lighter stemmer called . Lucenelanguage="Swedish" solr.SwedishLightStemFilterFactory

includes an example stopword list.

Also relevant are the .Scandinavian normalization filters

Factory class: solr.SwedishStemFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 <filter class="solr.SwedishLightStemFilterFactory"/>
</analyzer>

In: "kloke klokhet klokheten"

Tokenizer to Filter: "kloke", "klokhet", "klokheten"

Out: "klok", "klok", "klok"

Thai

This filter converts sequences of Thai characters into individual Thai words. Unlike European languages, Thai
does not use whitespace to delimit words.

Factory class: solr.ThaiTokenizerFactory

172Apache Solr Reference Guide 6.1

Arguments: None

Example:

<analyzer type="index">
 <tokenizer class="solr.ThaiTokenizerFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
</analyzer>

Turkish

Solr includes support for stemming Turkish through the ; support forsolr.SnowballPorterFilterFactory
case-insensitive search through the ; support for strippingsolr.TurkishLowerCaseFilterFactory
apostrophes and following suffixes through (see solr.ApostropheFilterFactory Role of Apostrophes in

); support for a form of stemming that truncating tokens at a configurable maximumTurkish Information Retrieval
length through the solr.TruncateTokenFilterFactory (see); and LuceneInformation Retrieval on Turkish Texts
includes an example stopword list.

Factory class: solr.TurkishLowerCaseFilterFactory

Arguments: None

Example:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ApostropheFilterFactory"/>
 <filter class="solr.TurkishLowerCaseFilterFactory"/>
 <filter class="solr.SnowballPorterFilterFactory" language="Turkish"/>
</analyzer>

Another example, illustrating diacritics-insensitive search:

<analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ApostropheFilterFactory"/>
 <filter class="solr.TurkishLowerCaseFilterFactory"/>
 <filter class="solr.ASCIIFoldingFilterFactory" preserveOriginal="true"/>
 <filter class="solr.KeywordRepeatFilterFactory"/>
 <filter class="solr.TruncateTokenFilterFactory" prefixLength="5"/>
 <filter class="solr.RemoveDuplicatesTokenFilterFactory"/>
</analyzer>

Related Topics

LanguageAnalysis

Phonetic Matching
Phonetic matching algorithms may be used to encode tokens so that two different spellings that are pronounced
similarly will match.

For overviews of and comparisons between algorithms, see and http://en.wikipedia.org/wiki/Phonetic_algorithm h
ttp://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html

http://www.ipcsit.com/vol57/015-ICNI2012-M021.pdf
http://www.ipcsit.com/vol57/015-ICNI2012-M021.pdf
http://www.users.muohio.edu/canf/papers/JASIST2008offPrint.pdf
http://wiki.apache.org/solr/LanguageAnalysis
http://en.wikipedia.org/wiki/Phonetic_algorithm
http://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html
http://ntz-develop.blogspot.com/2011/03/phonetic-algorithms.html

173Apache Solr Reference Guide 6.1

Algorithms discussed in this section:
Beider-Morse Phonetic Matching (BMPM)
Daitch-Mokotoff Soundex
Double Metaphone
Metaphone
Soundex
Refined Soundex
Caverphone
Kölner Phonetik a.k.a. Cologne Phonetic
NYSIIS

Beider-Morse Phonetic Matching (BMPM)

To use this encoding in your analyzer, see in the Filter Descriptions section.Beider Morse Filter

Beider-Morse Phonetic Matching (BMPM) is a "soundalike" tool that lets you search using a new phonetic
matching system. BMPM helps you search for personal names (or just surnames) in a Solr/Lucene index, and is
far superior to the existing phonetic codecs, such as regular soundex, metaphone, caverphone, etc.

In general, phonetic matching lets you search a name list for names that are phonetically equivalent to the
desired name. BMPM is similar to a soundex search in that an exact spelling is not required. Unlike soundex, it
does not generate a large quantity of false hits.

From the spelling of the name, BMPM attempts to determine the language. It then applies phonetic rules for that
particular language to transliterate the name into a phonetic alphabet. If it is not possible to determine the
language with a fair degree of certainty, it uses generic phonetic instead. Finally, it applies language-independent
rules regarding such things as voiced and unvoiced consonants and vowels to further insure the reliability of the
matches.

For example, assume that the matches found when searching for Stephen in a database are "Stefan", "Steph",
"Stephen", "Steve", "Steven", "Stove", and "Stuffin". "Stefan", "Stephen", and "Steven" are probably relevant, and
are names that you want to see. "Stuffin", however, is probably not relevant. Also rejected were "Steph", "Steve",
and "Stove". Of those, "Stove" is probably not one that we would have wanted. But "Steph" and "Steve" are
possibly ones that you might be interested in.

For Solr, BMPM searching is available for the following languages:
English
French
German
Greek
Hebrew written in Hebrew letters
Hungarian
Italian
Polish
Romanian
Russian written in Cyrillic letters
Russian transliterated into English letters
Spanish
Turkish

The name matching is also applicable to non-Jewish surnames from the countries in which those languages are
spoken.

For more information, see here: and http://stevemorse.org/phoneticinfo.htm http://stevemorse.org/phonetics/bmp
m.htm.

Daitch-Mokotoff Soundex

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-Beider-MorseFilter
http://stevemorse.org/phoneticinfo.htm
http://stevemorse.org/phonetics/bmpm.htm
http://stevemorse.org/phonetics/bmpm.htm

174Apache Solr Reference Guide 6.1

To use this encoding in your analyzer, see in the Filter Descriptions section.Daitch-Mokotoff Soundex Filter

The Daitch-Mokotoff Soundex algorithm is a refinement of the Russel and American Soundex algorithms,
yielding greater accuracy in matching especially Slavic and Yiddish surnames with similar pronunciation but
differences in spelling.

The main differences compared to the other soundex variants are:

coded names are 6 digits long
initial character of the name is coded
rules to encoded multi-character n-grams
multiple possible encodings for the same name (branching)

Note: the implementation used by Solr (commons-codec's) has additional DaitchMokotoffSoundex
branching rules compared to the original description of the algorithm.

For more information, see and http://en.wikipedia.org/wiki/Daitch%E2%80%93Mokotoff_Soundex http://www.avo
taynu.com/soundex.htm

Double Metaphone

To use this encoding in your analyzer, see in the Filter Descriptions section.Double Metaphone Filter
 Alternatively, you may specify with the , but note that theencoding="DoubleMetaphone" Phonetic Filter
Phonetic Filter version will provide the second ("alternate") encoding that is generated by the Doublenot
Metaphone Filter for some tokens.

Encodes tokens using the double metaphone algorithm by Lawrence Philips. See the original article at http://w

ww.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2

Metaphone

To use this encoding in your analyzer, specify with the .encoding="Metaphone" Phonetic Filter

Encodes tokens using the Metaphone algorithm by Lawrence Philips, described in "Hanging on the Metaphone"
in Dec. 1990. Computer Language,

See http://en.wikipedia.org/wiki/Metaphone

Soundex

To use this encoding in your analyzer, specify with the .encoding="Soundex" Phonetic Filter

Encodes tokens using the Soundex algorithm, which is used to relate similar names, but can also be used as
a general purpose scheme to find words with similar phonemes.

See http://en.wikipedia.org/wiki/Soundex

Refined Soundex

To use this encoding in your analyzer, specify with the .encoding="RefinedSoundex" Phonetic Filter

Encodes tokens using an improved version of the Soundex algorithm.

See http://en.wikipedia.org/wiki/Soundex

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-Daitch-MokotoffSoundexFilter
http://commons.apache.org/proper/commons-codec/apidocs/org/apache/commons/codec/language/DaitchMokotoffSoundex.html
http://en.wikipedia.org/wiki/Daitch%E2%80%93Mokotoff_Soundex
http://www.avotaynu.com/soundex.htm
http://www.avotaynu.com/soundex.htm
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-DoubleMetaphoneFilter
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Metaphone
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://www.drdobbs.com/the-double-metaphone-search-algorithm/184401251?pgno=2
http://en.wikipedia.org/wiki/Soundex
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Soundex

175Apache Solr Reference Guide 6.1

Caverphone

To use this encoding in your analyzer, specify with the .encoding="Caverphone" Phonetic Filter

Caverphone is an algorithm created by the Caversham Project at the University of Otago. The algorithm is
optimised for accents present in the southern part of the city of Dunedin, New Zealand.

See and the Caverphone 2.0 specification at http://en.wikipedia.org/wiki/Caverphone http://caversham.otago.ac.
nz/files/working/ctp150804.pdf

Kölner Phonetik a.k.a. Cologne Phonetic

To use this encoding in your analyzer, specify with the .encoding="ColognePhonetic" Phonetic Filter

The Kölner Phonetik, an algorithm published by Hans Joachim Postel in 1969, is optimized for the German
language.

See http://de.wikipedia.org/wiki/K%C3%B6lner_Phonetik

NYSIIS

To use this encoding in your analyzer, specify with the .encoding="Nysiis" Phonetic Filter

NYSIIS is an encoding used to relate similar names, but can also be used as a general purpose scheme to find
words with similar phonemes.

See and http://en.wikipedia.org/wiki/NYSIIS http://www.dropby.com/NYSIIS.html

Running Your Analyzer
Once you've , and specified the analysis steps that you want applied to it, youdefined a field type in your Schema
should test it out to make sure that it behaves the way you expect it to. Luckily, there is a very handy page in the
Solr that lets you do just that. You can invoke the analyzer for any text field, provide sampleadmin interface
input, and display the resulting token stream.

For example, let's look at some of the "Text" field types available in the " "bin/solr -e techproducts
example configuration, and use the () toAnalysis Screen http://localhost:8983/solr/#/techproducts/analysis
compare how the tokens produced at index time for the sentence " " match up with aRunning an Analyzer
slightly different query text of " "run my analyzers

We can begin with " " - one of the most simplified Text field types available:text_ws

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/Caverphone
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
http://caversham.otago.ac.nz/files/working/ctp150804.pdf
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://de.wikipedia.org/wiki/K%C3%B6lner_Phonetik
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-PhoneticFilter
http://en.wikipedia.org/wiki/NYSIIS
http://www.dropby.com/NYSIIS.html
http://localhost:8983/solr/#/techproducts/analysis

176Apache Solr Reference Guide 6.1

By looking at the start and end positions for each term, we can see that the only thing this field type does is
tokenize text on whitespace. Notice in this image that the term "Running" has a start position of 0 and an end
position of 7, while "an" has a start position of 8 and an end position of 10, and "Analyzer" starts at 11 and ends
at 19. If the whitespace between the terms was also included, the count would be 21; since it is 19, we know that
whitespace has been removed from this query.

 Note also that the indexed terms and the query terms are still very different. "Running" doesn't match "run",
"Analyzer" doesn't match "analyzer" (to a computer), and obviously "an" and "my" are totally different words. If
our objective is to allow queries like " " to match indexed text like "run my analyzer Running an

" then we will evidently need to pick a different field type with index & query time text analysis thatAnalyzer

does more processing of the inputs.

In particular we will want:

Case insensitivity, so "Analyzer" and "analyzer" match.
Stemming, so words like "Run" and "Running" are considered equivalent terms.
Stop Word Pruning, so small words like "an" and "my" don't affect the query.

For our next attempt, let's try the " " field type:text_general

With the verbose output enabled, we can see how each stage of our new analyzers modify the tokens they
receive before passing them on to the next stage. As we scroll down to the final output, we can see that we do
start to get a match on "analyzer" from each input string, thanks to the "LCF" stage -- which if you hover over
with your mouse, you'll see is the " ":LowerCaseFilter

177Apache Solr Reference Guide 6.1

The " " field type is designed to be generally useful for any language, and it has definitely gottentext_general
us closer to our objective than " " from our first example by solving the problem of case sensitivity. It'stext_ws
still not quite what we are looking for because we don't see stemming or stopword rules being applied.

So now let us try the " " field type:text_en

Now we can see the "SF" () stage of the analyzers solving the problem of removing Stop WordsStopFilter
("an" and "my"), and as we scroll down, we also see the "PSF" () stage apply stemmingPorterStemFilter
rules suitable for our English language input, such that the terms produced by our "index analyzer" and the terms
produced by our "query analyzer" match the way we expect.

178Apache Solr Reference Guide 6.1

At this point, we can continue to experiment with additional inputs, verifying that our analyzers produce matching
tokens when we expect them to match, and disparate tokens when we do not expect them to match, as we
iterate and tweak our field type configuration.

179Apache Solr Reference Guide 6.1

Indexing and Basic Data Operations
This section describes how Solr adds data to its index. It covers the following topics:

Introduction to Solr Indexing: An overview of Solr's indexing process.

Post Tool: Information about using to quickly upload some content to your system.post.jar

Uploading Data with Index Handlers: Information about using Solr's Index Handlers to upload
XML/XSLT, JSON and CSV data.

Uploading Data with Solr Cell using Apache Tika: Information about using the Solr Cell framework to
upload data for indexing.

Uploading Structured Data Store Data with the Data Import Handler: Information about uploading and
indexing data from a structured data store.
Updating Parts of Documents: Information about how to use atomic updates and optimistic concurrency
with Solr.

Detecting Languages During Indexing: Information about using language identification during the
indexing process.

De-Duplication: Information about configuring Solr to mark duplicate documents as they are indexed.

Content Streams: Information about streaming content to Solr Request Handlers.

UIMA Integration: Information about integrating Solr with Apache's Unstructured Information
Management Architecture (UIMA). UIMA lets you define custom pipelines of Analysis Engines that
incrementally add metadata to your documents as annotations.

Indexing Using Client APIs

Using client APIs, such as , from your applications is an important option for updating Solr indexes. See the SolrJ
 section for more information.Client APIs

Introduction to Solr Indexing
This section describes the process of indexing: adding content to a Solr index and, if necessary, modifying that
content or deleting it. By adding content to an index, we make it searchable by Solr.

A Solr index can accept data from many different sources, including XML files, comma-separated value (CSV)
files, data extracted from tables in a database, and files in common file formats such as Microsoft Word or PDF.

Here are the three most common ways of loading data into a Solr index:

Using the framework built on Apache Tika for ingesting binary files or structured files such asSolr Cell
Office, Word, PDF, and other proprietary formats.

Uploading XML files by sending HTTP requests to the Solr server from any environment where such
requests can be generated.

Writing a custom Java application to ingest data through Solr's Java Client API (which is described in
more detail in . Using the Java API may be the best choice if you're working with anClient APIs
application, such as a Content Management System (CMS), that offers a Java API.

Regardless of the method used to ingest data, there is a common basic data structure for data being fed into a
Solr index: a containing multiple each with a and containing which may bedocument fields, name content,
empty. One of the fields is usually designated as a unique ID field (analogous to a primary key in a database),
although the use of a unique ID field is not strictly required by Solr.

180Apache Solr Reference Guide 6.1

If the field name is defined in the Schema that is associated with the index, then the analysis steps associated
with that field will be applied to its content when the content is tokenized. Fields that are not explicitly defined in
the Schema will either be ignored or mapped to a dynamic field definition (see Documents, Fields, and Schema

), if one matching the field name exists.Design

For more information on indexing in Solr, see the .Solr Wiki

The Solr Example Directory

When starting Solr with the "-e" option, the directory will be used as base directory for the exampleexample/
Solr instances that are created. This directory also includes an subdirectoryexample/exampledocs/
containing sample documents in a variety of formats that you can use to experiment with indexing into the
various examples.

The Utility for Transferring Filescurl

Many of the instructions and examples in this section make use of the utility for transferring contentcurl
through a URL. posts and retrieves data over HTTP, FTP, and many other protocols. Most Linuxcurl
distributions include a copy of . You'll find curl downloads for Linux, Windows, and many other operatingcurl
systems at . Documentation for is available here: http://curl.haxx.se/download.html curl http://curl.haxx.se/docs/

.manpage.html

Post Tool
Solr includes a simple command line tool for POSTing various types of content to a Solr server. The tool is bin/

. The bin/post tool is a Unix shell script; for Windows (non-Cygwin) usage, see the below.post Windows section

To run it, open a window and enter:

bin/post -c gettingstarted example/films/films.json

This will contact the server at pecifying the is . Thelocalhost:8983. S collection/core name mandatory
'-help' (or simply '-h') option will output information on its usage (i.e., .bin/post -help)

Using the bin/post Tool

Specifying either the or the full update is when using .collection/core name url mandatory bin/post

The basic usage of is:bin/post

Using or other command line tools for posting data is just fine for examples or tests, but it's not thecurl
recommended method for achieving the best performance for updates in production environments. You
will achieve better performance with Solr Cell or the other methods described in this section.

Instead of , you can use utilities such as GNU () or managecurl wget http://www.gnu.org/software/wget/
GETs and POSTS with Perl, although the command line options will differ.

https://wiki.apache.org/solr/FrontPage
http://curl.haxx.se/download.html
http://curl.haxx.se/docs/manpage.html
http://curl.haxx.se/docs/manpage.html
http://www.gnu.org/software/wget/

181Apache Solr Reference Guide 6.1

$ bin/post -h
Usage: post -c <collection> [OPTIONS] <files|directories|urls|-d ["...",...]>
 or post -help

 collection name defaults to DEFAULT_SOLR_COLLECTION if not specified

OPTIONS
=======
 Solr options:
 -url <base Solr update URL> (overrides collection, host, and port)
 -host <host> (default: localhost)
 -p or -port <port> (default: 8983)
 -commit yes|no (default: yes)

 Web crawl options:
 -recursive <depth> (default: 1)
 -delay <seconds> (default: 10)

 Directory crawl options:
 -delay <seconds> (default: 0)

 stdin/args options:
 -type <content/type> (default: application/xml)

 Other options:
 -filetypes <type>[,<type>,...] (default:
xml,json,csv,pdf,doc,docx,ppt,pptx,xls,xlsx,odt,odp,ods,ott,otp,ots,rtf,htm,html,txt
,log)
 -params "<key>=<value>[&<key>=<value>...]" (values must be URL-encoded; these
pass through to Solr update request)
 -out yes|no (default: no; yes outputs Solr response to console)
...

Examples

There are several ways to use . This section presents several examples.bin/post

Indexing XML

Add all documents with file extension to collection or core named ..xml gettingstarted

bin/post -c gettingstarted *.xml

Add all documents with file extension to the collection/core on Solr running on port .xml gettingstarted 898
.4

bin/post -c gettingstarted -p 8984 *.xml

Send XML arguments to delete a document from .gettingstarted

182Apache Solr Reference Guide 6.1

bin/post -c gettingstarted -d '<delete><id>42</id></delete>'

Indexing CSV

Index all CSV files into :gettingstarted

bin/post -c gettingstarted *.csv

Index a tab-separated file into :gettingstarted

bin/post -c signals -params "separator=%09" -type text/csv data.tsv

The content type () parameter is required to treat the file as the proper type, otherwise it will be ignored-type
and a WARNING logged as it does not know what type of content a .tsv file is. The supports the CSV handler se

 parameter, and is passed through using the setting.parator -params

Indexing JSON

Index all JSON files into .gettingstarted

bin/post -c gettingstarted *.json

Indexing rich documents (PDF, Word, HTML, etc)

Index a PDF file into .gettingstarted

bin/post -c gettingstarted a.pdf

Automatically detect content types in a folder, and recursively scan it for documents for indexing into gettingst
.arted

bin/post -c gettingstarted afolder/

Automatically detect content types in a folder, but limit it to PPT and HTML files and index into gettingstarte
.d

bin/post -c gettingstarted -filetypes ppt,html afolder/

Windows support

bin/post exists currently only as a Unix shell script, however it delegates its work to a cross-platform capable
Java program. The can be run directly in supported environments, including Windows. SimplePostTool

SimplePostTool

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-CSVFormattedIndexUpdates

183Apache Solr Reference Guide 6.1

The script currently delegates to a standalone Java program called . This tool,bin/post SimplePostTool
bundled into a executable JAR, can be run directly using .java -jar example/exampledocs/post.jar
 See the help output and take it from there to post files, recurse a website or file system folder, or send direct
commands to a Solr server.

$ java -jar example/exampledocs/post.jar -h
SimplePostTool version 5.0.0
Usage: java [SystemProperties] -jar post.jar [-h|-] [<file|folder|url|arg>
[<file|folder|url|arg>...]]
.
.
.

Uploading Data with Index Handlers
Index Handlers are Request Handlers designed to add, delete and update documents to the index. In addition to
having plugins for importing rich documents or from structured data sources using the using Tika Data Import

, Solr natively supports indexing structured documents in XML, CSV and JSON.Handler

The recommended way to configure and use request handlers is with path based names that map to paths in the
request url. However, request handlers can also be specified with the (query type) parameter if the qt request

is appropriately configured. It is possible to access the same handler using more than one name, Dispatcher
which can be useful if you wish to specify different sets of default options.

A single unified update request handler supports XML, CSV, JSON, and javabin update requests, delegating to
the appropriate based on the of the .ContentStreamLoader Content-Type ContentStream

Topics covered in this section:
UpdateRequestHandler Configuration
XML Formatted Index Updates

Adding Documents
XML Update Commands
Using curl to Perform Updates
Using XSLT to Transform XML Index Updates

JSON Formatted Index Updates
Solr-Style JSON
JSON Update Convenience Paths
Transforming and Indexing Custom JSON

CSV Formatted Index Updates
CSV Update Parameters
Indexing Tab-Delimited files
CSV Update Convenience Paths

Nested Child Documents

UpdateRequestHandler Configuration

The default configuration file has the update request handler configured by default.

<requestHandler name="/update" class="solr.UpdateRequestHandler" />

XML Formatted Index Updates

184Apache Solr Reference Guide 6.1

Index update commands can be sent as XML message to the update handler using Content-type:
 or .application/xml Content-type: text/xml

Adding Documents

The XML schema recognized by the update handler for adding documents is very straightforward:

The element introduces one more documents to be added.<add>
The element introduces the fields making up a document.<doc>
The element presents the content for a specific field.<field>

For example:

<add>
 <doc>
 <field name="authors">Patrick Eagar</field>
 <field name="subject">Sports</field>
 <field name="dd">796.35</field>
 <field name="numpages">128</field>
 <field name="desc"></field>
 <field name="price">12.40</field>
 <field name="title" boost="2.0">Summer of the all-rounder: Test and championship
cricket in England 1982</field>
 <field name="isbn">0002166313</field>
 <field name="yearpub">1982</field>
 <field name="publisher">Collins</field>
 </doc>
 <doc boost="2.5">
 ...
 </doc>
</add>

Each element has certain optional attributes which may be specified.

Command Optional
Parameter

Parameter Description

<add> commitWithin=
number

Add the document within the specified number of milliseconds

<add> overwrite=bool
ean

Default is true. Indicates if the unique key constraints should be checked to
overwrite previous versions of the same document (see below)

<doc> boost=float Default is 1.0. Sets a boost value for the document.To learn more about
boosting, see .Searching

<field> boost=float Default is 1.0. Sets a boost value for the field.

If the document schema defines a unique key, then by default an operation to add a document will/update
overwrite (ie: replace) any document in the index with the same unique key. If no unique key has been defined,
indexing performance is somewhat faster, as no check has to be made for an existing documents to replace.

If you have a unique key field, but you feel confident that you can safely bypass the uniqueness check (eg: you
build your indexes in batch, and your indexing code guarantees it never adds the same document more then
once) you can specify the option when adding your documents.overwrite="false"

185Apache Solr Reference Guide 6.1

XML Update Commands

Commit and Optimize Operations

The operation writes all documents loaded since the last commit to one or more segment files on the<commit>
disk. Before a commit has been issued, newly indexed content is not visible to searches. The commit operation
opens a new searcher, and triggers any event listeners that have been configured.

Commits may be issued explicitly with a message, and can also be triggered from <commit/> <autocommit>
parameters in .solrconfig.xml

The operation requests Solr to merge internal data structures in order to improve search<optimize>
performance. For a large index, optimization will take some time to complete, but by merging many small
segment files into a larger one, search performance will improve. If you are using Solr's replication mechanism to
distribute searches across many systems, be aware that after an optimize, a complete index will need to be
transferred. In contrast, post-commit transfers are usually much smaller.

The and elements accept these optional attributes:<commit> <optimize>

Optional
Attribute

Description

waitSearcher Default is true. Blocks until a new searcher is opened and registered as the main query
searcher, making the changes visible.

expungeDeletes (commit only) Default is false. Merges segments that have more than 10% deleted docs,
expunging them in the process.

maxSegments (optimize only) Default is 1. Merges the segments down to no more than this number of
segments.

Here are examples of <commit> and <optimize> using optional attributes:

<commit waitSearcher="false"/>
<commit waitSearcher="false" expungeDeletes="true"/>
<optimize waitSearcher="false"/>

Delete Operations

Documents can be deleted from the index in two ways. "Delete by ID" deletes the document with the specified
ID, and can be used only if a UniqueID field has been defined in the schema. "Delete by Query" deletes all
documents matching a specified query, although is ignored for a Delete by Query. A singlecommitWithin
delete message can contain multiple delete operations.

<delete>
 <id>0002166313</id>
 <id>0031745983</id>
 <query>subject:sport</query>
 <query>publisher:penguin</query>
</delete>

When using the Join query parser in a Delete By Query, you should use the parameter with ascore
value of " " to avoid a . See the section on the for morenone ClassCastException Join Query Parser
details on the parameter. score

186Apache Solr Reference Guide 6.1

Rollback Operations

The rollback command rolls back all add and deletes made to the index since the last commit. It neither calls any
event listeners nor creates a new searcher. Its syntax is simple: .<rollback/>

Using to Perform Updatescurl

You can use the utility to perform any of the above commands, using its option tocurl --data-binary
append the XML message to the command, and generating a HTTP POST request. For example:curl

curl http://localhost:8983/solr/my_collection/update -H "Content-Type: text/xml"
--data-binary '
<add>
 <doc>
 <field name="authors">Patrick Eagar</field>
 <field name="subject">Sports</field>
 <field name="dd">796.35</field>
 <field name="isbn">0002166313</field>
 <field name="yearpub">1982</field>
 <field name="publisher">Collins</field>
 </doc>
</add>'

For posting XML messages contained in a file, you can use the alternative form:

curl http://localhost:8983/solr/my_collection/update -H "Content-Type: text/xml"
--data-binary @myfile.xml

Short requests can also be sent using a HTTP GET command, URL-encoding the request, as in the following.
Note the escaping of "<" and ">":

curl http://localhost:8983/solr/my_collection/update?stream.body=%3Ccommit/%3E

Responses from Solr take the form shown here:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">127</int>
 </lst>
</response>

The status field will be non-zero in case of failure.

Using XSLT to Transform XML Index Updates

The UpdateRequestHandler allows you to index any arbitrary XML using the parameter to apply an <tr> XSL
. You must have an XSLT stylesheet in the directory of your that cantransformation conf/xslt config set

transform the incoming data to the expected format, and use the parameter to specify<add><doc/></add> tr
the name of that stylesheet.

Here is an example XSLT stylesheet:

https://en.wikipedia.org/wiki/XSLT
https://en.wikipedia.org/wiki/XSLT

187Apache Solr Reference Guide 6.1

<xsl:stylesheet version='1.0' xmlns:xsl='http://www.w3.org/1999/XSL/Transform'>
 <xsl:output media-type="text/xml" method="xml" indent="yes"/>
 <xsl:template match='/'>
 <add>
 <xsl:apply-templates select="response/result/doc"/>
 </add>
 </xsl:template>
 <!-- Ignore score (makes no sense to index) -->
 <xsl:template match="doc/*[@name='score']" priority="100"></xsl:template>
 <xsl:template match="doc">
 <xsl:variable name="pos" select="position()"/>
 <doc>
 <xsl:apply-templates>
 <xsl:with-param name="pos"><xsl:value-of select="$pos"/></xsl:with-param>
 </xsl:apply-templates>
 </doc>
 </xsl:template>
 <!-- Flatten arrays to duplicate field lines -->
 <xsl:template match="doc/arr" priority="100">
 <xsl:variable name="fn" select="@name"/>
 <xsl:for-each select="*">
 <xsl:element name="field">
 <xsl:attribute name="name"><xsl:value-of select="$fn"/></xsl:attribute>
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:for-each>
 </xsl:template>
 <xsl:template match="doc/*">
 <xsl:variable name="fn" select="@name"/>
 <xsl:element name="field">
 <xsl:attribute name="name"><xsl:value-of select="$fn"/></xsl:attribute>
 <xsl:value-of select="."/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="*"/>
</xsl:stylesheet>

This stylesheet transforms Solr's XML search result format into Solr's Update XML syntax. One example usage
would be to copy a Solr 1.3 index (which does not have CSV response writer) into a format which can be indexed
into another Solr file (provided that all fields are stored):

http://localhost:8983/solr/my_collection/select?q=*:*&wt=xslt&tr=updateXml.xsl&rows=
1000

You can also use the stylesheet in to transform an index when updating:XsltUpdateRequestHandler

curl "http://localhost:8983/solr/my_collection/update?commit=true&tr=updateXml.xsl"
-H "Content-Type: text/xml" --data-binary @myexporteddata.xml

For more information about the XML Update Request Handler, see https://wiki.apache.org/solr/UpdateXmlMessa
.ges

JSON Formatted Index Updates

https://wiki.apache.org/solr/UpdateXmlMessages
https://wiki.apache.org/solr/UpdateXmlMessages

188Apache Solr Reference Guide 6.1

Solr can accept JSON that conforms to a defined structure, or can accept arbitrary JSON-formatted documents.
If sending arbitrarily formatted JSON, there are some additional parameters that need to be sent with the update
request, described below in the section .Transforming and Indexing Custom JSON

Solr-Style JSON

JSON formatted update requests may be sent to Solr's handler using /update Content-Type:
 or .application/json Content-Type: text/json

JSON formatted updates can take 3 basic forms, described in depth below:

A single document to add, expressed as a top level JSON Object. To differentiate this from a set of
commands, the request parameter is required.json.command=false
A list of documents to add, expressed as a top level JSON Array containing a JSON Object per document.
A sequence of update commands, expressed as a top level JSON Object (aka: Map).

Adding a Single JSON Document

The simplest way to add Documents via JSON is to send each document individually as a JSON Object, using
the path:/update/json/docs

curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/my_collection/update/json/docs' --data-binary '
{
 "id": "1",
 "title": "Doc 1"
}'

Adding Multiple JSON Documents

Adding multiple documents at one time via JSON can be done via a JSON Array of JSON Objects, where each
object represents a document:

curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/my_collection/update' --data-binary '
[
 {
 "id": "1",
 "title": "Doc 1"
 },
 {
 "id": "2",
 "title": "Doc 2"
 }
]'

A sample JSON file is provided at and contains an array of objects thatexample/exampledocs/books.json
you can add to the Solr example:techproducts

curl 'http://localhost:8983/solr/techproducts/update?commit=true' --data-binary
@example/exampledocs/books.json -H 'Content-type:application/json'

Sending JSON Update Commands

189Apache Solr Reference Guide 6.1

In general, the JSON update syntax supports all of the update commands that the XML update handler supports,
through a straightforward mapping. Multiple commands, adding and deleting documents, may be contained in
one message:

curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/my_collection/update' --data-binary '
{
 "add": {
 "doc": {
 "id": "DOC1",
 "my_boosted_field": { /* use a map with boost/value for a boosted field
*/
 "boost": 2.3,
 "value": "test"
 },
 "my_multivalued_field": ["aaa", "bbb"] /* Can use an array for a
multi-valued field */
 }
 },
 "add": {
 "commitWithin": 5000, /* commit this document within 5 seconds */
 "overwrite": false, /* don't check for existing documents with the
same uniqueKey */
 "boost": 3.45, /* a document boost */
 "doc": {
 "f1": "v1", /* Can use repeated keys for a multi-valued field
*/
 "f1": "v2"
 }
 },

 "commit": {},
 "optimize": { "waitSearcher":false },

 "delete": { "id":"ID" }, /* delete by ID */
 "delete": { "query":"QUERY" } /* delete by query */
}'

As with other update handlers, parameters such as , , , and maycommit commitWithin optimize overwrite
be specified in the URL instead of in the body of the message.

The JSON update format allows for a simple delete-by-id. The value of a can be an array which containsdelete
a list of zero or more specific document id's (not a range) to be deleted. For example, a single document:

{ "delete":"myid" }

Or a list of document IDs:

{ "delete":["id1","id2"] }

Comments are not allowed in JSON, but duplicate names are.

The comments in the above example are for illustrative purposes only, and can not be included in actual
commands sent to Solr.

190Apache Solr Reference Guide 6.1

The value of a "delete" can be an array which contains a list of zero or more id's to be deleted. It is not a range
(start and end).

You can also specify with each "delete":_version_

{
 "delete":"id":50,
 "_version_":12345
}

You can specify the version of deletes in the body of the update request as well.

JSON Update Convenience Paths

In addition to the handler, there are a few additional JSON specific request handler paths available by/update
default in Solr, that implicitly override the behavior of some request parameters:

Path Default Parameters

/update/json stream.contentType=application/json

/update/json/docs stream.contentType=application/json

json.command=false

The path may be useful for clients sending in JSON formatted update commands from/update/json
applications where setting the Content-Type proves difficult, while the path can be/update/json/docs
particularly convenient for clients that always want to send in documents – either individually or as a list – with
out needing to worry about the full JSON command syntax.

Transforming and Indexing Custom JSON

If you have JSON documents that you would like to index without transforming them into Solr's structure, you can
add them to Solr by including some parameters with the update request. These parameters provide information
on how to split a single JSON file into multiple Solr documents and how to map fields to Solr's schema. One or
more valid JSON documents can be sent to the path with the configuration params./update/json/docs

Mapping Parameters

These parameters allow you to define how a JSON file should be read for multiple Solr documents.

split: Defines the path at which to split the input JSON into multiple Solr documents and is required if you
have multiple documents in a single JSON file. If the entire JSON makes a single solr document, the path
must be “ ”. It is possible to pass multiple split paths by separating them with a pipe example : / (|) split

 . If one path is a child of another, they automatically become a child document=/|/foo|/foo/bar
: This is a multivalued mapping parameter. The format of the parameter isf target-field-name:json

. The is required. The is the Solr document field name, and is-path json-path target-field-name
optional. If not specified, it is automatically derived from the input JSON.The default target field name is
the fully qualified name of the field. Wildcards can be used here, see the section below for moreWildcards
information.
mapUniqueKeyOnly (boolean): This parameter is particularly convenient when the fields in the input
JSON are not available in the schema and is not enabled. This will index all the fieldsschemaless mode
into the default search field (using the parameter, below) and only the field is mapped todf uniqueKey
the corresponding field in the schema. If the input JSON does not have a value for the fielduniqueKey
then a UUID is generated for the same.
df: If the flag is used, the update handler needs a field where the data should bemapUniqueKeyOnly

191Apache Solr Reference Guide 6.1

indexed to. This is the same field that other handlers use as a default search field.
srcField: This is the name of the field to which the JSON source will be stored into. This can only be used
if (i.e., you want your JSON input file to be indexed as a single Solr document). Note that atomicsplit=/
updates will cause the field to be out-of-sync with the document.
echo: This is for debugging purpose only. Set it to true if you want the docs to be returned as a response.
Nothing will be indexed.

For example, if we have a JSON file that includes two documents, we could define an update request like this:

curl 'http://localhost:8983/solr/my_collection/update/json/docs'\
'?split=/exams'\
'&f=first:/first'\
'&f=last:/last'\
'&f=grade:/grade'\
'&f=subject:/exams/subject'\
'&f=test:/exams/test'\
'&f=marks:/exams/marks'\
 -H 'Content-type:application/json' -d '
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks" : 90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks" : 86}
]
}'

With this request, we have defined that "exams" contains multiple documents. In addition, we have mapped
several fields from the input document to Solr fields.

When the update request is complete, the following two documents will be added to the index:

{
 "first":"John",
 "last":"Doe",
 "marks":90,
 "test":"term1",
 "subject":"Maths",
 "grade":8
}
{
 "first":"John",
 "last":"Doe",
 "marks":86,
 "test":"term1",
 "subject":"Biology",
 "grade":8
}

In the prior example, all of the fields we wanted to use in Solr had the same names as they did in the input

192Apache Solr Reference Guide 6.1

JSON. When that is the case, we can simplify the request as follows:

curl 'http://localhost:8983/solr/my_collection/update/json/docs'\
'?split=/exams'\
'&f=/first'\
'&f=/last'\
'&f=/grade'\
'&f=/exams/subject'\
'&f=/exams/test'\
'&f=/exams/marks'\
 -H 'Content-type:application/json' -d '
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks" : 90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks" : 86}
]
}'

In this example, we simply named the field paths (such as). Solr will automatically attempt to add/exams/test
the content of the field from the JSON input to the index in a field with the same name.

Wildcards

Instead of specifying all the field names explicitly, it is possible to specify wildcards to map fields automatically.
There are two restrictions: wildcards can only be used at the end of the , and the split path cannotjson-path
use wildcards. A single asterisk "*" maps only to direct children, and a double asterisk "**" maps recursively to all
descendants. The following are example wildcard path mappings:

f=$FQN:/**: maps all fields to the fully qualified name () of the JSON field. The fully qualified$FQN
name is obtained by concatenating all the keys in the hierarchy with a period () as a delimiter. This is.
the default behavior if no path mappings are specified.f
f=/docs/*: maps all the fields under docs and in the name as given in json
f=/docs/**: maps all the fields under docs and its children in the name as given in json
f=searchField:/docs/*: maps all fields under /docs to a single field called ‘searchField’
f=searchField:/docs/**: maps all fields under /docs and its children to searchField

With wildcards we can further simplify our previous example as follows:

Note that if you are not working in , where fields that don't exist will be created on theSchemaless Mode
fly with Solr's best guess for the field type, documents may get rejected if the fields do not exist in the
schema before indexing.

193Apache Solr Reference Guide 6.1

curl 'http://localhost:8983/solr/my_collection/update/json/docs'\
'?split=/exams'\
'&f=/**'\
 -H 'Content-type:application/json' -d '
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks" : 90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks" : 86}
]
}'

Because we want the fields to be indexed with the field names as they are found in the JSON input, the double
wildcard in will map all fields and their descendants to the same fields in Solr.f=/**

It is also possible to send all the values to a single field and do a full text search on that. This is a good option to
blindly index and query JSON documents without worrying about fields and schema.

curl 'http://localhost:8983/solr/my_collection/update/json/docs'\
'?split=/'\
'&f=txt:/**'\
 -H 'Content-type:application/json' -d '
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks" : 90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks" : 86}
]
}'

In the above example, we've said all of the fields should be added to a field in Solr named 'txt'. This will add
multiple fields to a single field, so whatever field you choose should be multi-valued.

The default behavior is to use the fully qualified name (FQN) of the node. So, if we don't define any field
mappings, like this:

194Apache Solr Reference Guide 6.1

curl 'http://localhost:8983/solr/my_collection/update/json/docs?split=/exams'\
 -H 'Content-type:application/json' -d '
{
 "first": "John",
 "last": "Doe",
 "grade": 8,
 "exams": [
 {
 "subject": "Maths",
 "test" : "term1",
 "marks" : 90},
 {
 "subject": "Biology",
 "test" : "term1",
 "marks" : 86}
]
}'

The indexed documents would be added to the index with fields that look like this:

{
 "first":"John",
 "last":"Doe",
 "grade":8,
 "exams.subject":"Maths",
 "exams.test":"term1",
 "exams.marks":90},
{
 "first":"John",
 "last":"Doe",
 "grade":8,
 "exams.subject":"Biology",
 "exams.test":"term1",
 "exams.marks":86}

Indexing nested docs

The following is an example of indexing nested docs,

195Apache Solr Reference Guide 6.1

curl 'http://localhost:8983/solr/my_collection/update/json/docs?split=/|/orgs'\
 -H 'Content-type:application/json' -d '{
 "name": "Joe Smith",
 "phone": 876876687,
 "orgs": [
 {
 "name": "Microsoft",
 "city": "Seattle",
 "zip": 98052
 },
 {
 "name": "Apple",
 "city": "Cupertino",
 "zip": 95014
 }
]
}'

the docs indexed would be,

{
 "name":"Joe Smith",
 "phone":876876687,
 "_childDocuments_":[
 {
 "name":"Microsoft",
 "city":"Seattle",
 "zip":98052},
 {
 "name":"Apple",
 "city":"Cupertino",
 "zip":95014}]}

Setting JSON Defaults

It is possible to send any json to the endpoint and the default configuration of the/update/json/docs
component is as follows:

<initParams path="/update/json/docs">
 <lst name="defaults">
 <!-- this ensures that the entire json doc will be stored verbatim into one
field -->
 <str name="srcField">_src_</str>
 <!-- This means a the uniqueKeyField will be extracted from the fields and
 all fields go into the 'df' field. In this config df is already configured
to be 'text'
 -->
 <str name="mapUniqueKeyOnly">true</str>
 <!-- The default search field where all the values are indexed to -->
 <str name="df">text</str>
 </lst>
</initParams>

So, if no params are passed, the entire json file would get indexed to the field and all the values in the_src_
input JSON would go to a field named . If there is a value for the uniqueKey it is stored and if no valuetext

196Apache Solr Reference Guide 6.1

could be obtained from the input JSON, a UUID is created and used as the uniqueKey field value.

CSV Formatted Index Updates

CSV formatted update requests may be sent to Solr's handler using /update Content-Type:
 or .application/csv Content-Type: text/csv

A sample CSV file is provided at that you can use to add someexample/exampledocs/books.csv
documents to the Solr example:techproducts

curl 'http://localhost:8983/solr/techproducts/update?commit=true' --data-binary
@example/exampledocs/books.csv -H 'Content-type:application/csv'

CSV Update Parameters

The CSV handler allows the specification of many parameters in the URL in the form: f. .parameter optional
.= _fieldname value

The table below describes the parameters for the update handler.

Parameter Usage Global
(g) or
Per

Field
(f)

Example

separator Character used as field separator; default is "," g,(f:
see
split)

separator=%09

trim If true, remove leading and trailing whitespace
from values. Default=false.

g,f f.isbn.trim=true
trim=false

header Set to true if first line of input contains field
names. These will be used if the parfieldnames
ameter is absent.

g

fieldnames Comma separated list of field names to use
when adding documents.

g fieldnames=isbn,price,title

literal.<field_name> A literal value for a specified field name. g literal.color=red

skip Comma separated list of field names to skip. g skip=uninteresting,shoesize

skipLines Number of lines to discard in the input stream
before the CSV data starts, including the header,
if present. Default=0.

g skipLines=5

encapsulator The character optionally used to surround values
to preserve characters such as the CSV
separator or whitespace. This standard CSV
format handles the encapsulator itself appearing
in an encapsulated value by doubling the
encapsulator.

g,(f:
see
split)

encapsulator="

197Apache Solr Reference Guide 6.1

escape The character used for escaping CSV separators
or other reserved characters. If an escape is
specified, the encapsulator is not used unless
also explicitly specified since most formats use
either encapsulation or escaping, not both

g escape=\

keepEmpty Keep and index zero length (empty) fields.
Default=false.

g,f f.price.keepEmpty=true

map Map one value to another. Format is
value:replacement (which can be empty.)

g,f map=left:right
f.subject.map=history:bunk

split If true, split a field into multiple values by a
separate parser.

f

overwrite If true (the default), check for and overwrite
duplicate documents, based on the uniqueKey
field declared in the Solr schema. If you know the
documents you are indexing do not contain any
duplicates then you may see a considerable
speed up setting this to false.

g

commit Issues a commit after the data has been
ingested.

g

commitWithin Add the document within the specified number of
milliseconds.

g commitWithin=10000

rowid Map the rowid (line number) to a field specified
by the value of the parameter, for instance if your
CSV doesn't have a unique key and you want to
use the row id as such.

g rowid=id

rowidOffset Add the given offset (as an int) to the rowid
before adding it to the document. Default is 0

g rowidOffset=10

Indexing Tab-Delimited files

The same feature used to index CSV documents can also be easily used to index tab-delimited files (TSV files)
and even handle backslash escaping rather than CSV encapsulation.

For example, one can dump a MySQL table to a tab delimited file with:

SELECT * INTO OUTFILE '/tmp/result.txt' FROM mytable;

This file could then be imported into Solr by setting the to tab (%09) and the to backslashseparator escape
(%5c).

curl 'http://localhost:8983/solr/update/csv?commit=true&separator=%09&escape=%5c'
--data-binary @/tmp/result.txt

CSV Update Convenience Paths

In addition to the handler, there is an additional CSV specific request handler path available by default/update
in Solr, that implicitly override the behavior of some request parameters:

198Apache Solr Reference Guide 6.1

Path Default Parameters

/update/csv stream.contentType=application/csv

The path may be useful for clients sending in CSV formatted update commands from applications/update/csv
where setting the Content-Type proves difficult.

For more information on the CSV Update Request Handler, see .https://wiki.apache.org/solr/UpdateCSV

Nested Child Documents

Solr indexes nested documents in blocks as a way to model documents containing other documents, such as a
blog post parent document and comments as child documents -- or products as parent documents and sizes,
colors, or other variations as child documents. At query time, the theseBlock Join Query Parsers can search
relationships. In terms of performance, indexing the relationships between documents may be more efficient than
attempting to do joins only at query time, since the relationships are already stored in the index and do not need
to be computed.

Nested documents may be indexed via either the XML or JSON data syntax (or using - but regardless ofSolrJ)
syntax, you must include a field that identifies the parent document as a parent; it can be any field that suits this
purpose, and it will be used as input for the .block join query parsers

XML Examples

For example, here are two documents and their child documents:

<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr adds block join support</field>
 <field name="content_type">parentDocument</field>
 <doc>
 <field name="id">2</field>
 <field name="comments">SolrCloud supports it too!</field>
 </doc>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">New Lucene and Solr release is out</field>
 <field name="content_type">parentDocument</field>
 <doc>
 <field name="id">4</field>
 <field name="comments">Lots of new features</field>
 </doc>
 </doc>
</add>

In this example, we have indexed the parent documents with the field , which has the valuecontent_type
"parentDocument". We could have also used a boolean field, such as , with a value of "true", or anyisParent
other similar approach.

JSON Examples

This example is equivalent to the XML example above, note the special key need to_childDocuments_
indicate the nested documents in JSON.

https://wiki.apache.org/solr/UpdateCSV
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers

199Apache Solr Reference Guide 6.1

[
 {
 "id": "1",
 "title": "Solr adds block join support",
 "content_type": "parentDocument",
 "_childDocuments_": [
 {
 "id": "2",
 "comments": "SolrCloud supports it too!"
 }
]
 },
 {
 "id": "3",
 "title": "New Lucene and Solr release is out",
 "content_type": "parentDocument",
 "_childDocuments_": [
 {
 "id": "4",
 "comments": "Lots of new features"
 }
]
 }
]

Uploading Data with Solr Cell using Apache Tika
Solr uses code from the project to provide a framework for incorporating many different file-formatApache Tika
parsers such as and into Solr itself. Working with this framework, Solr's Apache PDFBox Apache POI Extracti

 can use Tika to support uploading binary files, including files in popular formats such asngRequestHandler
Word and PDF, for data extraction and indexing.

When this framework was under development, it was called the Solr Content Extraction Library or CEL; from that
abbreviation came this framework's name: Solr Cell.

If you want to supply your own for Solr to use, you can extend the ContentHandler ExtractingRequestHan
 and override the method. This factory is responsible for constructing the dler createFactory() SolrConten

that interacts with Tika, and allows literals to override Tika-parsed values. Set the parameter tHandler litera
, which normally defaults to *true, to *false" to append Tika-parsed values to literal values.lsOverride

For more information on Solr's Extracting Request Handler, see https://wiki.apache.org/solr/ExtractingRequestH
.andler

Note
One limitation of indexing nested documents is that the whole block of parent-children documents must
be updated together whenever any changes are required. In other words, even if a single child document
or the parent document is changed, the whole block of parent-child documents must be indexed
together.

http://lucene.apache.org/tika/
http://incubator.apache.org/pdfbox/
http://poi.apache.org/index.html
https://wiki.apache.org/solr/ExtractingRequestHandler
https://wiki.apache.org/solr/ExtractingRequestHandler

200Apache Solr Reference Guide 6.1

Topics covered in this section:
Key Concepts
Trying out Tika with the Solr techproducts Example
Input Parameters
Order of Operations
Configuring the Solr ExtractingRequestHandler
Indexing Encrypted Documents with the ExtractingUpdateRequestHandler
Examples
Sending Documents to Solr with a POST
Sending Documents to Solr with Solr Cell and SolrJ
Related Topics

Key Concepts

When using the Solr Cell framework, it is helpful to keep the following in mind:

Tika will automatically attempt to determine the input document type (Word, PDF, HTML) and extract the
content appropriately. If you like, you can explicitly specify a MIME type for Tika with the pstream.type
arameter.
Tika works by producing an XHTML stream that it feeds to a SAX ContentHandler. SAX is a common
interface implemented for many different XML parsers. For more information, see http://www.saxproject.or

.g/quickstart.html
Solr then responds to Tika's SAX events and creates the fields to index.
Tika produces metadata such as Title, Subject, and Author according to specifications such as the
DublinCore. See for the file types supported.http://tika.apache.org/1.7/formats.html
Tika adds all the extracted text to the field.content
You can map Tika's metadata fields to Solr fields. You can also boost these fields.
You can pass in literals for field values. Literals will override Tika-parsed values, including fields in the
Tika metadata object, the Tika content field, and any "captured content" fields.
You can apply an XPath expression to the Tika XHTML to restrict the content that is produced.

Trying out Tika with the Solr Exampletechproducts

You can try out the Tika framework using the example included in Solr.techproducts

Start the example:

bin/solr -e techproducts

You can now use curl to send a sample PDF file via HTTP POST:

curl
'http://localhost:8983/solr/techproducts/update/extract?literal.id=doc1&commit=true'
-F "myfile=@example/exampledocs/solr-word.pdf"

The URL above calls the Extracting Request Handler, uploads the file and assigns it thesolr-word.pdf
unique ID . Here's a closer look at the components of this command:doc1

While Apache Tika is quite powerful, it is not perfect and fails on some files. PDF files are particularly
problematic, mostly due to the PDF format itself. In case of a failure processing any file, the Extractin

 does not have a secondary mechanism to try to extract some text from the file; it willgRequestHandler
throw an exception and fail.

http://www.saxproject.org/quickstart.html
http://www.saxproject.org/quickstart.html
http://tika.apache.org/1.7/formats.html

201Apache Solr Reference Guide 6.1

The parameter provides the necessary unique ID for the document being indexed.literal.id=doc1

The causes Solr to perform a commit after indexing the document, making itcommit=true parameter
immediately searchable. For optimum performance when loading many documents, don't call the commit
command until you are done.

The flag instructs curl to POST data using the Content-Type and supports-F multipart/form-data
the uploading of binary files. The @ symbol instructs curl to upload the attached file.

The argument needs a valid path, which can be absolute or relative.myfile=@tutorial.html

You can also use to send a PDF file into Solr (without the params, the literal.id parameter would bebin/post
set to the absolute path to the file):

bin/post -c techproducts example/exampledocs/solr-word.pdf -params "literal.id=a"

Now you should be able to execute a query and find that document. You can make a request like http://loc
. alhost:8983/solr/techproducts/select?q=pdf

You may notice that although the content of the sample document has been indexed and stored, there are not a
lot of metadata fields associated with this document. This is because unknown fields are ignored according to the
default parameters configured for the handler in , and this behavior can/update/extract solrconfig.xml
be easily changed or overridden. For example, to store and see all metadata and content, execute the following:

bin/post -c techproducts example/exampledocs/solr-word.pdf -params
"literal.id=doc1&uprefix=attr_"

In this command, the parameter causes all generated fields that aren't defined in the schemauprefix=attr_
to be prefixed with , which is a dynamic field that is stored and indexed.attr_

This command allows you to query the document using an attribute, as in: http://localhost:8983/solr/t
.echproducts/select?q=attr_meta:microsoft

Input Parameters

The table below describes the parameters accepted by the Extracting Request Handler.

Parameter Description

boost.< >fieldname Boosts the specified field by the defined float amount. (Boosting a field alters its
importance in a query response. To learn about boosting fields, see .)Searching

capture Captures XHTML elements with the specified name for a supplementary addition
to the Solr document. This parameter can be useful for copying chunks of the
XHTML into a separate field. For instance, it could be used to grab paragraphs (<p

) and index them into a separate field. Note that content is still also captured into>
the overall "content" field.

captureAttr Indexes attributes of the Tika XHTML elements into separate fields, named after
the element. If set to true, for example, when extracting from HTML, Tika can
return the href attributes in <a> tags as fields named "a". See the examples below.

commitWithin Add the document within the specified number of milliseconds.

date.formats Defines the date format patterns to identify in the documents.

202Apache Solr Reference Guide 6.1

defaultField If the uprefix parameter (see below) is not specified and a field cannot be
determined, the default field will be used.

extractOnly Default is false. If true, returns the extracted content from Tika without indexing the
document. This literally includes the extracted XHTML as a string in the response.
When viewing manually, it may be useful to use a response format other than XML
to aid in viewing the embedded XHTML tags.For an example, see http://wiki.apach

.e.org/solr/TikaExtractOnlyExampleOutput

extractFormat Default is "xml", but the other option is "text". Controls the serialization format of
the extract content. The xml format is actually XHTML, the same format that
results from passing the command to the Tika command line application, while-x
the text format is like that produced by Tika's command. This parameter is valid-t
only if is set to true.extractOnly

fmap.< >source_field Maps (moves) one field name to another. The must be a field insource_field
incoming documents, and the value is the Solr field to map to. Example: fmap.co

 causes the data in the field generated by Tika to bentent=text content
moved to the Solr's field.text

ignoreTikaException If true, exceptions found during processing will be skipped. Any metadata
available, however, will be indexed.

literal.< >fieldname Populates a field with the name supplied with the specified value for each
document. The data can be multivalued if the field is multivalued.

literalsOverride If true (the default), literal field values will override other values with the same field
name. If false, literal values defined with will beliteral.< >fieldname
appended to data already in the fields extracted from Tika. If setting literalsOv

 to "false", the field must be multivalued.erride

lowernames Values are "true" or "false". If true, all field names will be mapped to lowercase
with underscores, if needed. For example, "Content-Type" would be mapped to
"content_type."

multipartUploadLimitInKB Useful if uploading very large documents, this defines the KB size of documents to
allow.

passwordsFile Defines a file path and name for a file of file name to password mappings.

resource.name Specifies the optional name of the file. Tika can use it as a hint for detecting a file's
MIME type.

resource.password Defines a password to use for a password-protected PDF or OOXML file

tika.config Defines a file path and name to a customized Tika configuration file. This is only
required if you have customized your Tika implementation.

uprefix Prefixes all fields that are not defined in the schema with the given prefix. This is
very useful when combined with dynamic field definitions. Example: uprefix=ig

 would effectively ignore all unknown fields generated by Tika given thenored_
example schema contains <dynamicField name="ignored_*" type="igno
red"/>

xpath When extracting, only return Tika XHTML content that satisfies the given XPath
expression. See for details on the format ofhttp://tika.apache.org/1.7/index.html
Tika XHTML. See also .http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput
http://tika.apache.org/1.7/index.html
http://wiki.apache.org/solr/TikaExtractOnlyExampleOutput

203Apache Solr Reference Guide 6.1

1.

2.
3.
4.

Order of Operations

Here is the order in which the Solr Cell framework, using the Extracting Request Handler and Tika, processes its
input.

Tika generates fields or passes them in as literals specified by . If literal.<fieldname>=<value> li
, literals will be appended as multi-value to the Tika-generated field.teralsOverride=false

If , Tika maps fields to lowercase.lowernames=true
Tika applies the mapping rules specified by parameters.fmap. source = target
If is specified, any unknown field names are prefixed with that value, else if isuprefix defaultField
specified, any unknown fields are copied to the default field.

Configuring the Solr ExtractingRequestHandler

If you are not working with the supplied orsample_techproducts_configs data_driven_schema_conf
 , you must configure your own to know about the Jar's containing the igs config set solrconfig.xml Extract

 and it's dependencies:ingRequestHandler

<lib dir="${solr.install.dir:../../..}/contrib/extraction/lib" regex=".*\.jar" />
 <lib dir="${solr.install.dir:../../..}/dist/" regex="solr-cell-\d.*\.jar" />

You can then configure the in .ExtractingRequestHandler solrconfig.xml

<requestHandler name="/update/extract"
class="org.apache.solr.handler.extraction.ExtractingRequestHandler">
 <lst name="defaults">
 <str name="fmap.Last-Modified">last_modified</str>
 <str name="uprefix">ignored_</str>
 </lst>
 <!--Optional. Specify a path to a tika configuration file. See the Tika docs for
details.-->
 <str name="tika.config">/my/path/to/tika.config</str>
 <!-- Optional. Specify one or more date formats to parse. See
DateUtil.DEFAULT_DATE_FORMATS
 for default date formats -->
 <lst name="date.formats">
 <str>yyyy-MM-dd</str>
 </lst>
 <!-- Optional. Specify an external file containing parser-specific properties.
 This file is located in the same directory as solrconfig.xml by default.-->
 <str name="parseContext.config">parseContext.xml</str>
</requestHandler>

In the defaults section, we are mapping Tika's Last-Modified Metadata attribute to a field named last_modifie
. We are also telling it to ignore undeclared fields. These are all overridden parameters.d

The entry points to a file containing a Tika configuration. The allows you totika.config date.formats
specify various date formats for working with transforming extracted input tojava.text.SimpleDateFormats
a Date. Solr comes configured with the following date formats (see the in Solr):DateUtil

yyyy-MM-dd'T'HH:mm:ss'Z'
 yyyy-MM-dd'T'HH:mm:ss

 yyyy-MM-dd
 yyyy-MM-dd hh:mm:ss

204Apache Solr Reference Guide 6.1

 yyyy-MM-dd HH:mm:ss
 EEE MMM d hh:mm:ss z yyyy

 EEE, dd MMM yyyy HH:mm:ss zzz
 EEEE, dd-MMM-yy HH:mm:ss zzz

EEE MMM d HH:mm:ss yyyy

You may also need to adjust the attribute as follows if you are submitting verymultipartUploadLimitInKB
large documents.

<requestDispatcher handleSelect="true" >
 <requestParsers enableRemoteStreaming="false" multipartUploadLimitInKB="20480" />
 ...

Parser specific properties

Parsers used by Tika may have specific properties to govern how data is extracted. For instance, when using the
Tika library from a Java program, the PDFParserConfig class has a method setSortByPosition(boolean) that can
extract vertically oriented text. To access that method via configuration with the ExtractingRequestHandler, one
can add the parseContext.config property to the solrconfig.xml file (see above) and then set properties in Tika's
PDFParserConfig as below. Consult the Tika Java API documentation for configuration parameters that can be
set for any particular parsers that require this level of control.

<entries>
 <entry class="org.apache.tika.parser.pdf.PDFParserConfig"
impl="org.apache.tika.parser.pdf.PDFParserConfig">
 <property name="extractInlineImages" value="true"/>
 <property name="sortByPosition" value="true"/>
 </entry>
 <entry>...</entry>
</entries>

Multi-Core Configuration

For a multi-core configuration, you can specify in the section of andsharedLib='lib' <solr/> solr.xml
place the necessary jar files there.

For more information about Solr cores, see .The Well-Configured Solr Instance

Indexing Encrypted Documents with the ExtractingUpdateRequestHandler

The ExtractingRequestHandler will decrypt encrypted files and index their content if you supply a password in
either on the request, or in a file.resource.password passwordsFile

In the case of , the file supplied must be formatted so there is one line per rule. Each rulepasswordsFile
contains a file name regular expression, followed by "=", then the password in clear-text. Because the passwords
are in clear-text, the file should have strict access restrictions.

This is a comment
myFileName = myPassword
.*\.docx$ = myWordPassword
.*\.pdf$ = myPdfPassword

205Apache Solr Reference Guide 6.1

Examples

Metadata

As mentioned before, Tika produces metadata about the document. Metadata describes different aspects of a
document, such as the author's name, the number of pages, the file size, and so on. The metadata produced
depends on the type of document submitted. For instance, PDFs have different metadata than Word documents
do.

In addition to Tika's metadata, Solr adds the following metadata (defined in)ExtractingMetadataConstants
:

Solr Metadata Description

stream_name The name of the Content Stream as uploaded to Solr. Depending on how the file is
uploaded, this may or may not be set

stream_source_info Any source info about the stream. (See the section on Content Streams later in this
section.)

stream_size The size of the stream in bytes.

stream_content_type The content type of the stream, if available.

Examples of Uploads Using the Extracting Request Handler

Capture and Mapping

The command below captures tags separately, and then maps all the instances of that field to a dynamic<div>
field named .foo_t

bin/post -c techproducts example/exampledocs/sample.html -params
"literal.id=doc2&captureAttr=true&defaultField=_text_&fmap.div=foo_t&capture=div"

Capture, Mapping, and Boosting

The command below captures tags separately, maps the field to a dynamic field named , then<div> foo_t
boosts by 3.foo_t

bin/post -c techproducts example/exampledocs/sample.html -params
"literal.id=doc3&captureAttr=true&defaultField=_text_&capture=div&fmap.div=foo_t&boo
st.foo_t=3"

Using Literals to Define Your Own Metadata

To add in your own metadata, pass in the literal parameter along with the file:

We recommend that you try using the option to discover which values Solr is setting forextractOnly
these metadata elements.

206Apache Solr Reference Guide 6.1

bin/post -c techproducts -params
"literal.id=doc4&captureAttr=true&defaultField=text&capture=div&fmap.div=foo_t&boost
.foo_t=3&literal.blah_s=Bah" example/exampledocs/sample.html

XPath

The example below passes in an XPath expression to restrict the XHTML returned by Tika:

bin/post -c techproducts -params
"literal.id=doc5&captureAttr=true&defaultField=text&capture=div&fmap.div=foo_t&boost
.foo_t=3&xpath=/xhtml:html/xhtml:body/xhtml:div//node()"
example/exampledocs/sample.html

Extracting Data without Indexing It

Solr allows you to extract data without indexing. You might want to do this if you're using Solr solely as an
extraction server or if you're interested in testing Solr extraction.

The example below sets the parameter to extract data without indexing it.extractOnly=true

curl "http://localhost:8983/solr/techproducts/update/extract?&extractOnly=true"
--data-binary @example/exampledocs/sample.html -H 'Content-type:text/html'

The output includes XML generated by Tika (and further escaped by Solr's XML) using a different output format
to make it more readable (`-out yes` instructs the tool to echo Solr's output to the console):

bin/post -c techproducts -params "extractOnly=true&wt=ruby&indent=true" -out yes
example/exampledocs/sample.html

Sending Documents to Solr with a POST

The example below streams the file as the body of the POST, which does not, then, provide information to Solr
about the name of the file.

curl
"http://localhost:8983/solr/techproducts/update/extract?literal.id=doc6&defaultField
=text&commit=true" --data-binary @example/exampledocs/sample.html -H
'Content-type:text/html'

Sending Documents to Solr with Solr Cell and SolrJ

SolrJ is a Java client that you can use to add documents to the index, update the index, or query the index. You'll
find more information on SolrJ in .Client APIs

Here's an example of using Solr Cell and SolrJ to add documents to a Solr index.

First, let's use SolrJ to create a new SolrClient, then we'll construct a request containing a ContentStream
(essentially a wrapper around a file) and sent it to Solr:

207Apache Solr Reference Guide 6.1

public class SolrCellRequestDemo {
 public static void main (String[] args) throws IOException, SolrServerException {
 SolrClient client = new
HttpSolrClient.Builder("http://localhost:8983/solr/my_collection").build();
 ContentStreamUpdateRequest req = new
ContentStreamUpdateRequest("/update/extract");
 req.addFile(new File("my-file.pdf"));
 req.setParam(ExtractingParams.EXTRACT_ONLY, "true");
 NamedList<Object> result = client.request(req);
 System.out.println("Result: " + result);
}

This operation streams the file into the Solr index for .my-file.pdf my_collection

The sample code above calls the extract command, but you can easily substitute other commands that are
supported by Solr Cell. The key class to use is the , which makes sure theContentStreamUpdateRequest
ContentStreams are set properly. SolrJ takes care of the rest.

Note that the is not just specific to Solr Cell. You can send CSV to the CSVContentStreamUpdateRequest
Update handler and to any other Request Handler that works with Content Streams for updates.

Related Topics

ExtractingRequestHandler

Uploading Structured Data Store Data with the Data Import

Handler
Many search applications store the content to be indexed in a structured data store, such as a relational
database. The Data Import Handler (DIH) provides a mechanism for importing content from a data store and
indexing it. In addition to relational databases, DIH can index content from HTTP based data sources such as
RSS and ATOM feeds, e-mail repositories, and structured XML where an XPath processor is used to generate
fields.

The directory contains several collections many of the features of the data importexample/example-DIH
handler. To run this " " example:dih

bin/solr -e dih

For more information about the Data Import Handler, see .https://wiki.apache.org/solr/DataImportHandler
Topics covered in this section:

Concepts and Terminology
Configuration
Data Import Handler Commands
Property Writer
Data Sources
Entity Processors
Transformers
Special Commands for the Data Import Handler

http://wiki.apache.org/solr/ExtractingRequestHandler
https://wiki.apache.org/solr/DataImportHandler

208Apache Solr Reference Guide 6.1

Concepts and Terminology

Descriptions of the Data Import Handler use several familiar terms, such as entity and processor, in specific
ways, as explained in the table below.

Term Definition

Datasource As its name suggests, a datasource defines the location of the data of interest. For a database,
it's a DSN. For an HTTP datasource, it's the base URL.

Entity Conceptually, an entity is processed to generate a set of documents, containing multiple fields,
which (after optionally being transformed in various ways) are sent to Solr for indexing. For a
RDBMS data source, an entity is a view or table, which would be processed by one or more
SQL statements to generate a set of rows (documents) with one or more columns (fields).

Processor An entity processor does the work of extracting content from a data source, transforming it, and
adding it to the index. Custom entity processors can be written to extend or replace the ones
supplied.

Transformer Each set of fields fetched by the entity may optionally be transformed. This process can modify
the fields, create new fields, or generate multiple rows/documents form a single row. There are
several built-in transformers in the DIH, which perform functions such as modifying dates and
stripping HTML. It is possible to write custom transformers using the publicly available interface.

Configuration

Configuring solrconfig.xml

The Data Import Handler has to be registered in . For example:solrconfig.xml

<requestHandler name="/dataimport"
class="org.apache.solr.handler.dataimport.DataImportHandler">
 <lst name="defaults">
 <str name="config">/path/to/my/DIHconfigfile.xml</str>
 </lst>
</requestHandler>

The only required parameter is the parameter, which specifies the location of the DIH configuration fileconfig
that contains specifications for the data source, how to fetch data, what data to fetch, and how to process it to
generate the Solr documents to be posted to the index.

You can have multiple DIH configuration files. Each file would require a separate definition in the solrconfig.
 file, specifying a path to the file.xml

Configuring the DIH Configuration File

An annotated configuration file, based on the " " collection in the example server, is shown below (db dih exampl
). It extracts fields from the four tables defining ae/example-DIH/solr/db/conf/db-data-config.xml

simple product database, with this schema. More information about the parameters and options shown here are
described in the sections following.

<dataConfig>
<!-- The first element is the dataSource, in this case an HSQLDB database.

209Apache Solr Reference Guide 6.1

 The path to the JDBC driver and the JDBC URL and login credentials are all
specified here.
 Other permissible attributes include whether or not to autocommit to Solr, the
batchsize
 used in the JDBC connection, a 'readOnly' flag.
 The password attribute is optional if there is no password set for the DB.
-->
 <dataSource driver="org.hsqldb.jdbcDriver"
url="jdbc:hsqldb:./example-DIH/hsqldb/ex" user="sa" password="secret"/>
<!--
Alternately the password can be encrypted as follows. This is the value obtained as
a result of the command
openssl enc -aes-128-cbc -a -salt -in pwd.txt
password="U2FsdGVkX18QMjY0yfCqlfBMvAB4d3XkwY96L7gfO2o="
WHen the password is encrypted, you must provide an extra attribute
encryptKeyFile="/location/of/encryptionkey"
This file should a text file with a single line containing the encrypt/decrypt
password

-->
<!-- A 'document' element follows, containing multiple 'entity' elements.
 Note that 'entity' elements can be nested, and this allows the entity
 relationships in the sample database to be mirrored here, so that we can
 generate a denormalized Solr record which may include multiple features
 for one item, for instance -->
 <document>

<!-- The possible attributes for the entity element are described below.
 Entity elements may contain one or more 'field' elements, which map
 the data source field names to Solr fields, and optionally specify
 per-field transformations -->
<!-- this entity is the 'root' entity. -->
 <entity name="item" query="select * from item"
 deltaQuery="select id from item where last_modified >
'${dataimporter.last_index_time}'">
 <field column="NAME" name="name" />

<!-- This entity is nested and reflects the one-to-many relationship between an item
and its multiple features.
 Note the use of variables; ${item.ID} is the value of the column 'ID' for the
current item
 ('item' referring to the entity name) -->
 <entity name="feature"
 query="select DESCRIPTION from FEATURE where ITEM_ID='${item.ID}'"
 deltaQuery="select ITEM_ID from FEATURE where last_modified >
'${dataimporter.last_index_time}'"
 parentDeltaQuery="select ID from item where ID=${feature.ITEM_ID}">
 <field name="features" column="DESCRIPTION" />
 </entity>
 <entity name="item_category"
 query="select CATEGORY_ID from item_category where
ITEM_ID='${item.ID}'"
 deltaQuery="select ITEM_ID, CATEGORY_ID from item_category where
last_modified > '${dataimporter.last_index_time}'"
 parentDeltaQuery="select ID from item where
ID=${item_category.ITEM_ID}">
 <entity name="category"
 query="select DESCRIPTION from category where ID =
'${item_category.CATEGORY_ID}'"

210Apache Solr Reference Guide 6.1

 deltaQuery="select ID from category where last_modified >
'${dataimporter.last_index_time}'"
 parentDeltaQuery="select ITEM_ID, CATEGORY_ID from item_category
where CATEGORY_ID=${category.ID}">
 <field column="description" name="cat" />
 </entity>
 </entity>

211Apache Solr Reference Guide 6.1

 </entity>
 </document>
</dataConfig>

Datasources can still be specified in . These must be specified in the defaults section of thesolrconfig.xml
handler in . However, these are not parsed until the main configuration is loaded.solrconfig.xml

The entire configuration itself can be passed as a request parameter using the parameter ratherdataConfig
than using a file. When configuration errors are encountered, the error message is returned in XML format.

A command is also supported, which is useful for validating a new configuration file, or if youreload-config
want to specify a file, load it, and not have it reloaded again on import. If there is an mistake in thexml
configuration a user-friendly message is returned in format. You can then fix the problem and do a xml reload-

.config

Request Parameters

Request parameters can be substituted in configuration with placeholder ${dataimporter.request.paramn
. ame}

<dataSource driver="org.hsqldb.jdbcDriver" url="${dataimporter.request.jdbcurl}"
user="${dataimporter.request.jdbcuser}"
password=${dataimporter.request.jdbcpassword} />

Then, these parameters can be passed to the full-import command or defined in the section in <defaults> sol
. This example shows the parameters with the full-import command:rconfig.xml

dataimport?command=full-import&jdbcurl=jdbc:hsqldb:./example-DIH/hsqldb/ex&jdbcuse
r=sa&jdbcpassword=secret

Data Import Handler Commands

DIH commands are sent to Solr via an HTTP request. The following operations are supported.

Command Description

abort Aborts an ongoing operation. The URL is http://<host>:<port>/ solr/ <collecti
 .on_name>/ dataimport? command=abort

delta-import For incremental imports and change detection. The command is of the form http://<ho
 st>:<port>/ solr/ <collection_name>/ dataimport? command=delta-impor

. It supports the same clean, commit, optimize and debug parameters as full-importt
command. Only the SqlEntityProcessor supports delta imports.

You can also view the DIH configuration in the Solr Admin UI and there is an interface to import content.

212Apache Solr Reference Guide 6.1

full-import A Full Import operation can be started with a URL of the form http://<host>:<port>/
 . The commandsolr/ <collection_name>/ dataimport? command=full-import

returns immediately. The operation will be started in a new thread and the attributestatus
in the response should be shown as . The operation may take some time dependingbusy
on the size of dataset. Queries to Solr are not blocked during full-imports.
When a full-import command is executed, it stores the start time of the operation in a file
located at . This stored timestamp is used when aconf/dataimport.properties
delta-import operation is executed.
For a list of parameters that can be passed to this command, see below.

reload-config If the configuration file has been changed and you wish to reload it without restarting Solr,
run the command

http://<host>:<port>/solr/<collection_name>/command=reload-config

status The URL is http://<host>:<port>/ solr/ <collection_name>/ dataimport? c
. It returns statistics on the number of documents created, deleted,ommand=status

queries run, rows fetched, status, and so on.

show-config responds with configuration

Parameters for the Commandfull-import

The command accepts the following parameters:full-import

Parameter Description

clean Default is true. Tells whether to clean up the index before the indexing is started.

commit Default is true. Tells whether to commit after the operation.

debug Default is false Runs the command in debug mode. It is used by the interactive development
mode. Note that in debug mode, documents are never committed automatically. If you want to
run debug mode and commit the results too, add as a request parameter.commit=true

entity The name of an entity directly under the tag in the configuration file. Use this to<document>
execute one or more entities selectively. Multiple "entity" parameters can be passed on to run
multiple entities at once. If nothing is passed, all entities are executed.

optimize Default is true. Tells Solr whether to optimize after the operation.

synchronous Blocks request until import is completed. Default is .false

Property Writer

The element defines the date format and locale for use with delta queries. It is an optionalpropertyWriter
configuration. Add the element to the DIH configuration file, directly under the element.dataConfig

<propertyWriter dateFormat="yyyy-MM-dd HH:mm:ss" type="SimplePropertiesWriter"
directory="data" filename="my_dih.properties" locale="en_US" />

The parameters available are:

Parameter Description

213Apache Solr Reference Guide 6.1

dateFormat A java.text.SimpleDateFormat to use when converting the date to text. The default is
"yyyy-MM-dd HH:mm:ss".

type The implementation class. Use for non-SolrCloud installations. IfSimplePropertiesWriter
using SolrCloud, use . If this is not specified, it will default to theZKPropertiesWriter
appropriate class depending on if SolrCloud mode is enabled.

directory Used with the only). The directory for the properties file. If notSimplePropertiesWriter
specified, the default is "conf".

filename Used with the only). The name of the properties file. If notSimplePropertiesWriter
specified, the default is the requestHandler name (as defined in , appendedsolrconfig.xml
by ".properties" (i.e., "dataimport.properties").

locale The locale. If not defined, the ROOT locale is used. It must be specified as language-country.
For example, .en-US

Data Sources

A data source specifies the origin of data and its type. Somewhat confusingly, some data sources are configured
within the associated entity processor. Data sources can also be specified in , which is usefulsolrconfig.xml
when you have multiple environments (for example, development, QA, and production) differing only in their data
sources.

You can create a custom data source by writing a class that extends org.apache.solr.handler.dataimpo
.rt.DataSource

The mandatory attributes for a data source definition are its name and type. The name identifies the data source
to an Entity element.

The types of data sources available are described below.

ContentStreamDataSource

This takes the POST data as the data source. This can be used with any EntityProcessor that uses a DataSour
.ce<Reader>

FieldReaderDataSource

This can be used where a database field contains XML which you wish to process using the
XPathEntityProcessor. You would set up a configuration with both JDBC and FieldReader data sources, and two
entities, as follows:

214Apache Solr Reference Guide 6.1

<dataSource name="a1" driver="org.hsqldb.jdbcDriver" ... />
<dataSource name="a2" type=FieldReaderDataSource" />
<document>

 <!-- processor for database -->

 <entity name ="e1" dataSource="a1" processor="SqlEntityProcessor" pk="docid"
 query="select * from t1 ...">

 <!-- nested XpathEntity; the field in the parent which is to be used for
 Xpath is set in the "datafield" attribute in place of the "url" attribute
-->

 <entity name="e2" dataSource="a2" processor="XPathEntityProcessor"
 dataField="e1.fieldToUseForXPath">

 <!-- Xpath configuration follows -->
 ...
 </entity>
 </entity>

The FieldReaderDataSource can take an parameter, which will default to "UTF-8" if not specified.Itencoding
must be specified as language-country. For example, .en-US

FileDataSource

This can be used like an , but is used to fetch content from files on disk. The only difference fromURLDataSource
URLDataSource, when accessing disk files, is how a pathname is specified.

This data source accepts these optional attributes.

Optional Attribute Description

basePath The base path relative to which the value is evaluated if it is not absolute.

encoding Defines the character encoding to use. If not defined, UTF-8 is used.

JdbcDataSource

This is the default datasource. It's used with the . See the example in the SqlEntityProcessor FieldReaderDataSo
 section for details on configuration.urce

URLDataSource

This data source is often used with XPathEntityProcessor to fetch content from an underlying or file:// http
 location. Here's an example:://

<dataSource name="a"
 type="URLDataSource"
 baseUrl="http://host:port/"
 encoding="UTF-8"
 connectionTimeout="5000"
 readTimeout="10000"/>

215Apache Solr Reference Guide 6.1

The URLDataSource type accepts these optional parameters:

Optional
Parameter

Description

baseURL Specifies a new baseURL for pathnames. You can use this to specify host/port changes
between Dev/QA/Prod environments. Using this attribute isolates the changes to be
made to the solrconfig.xml

connectionTimeout Specifies the length of time in milliseconds after which the connection should time out.
The default value is 5000ms.

encoding By default the encoding in the response header is used. You can use this property to
override the default encoding.

readTimeout Specifies the length of time in milliseconds after which a read operation should time out.
The default value is 10000ms.

Entity Processors

Entity processors extract data, transform it, and add it to a Solr index. Examples of entities include views or
tables in a data store.

Each processor has its own set of attributes, described in its own section below. In addition, there are
non-specific attributes common to all entities which may be specified.

Attribute Use

dataSource The name of a data source. If there are multiple data sources defined, use this
attribute with the name of the data source for this entity.

name Required. The unique name used to identify an entity.

pk The primary key for the entity. It is optional, and required only when using
delta-imports. It has no relation to the uniqueKey defined in but theyschema.xml
can both be the same. It is mandatory if you do delta-imports and then refers to the
column name in } which is used as the${dataimporter.delta.<column-name>
primary key.

processor Default is SqlEntityProcessor. Required only if the datasource is not RDBMS.

onError Permissible values are (abort|skip|continue) . The default value is 'abort'. 'Skip' skips
the current document. 'Continue' ignores the error and processing continues.

preImportDeleteQuery Before a full-import command, use this query this to cleanup the index instead of
using '*:*'. This is honored only on an entity that is an immediate sub-child of <docu

.ment>

postImportDeleteQuery Similar to the above, but executed after the import has completed.

rootEntity By default the entities immediately under the are root entities. If this<document>
attribute is set to false, the entity directly falling under that entity will be treated as
the root entity (and so on). For every row returned by the root entity, a document is
created in Solr.

transformer Optional. One or more transformers to be applied on this entity.

216Apache Solr Reference Guide 6.1

cacheImpl Optional. A class (which must implement) to use for caching this entityDIHCache
when doing lookups from an entity which wraps it. Provided implementation is "Sort

".edMapBackedCache

cacheKey The name of a property of this entity to use as a cache key if iscacheImpl
specified.

cacheLookup An entity + property name that will be used to lookup cached instances of this entity
if is specified.cacheImpl

where an alternative way to specify and concatenated with '='.cacheKey cacheLookup
eg is equal to where="CODE=People.COUNTRY_CODE" cacheKey="CODE"
cacheLookup="People.COUNTRY_CODE"

child="true" Enables indexing document blocks aka for searching with Nested Child Documents
. It can be only specified on under another rootBlock Join Query Parsers <entity>

entity. It switches from default behavior (merging field values) to nesting documents
as children documents. Note: parent should add a field which is used as<entity>
a parent filter in query time.

join="zipper" Enables merge join aka "zipper" algorithm for joining parent and child entities without
cache. It should be specified at child (nested) . It implies that parent and<entity>
child queries return results ordered by keys, otherwise it throws an exception. Keys
should be specified either with attribute or with and where cacheKey cacheLooku

.p

Caching of entities in DIH is provided to avoid repeated lookups for same entities again and again. The default S
 is a where a key is a field in the row and the value is a bunch of rows for thatortedMapBackedCache HashMap

same key.

In the example below, each entity is cached using the ' ' property as a cache key. Cachemanufacturer id
lookups will be performed for each entity based on the product's " " property. When the cache hasproduct manu
no data for a particular key, the query is run and the cache is populated

<entity name="product" query="select description,sku, manu from product" >
 <entity name="manufacturer" query="select id, name from manufacturer"
cacheKey="id" cacheLookup="product.manu" cacheImpl="SortedMapBackedCache"/>
</entity>

The SQL Entity Processor

The SqlEntityProcessor is the default processor. The associated should be a JDBC URL.data source

The entity attributes specific to this processor are shown in the table below.

Attribute Use

query Required. The SQL query used to select rows.

deltaQuery SQL query used if the operation is delta-import. This query selects the primary keys of the
rows which will be parts of the delta-update. The pks will be available to the
deltaImportQuery through the variable }.${dataimporter.delta.<column-name>

parentDeltaQuery SQL query used if the operation is delta-import.

217Apache Solr Reference Guide 6.1

deletedPkQuery SQL query used if the operation is delta-import.

deltaImportQuery SQL query used if the operation is delta-import. If this is not present, DIH tries to construct
the import query by(after identifying the delta) modifying the 'query' (this is error prone).
There is a namespace } which can be used${dataimporter.delta.<column-name>
in this query. For example, select * from tbl where

}.id=${dataimporter.delta.id

The XPathEntityProcessor

This processor is used when indexing XML formatted data. The data source is typically or URLDataSource FileD
. Xpath can also be used with the described below, to generate a documentataSource FileListEntityProcessor

from each file.

The entity attributes unique to this processor are shown below.

Attribute Use

Processor Required. Must be set to "XpathEntityProcessor".

url Required. HTTP URL or file location.

stream Optional: Set to true for a large file or download.

forEach Required unless you define . The Xpath expression whichuseSolrAddSchema
demarcates each record. This will be used to set up the processing loop.

xsl Optional: Its value (a URL or filesystem path) is the name of a resource used as a
preprocessor for applying the XSL transformation.

useSolrAddSchema Set this to true if the content is in the form of the standard Solr update XML schema.

flatten Optional: If set true, then text from under all the tags is extracted into one field.

Each field element in the entity can have the following attributes as well as the default ones.

Attribute Use

xpath Required. The XPath expression which will extract the content from the record for this field.
Only a subset of Xpath syntax is supported.

commonField Optional. If true, then when this field is encountered in a record it will be copied to future
records when creating a Solr document.

Here is an example from the " " collection in the example (rss dih example/example-DIH/solr/rss/conf/
):rss-data-config.xml

218Apache Solr Reference Guide 6.1

<!-- slashdot RSS Feed --->
<dataConfig>
 <dataSource type="HttpDataSource" />
 <document>
 <entity name="slashdot"
 pk="link"
 url="http://rss.slashdot.org/Slashdot/slashdot"
 processor="XPathEntityProcessor"

 <!-- forEach sets up a processing loop ; here there are two
expressions-->
 forEach="/RDF/channel | /RDF/item"
 transformer="DateFormatTransformer">
 <field column="source" xpath="/RDF/channel/title" commonField="true" />
 <field column="source-link" xpath="/RDF/channel/link" commonField="true"/>
 <field column="subject" xpath="/RDF/channel/subject" commonField="true" />
 <field column="title" xpath="/RDF/item/title" />
 <field column="link" xpath="/RDF/item/link" />
 <field column="description" xpath="/RDF/item/description" />
 <field column="creator" xpath="/RDF/item/creator" />
 <field column="item-subject" xpath="/RDF/item/subject" />
 <field column="date" xpath="/RDF/item/date"
 dateTimeFormat="yyyy-MM-dd'T'hh:mm:ss" />
 <field column="slash-department" xpath="/RDF/item/department" />
 <field column="slash-section" xpath="/RDF/item/section" />
 <field column="slash-comments" xpath="/RDF/item/comments" />
 </entity>
 </document>
</dataConfig>

The MailEntityProcessor

The MailEntityProcessor uses the Java Mail API to index email messages using the IMAP protocol. The
MailEntityProcessor works by connecting to a specified mailbox using a username and password, fetching the
email headers for each message, and then fetching the full email contents to construct a document (one
document for each mail message).

Here is an example from the " " collection of the example (mail dih example/example-DIH/mail/conf/mai
):l-data-config.xml

<dataConfig>
 <document>
 <entity processor="MailEntityProcessor"
 user="email@gmail.com"
 password="password"
 host="imap.gmail.com"
 protocol="imaps"
 fetchMailsSince="2009-09-20 00:00:00"
 batchSize="20"
 folders="inbox"
 processAttachement="false"
 name="sample_entity"/>
 </document>
</dataConfig>

219Apache Solr Reference Guide 6.1

The entity attributes unique to the MailEntityProcessor are shown below.

Attribute Use

processor Required. Must be set to "MailEntityProcessor".

user Required. Username for authenticating to the IMAP server; this is typically the email
address of the mailbox owner.

password Required. Password for authenticating to the IMAP server.

host Required. The IMAP server to connect to.

protocol Required. The IMAP protocol to use, valid values are: imap, imaps, gimap, and gimaps.

fetchMailsSince Optional. Date/time used to set a filter to import messages that occur after the specified
date; expected format is: .yyyy-MM-dd HH:mm:ss

folders Required. Comma-delimited list of folder names to pull messages from, such as
"inbox".

recurse Optional (default is true). Flag to indicate if the processor should recurse all child
folders when looking for messages to import.

include Optional. Comma-delimited list of folder patterns to include when processing folders
(can be a literal value or regular expression).

exclude Optional. Comma-delimited list of folder patterns to exclude when processing folders
(can be a literal value or regular expression); excluded folder patterns take precedence
over include folder patterns.

processAttachement

or

processAttachments

Optional (default is true). Use Tika to process message attachments.

includeContent Optional (default is true). Include the message body when constructing Solr documents
for indexing.

Importing New Emails Only

After running a full import, the MailEntityProcessor keeps track of the timestamp of the previous import so that
subsequent imports can use the fetchMailsSince filter to only pull new messages from the mail server. This
occurs automatically using the Data Import Handler dataimport.properties file (stored in conf). For instance, if you
set fetchMailsSince=2014-08-22 00:00:00 in your mail-data-config.xml, then all mail messages that occur after
this date will be imported on the first run of the importer. Subsequent imports will use the date of the previous
import as the fetchMailsSince filter, so that only new emails since the last import are indexed each time.

GMail Extensions

When connecting to a GMail account, you can improve the efficiency of the MailEntityProcessor by setting the
protocol to or . This allows the processor to send the fetchMailsSince filter to the GMail server togimap gimaps
have the date filter applied on the server, which means the processor only receives new messages from the
server. However, GMail only supports date granularity, so the server-side filter may return previously seen
messages if run more than once a day.

The TikaEntityProcessor

220Apache Solr Reference Guide 6.1

The TikaEntityProcessor uses Apache Tika to process incoming documents. This is similar to Uploading Data
, but using the DataImportHandler options instead.with Solr Cell using Apache Tika

Here is an example from the " " collection of the example (tika dih example/example-DIH/tika/conf/tik
):a-data-config.xml

<dataConfig>
 <dataSource type="BinFileDataSource" />
 <document>
 <entity name="tika-test" processor="TikaEntityProcessor"
 url="../contrib/extraction/src/test-files/extraction/solr-word.pdf"
format="text">
 <field column="Author" name="author" meta="true"/>
 <field column="title" name="title" meta="true"/>
 <field column="text" name="text"/>
 </entity>
 </document>
</dataConfig>

The parameters for this processor are described in the table below:

Attribute Use

dataSource This parameter defines the data source and an optional name which can be referred to in
later parts of the configuration if needed. This is the same dataSource explained in the
description of general entity processor attributes above.

The available data source types for this processor are:

BinURLDataSource: used for HTTP resources, but can also be used for files.
BinContentStreamDataSource: used for uploading content as a stream.
BinFileDataSource: used for content on the local filesystem.

url The path to the source file(s), as a file path or a traditional internet URL. This parameter is
required.

htmlMapper Allows control of how Tika parses HTML. The "default" mapper strips much of the HTML
from documents while the "identity" mapper passes all HTML as-is with no modifications. If
this parameter is defined, it must be either or ; if it is absent, "default" isdefault identity
assumed.

format The output format. The options are , , or . The default is "text" if nottext xml html none
defined. The format "none" can be used if metadata only should be indexed and not the
body of the documents.

parser The default parser is . If a custom ororg.apache.tika.parser.AutoDetectParser
other parser should be used, it should be entered as a fully-qualified name of the class
and path.

fields The list of fields from the input documents and how they should be mapped to Solr fields.
If the attribute is defined as "true", the field will be obtained from the metadata of themeta
document and not parsed from the body of the main text.

extractEmbedded Instructs the TikaEntityProcessor to extract embedded documents or attachments when tr
. If false, embedded documents and attachments will be ignored.ue

221Apache Solr Reference Guide 6.1

onError By default, the TikaEntityProcessor will stop processing documents if it finds one that
generates an error. If you define to "skip", the TikaEntityProcessor will insteadonError
skip documents that fail processing and log a message that the document was skipped.

The FileListEntityProcessor

This processor is basically a wrapper, and is designed to generate a set of files satisfying conditions specified in
the attributes which can then be passed to another processor, such as the . The entityXPathEntityProcessor
information for this processor would be nested within the FileListEnitity entry. It generates five implicit fields: fil

 which can be used in the nestedeAbsolutePath, fileDir, fileSize, fileLastModified, file,
processor. This processor does not use a data source.

The attributes specific to this processor are described in the table below:

Attribute Use

fileName Required. A regular expression pattern to identify files to be included.

basedir Required. The base directory (absolute path).

recursive Whether to search directories recursively. Default is 'false'.

excludes A regular expression pattern to identify files which will be excluded.

newerThan A date in the format or a date math expression ().yyyy-MM-ddHH:mm:ss NOW - 2YEARS

olderThan A date, using the same formats as newerThan.

rootEntity This should be set to false. This ensures that each row (filepath) emitted by this processor is
considered to be a document.

dataSource Must be set to null.

The example below shows the combination of the FileListEntityProcessor with another processor which will
generate a set of fields from each file found.

222Apache Solr Reference Guide 6.1

<dataConfig>
 <dataSource type="FileDataSource"/>
 <document>
 <!-- this outer processor generates a list of files satisfying the conditions
 specified in the attributes -->
 <entity name="f" processor="FileListEntityProcessor"
 fileName=".*xml"
 newerThan="'NOW-30DAYS'"
 recursive="true"
 rootEntity="false"
 dataSource="null"
 baseDir="/my/document/directory">

 <!-- this processor extracts content using Xpath from each file found -->

 <entity name="nested" processor="XPathEntityProcessor"
 forEach="/rootelement" url="${f.fileAbsolutePath}" >
 <field column="name" xpath="/rootelement/name"/>
 <field column="number" xpath="/rootelement/number"/>
 </entity>
 </entity>
 </document>
</dataConfig>

LineEntityProcessor

This EntityProcessor reads all content from the data source on a line by line basis and returns a field called rawL
 for each line read. The content is not parsed in any way; however, you may add transformers to manipulateine

the data within the field, or to create other additional fields.rawLine

The lines read can be filtered by two regular expressions specified with the and acceptLineRegex omitLineR
 attributes. The table below describes the LineEntityProcessor's attributes:egex

Attribute Description

url A required attribute that specifies the location of the input file in a way that is compatible
with the configured data source. If this value is relative and you are using FileDataSource
or URLDataSource, it assumed to be relative to baseLoc.

acceptLineRegex An optional attribute that if present discards any line which does not match the regExp.

omitLineRegex An optional attribute that is applied after any acceptLineRegex and that discards any line
which matches this regExp.

For example:

<entity name="jc"
 processor="LineEntityProcessor"
 acceptLineRegex="^.*\.xml$"
 omitLineRegex="/obsolete"
 url="file:///Volumes/ts/files.lis"
 rootEntity="false"
 dataSource="myURIreader1"
 transformer="RegexTransformer,DateFormatTransformer">
 ...

223Apache Solr Reference Guide 6.1

While there are use cases where you might need to create a Solr document for each line read from a file, it is
expected that in most cases that the lines read by this processor will consist of a pathname, which in turn will be
consumed by another EntityProcessor, such as XPathEntityProcessor.

PlainTextEntityProcessor

This EntityProcessor reads all content from the data source into an single implicit field called . TheplainText
content is not parsed in any way, however you may add transformers to manipulate the data within the plainTe

 as needed, or to create other additional fields.xt

For example:

<entity processor="PlainTextEntityProcessor" name="x" url="http://abc.com/a.txt"
dataSource="data-source-name">
 <!-- copies the text to a field called 'text' in Solr-->
 <field column="plainText" name="text"/>
</entity>

Ensure that the dataSource is of type (,).DataSource<Reader> FileDataSource URLDataSource

SolrEntityProcessor

Uses Solr instance as a datasource, see https://wiki.apache.org/solr/DataImportHandler#SolrEntityProcessor

Transformers

Transformers manipulate the fields in a document returned by an entity. A transformer can create new fields or
modify existing ones. You must tell the entity which transformers your import operation will be using, by adding
an attribute containing a comma separated list to the element.<entity>

<entity name="abcde" transformer="org.apache.solr....,my.own.transformer,..." />

Specific transformation rules are then added to the attributes of a element, as shown in the examples<field>
below. The transformers are applied in the order in which they are specified in the transformer attribute.

The Data Import Handler contains several built-in transformers. You can also write your own custom
transformers, as described in the Solr Wiki (see). Thehttp://wiki.apache.org/solr/DIHCustomTransformer
ScriptTransformer (described below) offers an alternative method for writing your own transformers.

Solr includes the following built-in transformers:

Transformer Name Use

ClobTransformer Used to create a String out of a Clob type in database.

DateFormatTransformer Parse date/time instances.

HTMLStripTransformer Strip HTML from a field.

LogTransformer Used to log data to log files or a console.

NumberFormatTransformer Uses the NumberFormat class in java to parse a string into a number.

RegexTransformer Use regular expressions to manipulate fields.

https://wiki.apache.org/solr/DataImportHandler#SolrEntityProcessor
http://wiki.apache.org/solr/DIHCustomTransformer

224Apache Solr Reference Guide 6.1

ScriptTransformer Write transformers in Javascript or any other scripting language supported by
Java.

TemplateTransformer Transform a field using a template.

These transformers are described below.

ClobTransformer

You can use the ClobTransformer to create a string out of a CLOB in a database. A CLOB is a character large
object: a collection of character data typically stored in a separate location that is referenced in the database.
See . Here's an example of invoking the ClobTransformer.http://en.wikipedia.org/wiki/Character_large_object

<entity name="e" transformer="ClobTransformer" ...>
 <field column="hugeTextField" clob="true" />
 ...
</entity>

The ClobTransformer accepts these attributes:

Attribute Description

clob Boolean value to signal if ClobTransformer should process this field or not. If this attribute is
omitted, then the corresponding field is not transformed.

sourceColName The source column to be used as input. If this is absent source and target are same

The DateFormatTransformer

This transformer converts dates from one format to another. This would be useful, for example, in a situation
where you wanted to convert a field with a fully specified date/time into a less precise date format, for use in
faceting.

DateFormatTransformer applies only on the fields with an attribute . Other fields are notdateTimeFormat
modified.

This transformer recognizes the following attributes:

Attribute Description

dateTimeFormat The format used for parsing this field. This must comply with the syntax of the Java
 class.SimpleDateFormat

sourceColName The column on which the dateFormat is to be applied. If this is absent source and target
are same.

locale The locale to use for date transformations. If not specified, the ROOT locale will be used. It
must be specified as language-country. For example, .en-US

Here is example code that returns the date rounded up to the month "2007-JUL":

<entity name="en" pk="id" transformer="DateFormatTransformer" ... >
 ...
 <field column="date" sourceColName="fulldate" dateTimeFormat="yyyy-MMM"/>
</entity>

http://en.wikipedia.org/wiki/Character_large_object
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html
http://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

225Apache Solr Reference Guide 6.1

The HTMLStripTransformer

You can use this transformer to strip HTML out of a field. For example:

<entity name="e" transformer="HTMLStripTransformer" ... >
 <field column="htmlText" stripHTML="true" />
 ...
</entity>

There is one attribute for this transformer, , which is a boolean value (true/false) to signal if thestripHTML
HTMLStripTransformer should process the field or not.

The LogTransformer

You can use this transformer to log data to the console or log files. For example:

<entity ...
 transformer="LogTransformer"
 logTemplate="The name is ${e.name}" logLevel="debug">

</entity>

Unlike other transformers, the LogTransformer does not apply to any field, so the attributes are applied on the
entity itself.

The NumberFormatTransformer

Use this transformer to parse a number from a string, converting it into the specified format, and optionally using
a different locale.

NumberFormatTransformer will be applied only to fields with an attribute .formatStyle

This transformer recognizes the following attributes:

Attribute Description

formatStyle The format used for parsing this field. The value of the attribute must be one of (number|p
). This uses the semantics of the Java NumberFormat class.ercent|integer|currency

sourceColName The column on which the NumberFormat is to be applied. This is attribute is absent. The
source column and the target column are the same.

locale The locale to be used for parsing the strings. If this is absent, the ROOT locale is used. It
must be specified as language-country. For example, .en-US

For example:

226Apache Solr Reference Guide 6.1

<entity name="en" pk="id" transformer="NumberFormatTransformer" ...>
 ...

 <!-- treat this field as UK pounds -->

 <field name="price_uk" column="price" formatStyle="currency" locale="en-UK"/>
</entity>

The RegexTransformer

The regex transformer helps in extracting or manipulating values from fields (from the source) using Regular
Expressions. The actual class name is . Butorg.apache.solr.handler.dataimport.RegexTransformer
as it belongs to the default package the package-name can be omitted.

The table below describes the attributes recognized by the regex transformer.

Attribute Description

regex The regular expression that is used to match against the column or sourceColName's
value(s). If replaceWith is absent, each regex is taken as a value and a list of valuesgroup
is returned.

sourceColName The column on which the regex is to be applied. If not present, then the source and target
are identical.

splitBy Used to split a string. It returns a list of values. note: this is a regular expression – it may
need to be escaped (e.g. via back-slashes)

groupNames A comma separated list of field column names, used where the regex contains groups and
each group is to be saved to a different field. If some groups are not to be named leave a
space between commas.

replaceWith Used along with regex . It is equivalent to the method new
.String(<sourceColVal>).replaceAll(<regex>, <replaceWith>)

Here is an example of configuring the regex transformer:

<entity name="foo" transformer="RegexTransformer"
 query="select full_name, emailids from foo">
 <field column="full_name"/>
 <field column="firstName" regex="Mr(\w*)\b.*" sourceColName="full_name"/>
 <field column="lastName" regex="Mr.*?\b(\w*)" sourceColName="full_name"/>

 <!-- another way of doing the same -->

 <field column="fullName" regex="Mr(\w*)\b(.*)" groupNames="firstName,lastName"/>
 <field column="mailId" splitBy="," sourceColName="emailids"/>
</entity>

In this example, regex and sourceColName are custom attributes used by the transformer. The transformer
reads the field from the resultset and transforms it to two new target fields, and full_name firstName lastNa

. Even though the query returned only one column, , in the result set, the Solr document gets twome full_name
extra fields and which are "derived" fields. These new fields are only created if thefirstName lastName
regexp matches.

227Apache Solr Reference Guide 6.1

The emailids field in the table can be a comma-separated value. It ends up producing one or more email IDs,
and we expect the to be a multivalued field in Solr.mailId

Note that this transformer can either be used to split a string into tokens based on a splitBy pattern, or to perform
a string substitution as per replaceWith, or it can assign groups within a pattern to a list of groupNames. It
decides what it is to do based upon the above attributes , and which aresplitBy replaceWith groupNames
looked for in order. This first one found is acted upon and other unrelated attributes are ignored.

The ScriptTransformer

The script transformer allows arbitrary transformer functions to be written in any scripting language supported by
Java, such as Javascript, JRuby, Jython, Groovy, or BeanShell. Javascript is integrated into Java 8; you'll need
to integrate other languages yourself.

Each function you write must accept a row variable (which corresponds to a , thusJava Map<String,Object>
permitting operations). Thus you can modify the value of an existing field or add new fields.get,put,remove
The return value of the function is the returned object.

The script is inserted into the DIH configuration file at the top level and is called once for each row.

Here is a simple example.

<dataconfig>

 <!-- simple script to generate a new row, converting a temperature from Fahrenheit
to Centigrade -->

 <script><![CDATA[
 function f2c(row) {
 var tempf, tempc;
 tempf = row.get('temp_f');
 if (tempf != null) {
 tempc = (tempf - 32.0)*5.0/9.0;
 row.put('temp_c', temp_c);
 }
 return row;
 }
]]>
 </script>
 <document>

 <!-- the function is specified as an entity attribute -->

 <entity name="e1" pk="id" transformer="script:f2c" query="select * from X">

 </entity>
 </document>
</dataConfig>

The TemplateTransformer

You can use the template transformer to construct or modify a field value, perhaps using the value of other fields.
You can insert extra text into the template.

228Apache Solr Reference Guide 6.1

<entity name="en" pk="id" transformer="TemplateTransformer" ...>
 ...
 <!-- generate a full address from fields containing the component parts -->
 <field column="full_address" template="${en.street},${en.city},${en.zip}" />
</entity>

Special Commands for the Data Import Handler

You can pass special commands to the DIH by adding any of the variables listed below to any row returned by
any component:

Variable Description

$skipDoc Skip the current document; that is, do not add it to Solr. The value can be the string tru
.e|false

$skipRow Skip the current row. The document will be added with rows from other entities. The
value can be the string true|false

$docBoost Boost the current document. The boost value can be a number or the convetoString
rsion of a number.

$deleteDocById Delete a document from Solr with this ID. The value has to be the value ofuniqueKey
the document.

$deleteDocByQuery Delete documents from Solr using this query. The value must be a Solr Query.

Updating Parts of Documents
Once you have indexed the content you need in your Solr index, you will want to start thinking about your
strategy for dealing with changes to those documents. Solr supports two approaches to updating documents that
have only partially changed.

The first is . This approach allows changing only one or more fields of a document without havingatomic updates
to re-index the entire document.

The second approach is known as or . It is a feature of many NoSQLoptimistic concurrency optimistic locking
databases, and allows conditional updating a document based on its version. This approach includes semantics
and rules for how to deal with version matches or mis-matches.

Atomic Updates and Optimistic Concurrency may be used as independent strategies for managing changes to
documents, or they may be combined: you can use optimistic concurrency to conditionally apply an atomic
update.

Atomic Updates

Solr supports several modifiers that atomically update values of a document. This allows updating only specific
fields, which can help speed indexing processes in an environment where speed of index additions is critical to
the application.

To use atomic updates, add a modifier to the field that needs to be updated. The content can be updated, added
to, or incrementally increased if a number.

229Apache Solr Reference Guide 6.1

Modifier Usage

set Set or replace the field value(s) with the specified value(s), or remove the values if 'null' or
empty list is specified as the new value.

May be specified as a single value, or as a list for multivalued fields

add Adds the specified values to a multivalued field.

May be specified as a single value, or as a list.

remove Removes (all occurrences of) the specified values from a multivalued field.

May be specified as a single value, or as a list.

removeregex Removes all occurrences of the specified regex from a multiValued field.

May be specified as a single value, or as a list.

inc Increments a numeric value by a specific amount.

Must be specified as a single numeric value.

For example, if the following document exists in our collection:

{"id":"mydoc",
 "price":10,
 "popularity":42,
 "categories":["kids"],
 "promo_ids":["a123x"],
 "tags":["free_to_try","buy_now","clearance","on_sale"]
}

And we apply the following update command:

{"id":"mydoc",
 "price":{"set":99},
 "popularity":{"inc":20},
 "categories":{"add":["toys","games"]},
 "promo_ids":{"remove":"a123x"},
 "tags":{"remove":["free_to_try","on_sale"]}
}

The resulting document in our collection will be:

The core functionality of atomically updating a document requires that all fields in your schema must be
configured as stored="true" except for fields which are <copyField/> destinations -- which must be
configured as stored="false". Atomic updates are applied to the document represented by the existing
stored field values. If <copyField/> destinations are configured as stored, then Solr will attempt to index
both the current value of the field as well as an additional copy from any source fields.

230Apache Solr Reference Guide 6.1

1.

2.
3.
4.

{"id":"mydoc",
 "price":99,
 "popularity":62,
 "categories":["kids","toys","games"],
 "tags":["buy_now","clearance"]
}

Optimistic Concurrency

Optimistic Concurrency is a feature of Solr that can be used by client applications which update/replace
documents to ensure that the document they are replacing/updating has not been concurrently modified by
another client application. This feature works by requiring a field on all documents in the index, and_version_
comparing that to a specified as part of the update command. By default, Solr's Schema includes a _version_

 field, and this field is automatically added to each new document._version_

In general, using optimistic concurrency involves the following work flow:

A client reads a document. In Solr, one might retrieve the document with the handler to be sure to/get
have the latest version.
A client changes the document locally.
The client resubmits the changed document to Solr, for example, perhaps with the handler./update
If there is a version conflict (HTTP error code 409), the client starts the process over.

When the client resubmits a changed document to Solr, the can be included with the update to_version_
invoke optimistic concurrency control. Specific semantics are used to define when the document should be
updated or when to report a conflict.

If the content in the field is greater than '1' (i.e., '12345'), then the in the_version_ _version_
document must match the in the index._version_
If the content in the field is equal to '1', then the document must simply exist. In this case, no_version_
version matching occurs, but if the document does not exist, the updates will be rejected.
If the content in the field is less than '0' (i.e., '-1'), then the document must exist. In this_version_ not
case, no version matching occurs, but if the document exists, the updates will be rejected.
If the content in the field is equal to '0', then it doesn't matter if the versions match or if the_version_
document exists or not. If it exists, it will be overwritten; if it does not exist, it will be added.

If the document being updated does not include the field, and atomic updates are not being used,_version_
the document will be treated by normal Solr rules, which is usually to discard the previous version.

When using Optimistic Concurrency, clients can include an optional request parameter toversions=true
indicate that the versions of the documents being added should be included in the response. This allowsnew
clients to immediately know what the is of every documented added with out needing to make a_version_
redundant . request/get

For example...

231Apache Solr Reference Guide 6.1

$ curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/techproducts/update?versions=true' --data-binary '
[{ "id" : "aaa" },
 { "id" : "bbb" }]'
{"responseHeader":{"status":0,"QTime":6},
 "adds":["aaa",1498562471222312960,
 "bbb",1498562471225458688]}
$ curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/techproducts/update?_version_=999999&versions=true'
--data-binary '
[{ "id" : "aaa",
 "foo_s" : "update attempt with wrong existing version" }]'
{"responseHeader":{"status":409,"QTime":3},
 "error":{"msg":"version conflict for aaa expected=999999
actual=1498562471222312960",
 "code":409}}
$ curl -X POST -H 'Content-Type: application/json'
'http://localhost:8983/solr/techproducts/update?_version_=1498562471222312960&versio
ns=true&commit=true' --data-binary '
[{ "id" : "aaa",
 "foo_s" : "update attempt with correct existing version" }]'
{"responseHeader":{"status":0,"QTime":5},
 "adds":["aaa",1498562624496861184]}
$ curl 'http://localhost:8983/solr/techproducts/query?q=*:*&fl=id,_version_'
{
 "responseHeader":{
 "status":0,
 "QTime":5,
 "params":{
 "fl":"id,_version_",
 "q":"*:*"}},
 "response":{"numFound":2,"start":0,"docs":[
 {
 "id":"bbb",
 "_version_":1498562471225458688},
 {
 "id":"aaa",
 "_version_":1498562624496861184}]
 }}

For more information, please also see from ApacheYonik Seeley's presentation on NoSQL features in Solr 4
Lucene EuroCon 2012.

Power Tip
The field is by default stored in the inverted index (). However, for some_version_ indexed="true"
systems with a very large number of documents, the increase in FieldCache memory requirements may
be too costly. A solution can be to declare the field as :_version_ DocValues

<field name="_version_" type="long" indexed="false" stored="true"
required="true" docValues="true"/>

Sample field definition

https://www.youtube.com/watch?v=WYVM6Wz-XTw

232Apache Solr Reference Guide 6.1

Document Centric Versioning Constraints

Optimistic Concurrency is extremely powerful, and works very efficiently because it uses an internally assigned,
globally unique values for the field. However, In some situations users may want to configure their_version_
own document specific version field, where the version values are assigned on a per-document basis by an
external system, and have Solr reject updates that attempt to replace a document with an "older" version. In
situations like this the can be useful.DocBasedVersionConstraintsProcessorFactory

The basic usage of is to configure it in DocBasedVersionConstraintsProcessorFactory solrconfig.x
 as part of the and specify the name of your custom in yourml UpdateRequestProcessorChain versionField

schema that should be checked when validating updates:

<processor class="solr.DocBasedVersionConstraintsProcessorFactory">
 <str name="versionField">my_version_l</str>
</processor>

Once configured, this update processor will reject (HTTP error code 409) any attempt to update an existing
document where the value of the field in the "new" document is not greater then the value ofmy_version_l
that field in the existing document.

DocBasedVersionConstraintsProcessorFactory supports two additional configuration params which are
optional:

ignoreOldUpdates - A boolean option which defaults to . If set to then instead of rejectingfalse true
updates where the is too low, the update will be silently ignored (and return a status 200versionField
to the client).
deleteVersionParam - A String parameter that can be specified to indicate that this processor should
also inspect Delete By Id commands. The value of this configuration option should be the name of a
request parameter that the processor will now consider mandatory for all attempts to Delete By Id, and
must be be used by clients to specify a value for the which is greater then the existingversionField
value of the document to be deleted. When using this request param, any Delete By Id command with a
high enough document version number to succeed will be internally converted into an Add Document
command that replaces the existing document with a new one which is empty except for the Unique Key
and to keeping a record of the deleted version so future Add Document commands willversionField
fail if their "new" version is not high enough.

Please consult the and for additional information and example usages.processor javadocs test configs

Detecting Languages During Indexing
Solr can identify languages and map text to language-specific fields during indexing using the UpdateRelangid
questProcessor. Solr supports two implementations of this feature:

Tika's language detection feature: http://tika.apache.org/0.10/detection.html
LangDetect language detection: http://code.google.com/p/language-detection/

You can see a comparison between the two implementations here: http://blog.mikemccandless.com/2011/10/acc

versionField vs _version_
The field used by Solr for its normal optimistic concurrency also has important semantics in_version_
how updates are distributed to replicas in SolrCloud, and be assigned internally by Solr. UsersMUST
can not re-purpose that field and specify it as the for use in the versionField DocBasedVersionCo

 configuration.nstraintsProcessorFactory

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
http://wiki.apache.org/solr/UpdateRequestProcessor
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
https://svn.apache.org/viewvc/lucene/dev/trunk/solr/core/src/test-files/solr/collection1/conf/solrconfig-externalversionconstraint.xml?view=markup
http://tika.apache.org/0.10/detection.html
http://code.google.com/p/language-detection/
http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html

233Apache Solr Reference Guide 6.1

. In general, the LangDetect implementation supports more languagesuracy-and-performance-of-googles.html
with higher performance.

For specific information on each of these language identification implementations, including a list of supported
languages for each, see the relevant project websites. For more information about the UpdateRequestPlangid
rocessor, see the Solr wiki: . For more information about languagehttp://wiki.apache.org/solr/LanguageDetection
analysis in Solr, see .Language Analysis

Configuring Language Detection

You can configure the UpdateRequestProcessor in . Both implementations take thelangid solrconfig.xml
same parameters, which are described in the following section. At a minimum, you must specify the fields for
language identification and a field for the resulting language code.

Configuring Tika Language Detection

Here is an example of a minimal Tika configuration in :langid solrconfig.xml

<processor
class="org.apache.solr.update.processor.TikaLanguageIdentifierUpdateProcessorFactory
">
 <lst name="defaults">
 <str name="langid.fl">title,subject,text,keywords</str>
 <str name="langid.langField">language_s</str>
 </lst>
</processor>

Configuring LangDetect Language Detection

Here is an example of a minimal LangDetect configuration in :langid solrconfig.xml

<processor
class="org.apache.solr.update.processor.LangDetectLanguageIdentifierUpdateProcessorF
actory">
 <lst name="defaults">
 <str name="langid.fl">title,subject,text,keywords</str>
 <str name="langid.langField">language_s</str>
 </lst>
</processor>

langid Parameters

As previously mentioned, both implementations of the UpdateRequestProcessor take the samelangid
parameters.

Parameter Type Default Required Description

langid Boolean true no Enables and disables language
detection.

langid.fl string none yes A comma- or space-delimited list of fields
to be processed by .langid

http://blog.mikemccandless.com/2011/10/accuracy-and-performance-of-googles.html
http://wiki.apache.org/solr/LanguageDetection

234Apache Solr Reference Guide 6.1

langid.langField string none yes Specifies the field for the returned
language code.

langid.langsField multivalued
string

none no Specifies the field for a list of returned
language codes. If you use langid.map

, each detected language.individual
will be added to this field.

langid.overwrite Boolean false no Specifies whether the content of the lan
 and fields will begField langsField

overwritten if they already contain
values.

langid.lcmap string none false A space-separated list specifying colon
delimited language code mappings to
apply to the detected languages. For
example, you might use this to map
Chinese, Japanese, and Korean to a
common code, and map bothcjk
American and British English to a single

 code by using en langid.lcmap=ja:c
jk zh:cjk ko:cjk en_GB:en

. This affects both the valuesen_US:en
put into the and langField langsFiel

 fields, as well as the field suffixes whend
using , unless overriddenlangid.map
by langid.map.lcmap

langid.threshold float 0.5 no Specifies a threshold value between 0
and 1 that the language identification
score must reach before acceptlangid
s it. With longer text fields, a high
threshold such at 0.8 will give good
results. For shorter text fields, you may
need to lower the threshold for language
identification, though you will be risking
somewhat lower quality results. We
recommend experimenting with your
data to tune your results.

langid.whitelist string none no Specifies a list of allowed language
identification codes. Use this in
combination with to ensurelangid.map
that you only index documents into fields
that are in your schema.

langid.map Boolean false no Enables field name mapping. If true, Solr
will map field names for all fields listed in

.langid.fl

langid.map.fl string none no A comma-separated list of fields for lan
 that is different than the fieldsgid.map

specified in .langid.fl

langid.map.keepOrig Boolean false no If true, Solr will copy the field during the
field name mapping process, leaving the
original field in place.

235Apache Solr Reference Guide 6.1

langid.map.individual Boolean false no If true, Solr will detect and map
languages for each field individually.

langid.map.individual.fl string none no A comma-separated list of fields for use
with that islangid.map.individual
different than the fields specified in lang

.id.fl

langid.fallbackFields string none no If no language is detected that meets the
 score, or if thelangid.threshold

detected language is not on the langid
, this field specifies.whitelist

language codes to be used as fallback
values. If no appropriate fallback
languages are found, Solr will use the
language code specified in langid.fal

.lback

langid.fallback string none no Specifies a language code to use if no
language is detected or specified in lan

.gid.fallbackFields

langid.map.lcmap string determined by
langid.lcmap

no A space-separated list specifying colon
delimited language code mappings to
use when mapping field names. For
example, you might use this to make
Chinese, Japanese, and Korean
language fields use a common su*_cjk
ffix, and map both American and British
English fields to a single by using *_en
langid.map.lcmap=ja:cjk zh:cjk

.ko:cjk en_GB:en en_US:en

langid.map.pattern Java
regular
expression

none no By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java regular
expression in this parameter.

langid.map.replace Java
replace

none no By default, fields are mapped as
<field>_<language>. To change this
pattern, you can specify a Java replace
in this parameter.

langid.enforceSchema Boolean true no If false, the processor does notlangid
validate field names against your
schema. This may be useful if you plan
to rename or delete fields later in the
UpdateChain.

De-Duplication
Preventing duplicate or near duplicate documents from entering an index or tagging documents with a
signature/fingerprint for duplicate field collapsing can be efficiently achieved with a low collision or fuzzy hash
algorithm. Solr natively supports de-duplication techniques of this type via the class and allows<Signature>
for the easy addition of new hash/signature implementations. A Signature can be implemented several ways:

236Apache Solr Reference Guide 6.1

Method Description

MD5Signature 128 bit hash used for exact duplicate detection.

Lookup3Signature 64 bit hash used for exact duplicate detection, much faster than MD5 and smaller to
index

TextProfileSignature Fuzzy hashing implementation from nutch for near duplicate detection. It's tunable but
works best on longer text.

Other, more sophisticated algorithms for fuzzy/near hashing can be added later.

Configuration Options

There are two places in Solr to configure de-duplication: in and in .solrconfig.xml schema.xml

In solrconfig.xml

The has to be registered in as part of an SignatureUpdateProcessorFactory solrconfig.xml Update
, as in this example:Request Processor Chain

<updateRequestProcessorChain name="dedupe">
 <processor class="solr.processor.SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <str name="signatureField">id</str>
 <bool name="overwriteDupes">false</bool>
 <str name="fields">name,features,cat</str>
 <str name="signatureClass">solr.processor.Lookup3Signature</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

The takes several properties:SignatureUpdateProcessorFactory

Parameter Default Description

signatureClass org. solr.apache.
processoupdate.

r.Lookup3Signat
ure

A Signature implementation for generating a signature hash. The
full classpath of the implementation must be specified. The available
options are described above, the associated classpaths to use are:

org. solr. processor.apache. update. Lookup3Signatu
re
org. solr. processor.apache. update. MD5Signature
org. solr. process.apache. update. TextProfileSigna
ture

Adding in the de-duplication process will change the setting so that it applies to an updateallowDups
Term (with in this case) rather than the unique field Term. Of course the signatureField signature

 could be the unique field, but generally you want the unique field to be unique. When a documentField
is added, a signature will automatically be generated and attached to the document in the specified sign

.atureField

http://wiki.apache.org/solr/TextProfileSignature

237Apache Solr Reference Guide 6.1

fields all fields The fields to use to generate the signature hash in a comma
separated list. By default, all fields on the document will be used.

signatureField signatureField The name of the field used to hold the fingerprint/signature. The
field should be defined in schema.xml.

enabled true Enable/disable de-duplication processing.

overwriteDupes true If true, when a document exists that already matches this signature,
it will be overwritten.

In schema.xml

If you are using a separate field for storing the signature you must have it indexed:

<field name="signatureField" type="string" stored="true" indexed="true"
multiValued="false" />

Be sure to change your update handlers to use the defined chain, as below:

<requestHandler name="/update" class="solr.UpdateRequestHandler" >
 <lst name="defaults">
 <str name="update.chain">dedupe</str>
 </lst>
...
</requestHandler>

(This example assumes you have other sections of your request handler defined.)

Content Streams
When Solr RequestHandlers are accessed using path based URLs, the object containingSolrQueryRequest
the parameters of the request may also contain a list of ContentStreams containing bulk data for the request.
(The name SolrQueryRequest is a bit misleading: it is involved in all requests, regardless of whether it is a query
request or an update request.)

Stream Sources

Currently RequestHandlers can get content streams in a variety of ways:

For multipart file uploads, each file is passed as a stream.
For POST requests where the content-type is not , the rawapplication/x-www-form-urlencoded
POST body is passed as a stream. The full POST body is parsed as parameters and included in the Solr
parameters.
The contents of parameter is passed as a stream.stream.body
If remote streaming is enabled and URL content is called for during request handling, the contents of each

 and parameters are fetched and passed as a stream.stream.url stream.file

By default, curl sends a header. If you need tocontentType="application/x-www-form-urlencoded"

The update processor can also be specified per request with a parameter of .update.chain=dedupe

238Apache Solr Reference Guide 6.1

1.

test a SolrContentHeader content stream, you will need to set the content type with the "-H" flag.

RemoteStreaming

Remote streaming lets you send the contents of a URL as a stream to a given SolrRequestHandler. You could
use remote streaming to send a remote or local file to an update plugin. For convenience, remote streaming is
enabled in most of the example files included with Solr, however it is not recommended in asolrconfig.xml
production situation with out additional security between you and untrusted remote clients.

<!-- *** WARNING ***
 The settings below authorize Solr to fetch remote files, You
 should make sure your system has some authentication before
 using enableRemoteStreaming="true"
 -->
 <requestParsers enableRemoteStreaming="true" />

The default behavior, when is not specified in is to allowenableRemoteStreaming solrconfig.xml not
remote streaming (i.e.,).enableRemoteStreaming="false"

Debugging Requests

The example files include a "dump" RequestHandler:solrconfig.xml

<requestHandler name="/debug/dump" class="solr.DumpRequestHandler" />

This handler simply outputs the contents of the SolrQueryRequest using the specified writer type . This is awt
useful tool to help understand what streams are available to the RequestHandlers.

UIMA Integration
You can integrate the Apache Unstructured Information Management Architecture () with Solr. UIMA letsUIMA
you define custom pipelines of Analysis Engines that incrementally add metadata to your documents as
annotations.

For more information about Solr UIMA integration, see .https://wiki.apache.org/solr/SolrUIMA

Configuring UIMA

The SolrUIMA UpdateRequestProcessor is a custom update request processor that takes documents being
indexed, sends them to a UIMA pipeline, and then returns the documents enriched with the specified metadata.
To configure UIMA for Solr, follow these steps:

Copy (under) and its libraries (under solr-uima-VERSION.jar /solr-VERSION/dist/ contrib/ui
) to a Solr libraries directory, or set tags in appropriately to point toma/lib <lib/> solrconfig.xml

those jar files:

If you is used, be aware that this allows to send a requestenableRemoteStreaming="true" anyone
to any URL or local file. If is enabled, it will allow anyone to view any file on yourDumpRequestHandler
system.

https://uima.apache.org/
https://wiki.apache.org/solr/SolrUIMA

239Apache Solr Reference Guide 6.1

1.

2.

3.

<lib dir="../../contrib/uima/lib" />
<lib dir="../../dist/" regex="solr-uima-\d.*\.jar" />

Modify , adding your desired metadata fields specifying proper values for type, indexed,schema.xml
stored, and multiValued options. For example:

<field name="language" type="string" indexed="true" stored="true"
required="false"/>
<field name="concept" type="string" indexed="true" stored="true"
multiValued="true" required="false"/>
<field name="sentence" type="text" indexed="true" stored="true"
multiValued="true" required="false" />

Add the following snippet to :solrconfig.xml

<updateRequestProcessorChain name="uima">
 <processor
class="org.apache.solr.uima.processor.UIMAUpdateRequestProcessorFactory">
 <lst name="uimaConfig">
 <lst name="runtimeParameters">
 <str name="keyword_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="concept_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="lang_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="cat_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="entities_apikey">VALID_ALCHEMYAPI_KEY</str>
 <str name="oc_licenseID">VALID_OPENCALAIS_KEY</str>
 </lst>
 <str
name="analysisEngine">/org/apache/uima/desc/OverridingParamsExtServicesAE.xml<
/str>
 <!-- Set to true if you want to continue indexing even if text
processing fails.
 Default is false. That is, Solr throws RuntimeException and
 never indexed documents entirely in your session. -->
 <bool name="ignoreErrors">true</bool>
 <!-- This is optional. It is used for logging when text processing
fails.
 If logField is not specified, uniqueKey will be used as logField.
 <str name="logField">id</str>
 -->
 <lst name="analyzeFields">
 <bool name="merge">false</bool>
 <arr name="fields">
 <str>text</str>
 </arr>
 </lst>
 <lst name="fieldMappings">
 <lst name="type">
 <str name="name">org.apache.uima.alchemy.ts.concept.ConceptFS</str>
 <lst name="mapping">
 <str name="feature">text</str>
 <str name="field">concept</str>
 </lst>
 </lst>
 <lst name="type">

240Apache Solr Reference Guide 6.1

3.

 <str
name="name">org.apache.uima.alchemy.ts.language.LanguageFS</str>
 <lst name="mapping">
 <str name="feature">language</str>
 <str name="field">language</str>
 </lst>
 </lst>
 <lst name="type">
 <str name="name">org.apache.uima.SentenceAnnotation</str>
 <lst name="mapping">
 <str name="feature">coveredText</str>
 <str name="field">sentence</str>
 </lst>
 </lst>
 </lst>
 </lst>
 </processor>

241Apache Solr Reference Guide 6.1

3.

4.

 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

In your replace the existing default UpdateRequestHandler or create a newsolrconfig.xml
UpdateRequestHandler:

<requestHandler name="/update" class="solr.XmlUpdateRequestHandler">
 <lst name="defaults">
 <str name="update.chain">uima</str>
 </lst>
</requestHandler>

Once you are done with the configuration your documents will be automatically enriched with the specified fields
when you index them.

VALID_ALCHEMYAPI_KEY is your AlchemyAPI Access Key. You need to register an AlchemyAPI
Access key to use AlchemyAPI services: . http://www.alchemyapi.com/api/register.html

 is your Calais Service Key. You need to register a Calais Service keyVALID_OPENCALAIS_KEY
to use the Calais services: . http://www.opencalais.com/apikey

 must contain an AE descriptor inside the specified path in the classpath. analysisEngine

 must contain the input fields that need to be analyzed by UIMA. If analyzeFields merge=true
then their content will be merged and analyzed only once.

Field mapping describes which features of which types should go in a field.

http://www.alchemyapi.com/api/register.html
http://www.opencalais.com/apikey

242Apache Solr Reference Guide 6.1

Searching
This section describes how Solr works with search requests. It covers the following topics:

Overview of Searching in Solr: An introduction to searching with Solr.
Velocity Search UI: A simple search UI using the VelocityResponseWriter.
Relevance: Conceptual information about understanding relevance in search results.
Query Syntax and Parsing: A brief conceptual overview of query syntax and parsing. It also contains
the following sub-sections:

Common Query Parameters: No matter the query parser, there are several parameters that are
common to all of them.
The Standard Query Parser: Detailed information about the standard Lucene query parser.
The DisMax Query Parser: Detailed information about Solr's DisMax query parser.
The Extended DisMax Query Parser: Detailed information about Solr's Extended DisMax
(eDisMax) Query Parser.
Function Queries: Detailed information about parameters for generating relevancy scores using
values from one or more numeric fields.
Local Parameters in Queries: How to add local arguments to queries.
Other Parsers: More parsers designed for use in specific situations.

Faceting: Detailed information about categorizing search results based on indexed terms.
Highlighting: Detailed information about Solr's highlighting utilities. Sub-sections cover the different
types of highlighters:

Standard Highlighter: Uses the most sophisticated and fine-grained query representation of the
three highlighters.
FastVector Highlighter: Optimized for term vector options on fields, and good for large
documents and multiple languages.
Postings Highlighter: Uses similar options as the FastVector highlighter, but is more compact
and efficient.

Spell Checking: Detailed information about Solr's spelling checker.
Query Re-Ranking: Detailed information about re-ranking top scoring documents from simple queries
using more complex scores.

Transforming Result Documents: Detailed information about using to addDocTransformers
computed information to individual documents
Suggester: Detailed information about Solr's powerful autosuggest component.
MoreLikeThis: Detailed information about Solr's similar results query component.
Pagination of Results: Detailed information about fetching paginated results for display in a UI, or for
fetching all documents matching a query.
Result Grouping: Detailed information about grouping results based on common field values.
Result Clustering: Detailed information about grouping search results based on cluster analysis
applied to text fields. A bit like "unsupervised" faceting.
Spatial Search: How to use Solr's spatial search capabilities.
The Terms Component: Detailed information about accessing indexed terms and the documents that
include them.
The Term Vector Component: How to get term information about specific documents.
The Stats Component: How to return information from numeric fields within a document set.
The Query Elevation Component: How to force documents to the top of the results for certain queries.
Response Writers: Detailed information about configuring and using Solr's response writers.
Near Real Time Searching: How to include documents in search results nearly immediately after they
are indexed.
RealTime Get: How to get the latest version of a document without opening a searcher.
Exporting Result Sets: Functionality to export large result sets out of Solr.
Streaming Expressions: A stream processing language for Solr, with a suite of functions to perform
many types of queries and parallel execution tasks.
Parallel SQL Interface: An interface for sending SQL statements to Solr, and using advanced parallel
query processing and relational algebra for complex data analysis.

243Apache Solr Reference Guide 6.1

Overview of Searching in Solr
Solr offers a rich, flexible set of features for search. To understand the extent of this flexibility, it's helpful to begin
with an overview of the steps and components involved in a Solr search.

When a user runs a search in Solr, the search query is processed by a . A request handler is arequest handler
Solr plug-in that defines the logic to be used when Solr processes a request. Solr supports a variety of request
handlers. Some are designed for processing search queries, while others manage tasks such as index
replication.

Search applications select a particular request handler by default. In addition, applications can be configured to
allow users to override the default selection in preference of a different request handler.

To process a search query, a request handler calls a , which interprets the terms and parametersquery parser
of a query. Different query parsers support different syntax. Solr's default query parser is known as the Standard

,or more commonly just the "lucene" query parser. Solr also includes the query parser, andQuery Parser DisMax
the (eDisMax) query parser. The query parser's syntax allows for greater precision inExtended DisMax standard
searches, but the DisMax query parser is much more tolerant of errors. The DisMax query parser is designed to
provide an experience similar to that of popular search engines such as Google, which rarely display syntax
errors to users. The Extended DisMax query parser is an improved version of DisMax that handles the full
Lucene query syntax while still tolerating syntax errors. It also includes several additional features.

In addition, there are that are accepted by all query parsers.common query parameters

Input to a query parser can include:

search strings---that is, to search for in the indexterms
parameters for fine-tuning the query by increasing the importance of particular strings or fields, by
applying Boolean logic among the search terms, or by excluding content from the search results
parameters for controlling the presentation of the query response, such as specifying the order in which
results are to be presented or limiting the response to particular fields of the search application's schema.

Search parameters may also specify a . As part of a search response, a filter query runs a queryfilter query
against the entire index and caches the results. Because Solr allocates a separate cache for filter queries, the
strategic use of filter queries can improve search performance. (Despite their similar names, query filters are not
related to analysis filters. Filter queries perform queries at search time against data already in the index, while
analysis filters, such as Tokenizers, parse content for indexing, following specified rules).

A search query can request that certain terms be highlighted in the search response; that is, the selected terms
will be displayed in colored boxes so that they "jump out" on the screen of search results. canHighlighting
make it easier to find relevant passages in long documents returned in a search. Solr supports multi-term
highlighting. Solr includes a rich set of search parameters for controlling how terms are highlighted.

Search responses can also be configured to include (document excerpts) featuring highlighted text.snippets
Popular search engines such as Google and Yahoo! return snippets in their search results: 3-4 lines of text
offering a description of a search result.

To help users zero in on the content they're looking for, Solr supports two special ways of grouping search
results to aid further exploration: faceting and clustering.

Faceting is the arrangement of search results into categories (which are based on indexed terms). Within each
category, Solr reports on the number of hits for relevant term, which is called a facet constraint. Faceting makes
it easy for users to explore search results on sites such as movie sites and product review sites, where there are
many categories and many items within a category.

The screen shot below shows an example of faceting from the CNET Web site , which was(CBS Interactive Inc.)
the first site to use Solr.

244Apache Solr Reference Guide 6.1

Faceting makes use of fields defined when the search applications were indexed. In the example above, these
fields include categories of information that are useful for describing digital cameras: manufacturer, resolution,
and zoom range.

Clustering groups search results by similarities discovered when a search is executed, rather than when content
is indexed. The results of clustering often lack the neat hierarchical organization found in faceted search results,
but clustering can be useful nonetheless. It can reveal unexpected commonalities among search results, and it
can help users rule out content that isn't pertinent to what they're really searching for.

Solr also supports a feature called , which enables users to submit new queries that focus onMoreLikeThis
particular terms returned in an earlier query. MoreLikeThis queries can make use of faceting or clustering to
provide additional aid to users.

A Solr component called a manages the final presentation of the query response. Solr includesresponse writer
a variety of response writers, including an and a .XML Response Writer JSON Response Writer

The diagram below summarizes some key elements of the search process.

https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-TheStandardXMLResponseWriter
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-JSONResponseWriter

245Apache Solr Reference Guide 6.1

Velocity Search UI
Solr includes a sample search UI based on the (also known as Solritas) thatVelocityResponseWriter
demonstrates several useful features, such as searching, faceting, highlighting, autocomplete, and geospatial
searching.

When using the config set, you can access the Velocity sample Search UIsample_techproducts_configs
here: http://localhost:8983/solr/techproducts/browse

The Velocity Search UI

For more information about the Velocity Response Writer, see the .Response Writer page

Relevance
Relevance is the degree to which a query response satisfies a user who is searching for information.

The relevance of a query response depends on the context in which the query was performed. A single search
application may be used in different contexts by users with different needs and expectations. For example, a
search engine of climate data might be used by a university researcher studying long-term climate trends, a
farmer interested in calculating the likely date of the last frost of spring, a civil engineer interested in rainfall
patterns and the frequency of floods, and a college student planning a vacation to a region and wondering what
to pack. Because the motivations of these users vary, the relevance of any particular response to a query will
vary as well.

How comprehensive should query responses be? Like relevance in general, the answer to this question depends
on the context of a search. The cost of finding a particular document in response to a query is high in somenot
contexts, such as a legal e-discovery search in response to a subpoena, and quite low in others, such as a
search for a cake recipe on a Web site with dozens or hundreds of cake recipes. When configuring Solr, you
should weigh comprehensiveness against other factors such as timeliness and ease-of-use.

The e-discovery and recipe examples demonstrate the importance of two concepts related to relevance:

Precision is the percentage of documents in the returned results that are relevant.
Recall is the percentage of relevant results returned out of all relevant results in the system. Obtaining
perfect recall is trivial: simply return every document in the collection for every query.

https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-VelocityResponseWriter
http://localhost:8983/solr/techproducts/browse
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-VelocityResponseWriter

246Apache Solr Reference Guide 6.1

Returning to the examples above, it's important for an e-discovery search application to have 100% recall
returning all the documents that are relevant to a subpoena. It's far less important that a recipe application offer
this degree of precision, however. In some cases, returning too many results in casual contexts could overwhelm
users. In some contexts, returning fewer results that have a higher likelihood of relevance may be the best
approach.

Using the concepts of precision and recall, it's possible to quantify relevance across users and queries for a
collection of documents. A perfect system would have 100% precision and 100% recall for every user and every
query. In other words, it would retrieve all the relevant documents and nothing else. In practical terms, when
talking about precision and recall in real systems, it is common to focus on precision and recall at a certain
number of results, the most common (and useful) being ten results.

Through faceting, query filters, and other search components, a Solr application can be configured with the
flexibility to help users fine-tune their searches in order to return the most relevant results for users. That is, Solr
can be configured to balance precision and recall to meet the needs of a particular user community.

The configuration of a Solr application should take into account:

the needs of the application's various users (which can include ease of use and speed of response, in
addition to strictly informational needs)
the categories that are meaningful to these users in their various contexts (e.g., dates, product categories,
or regions)
any inherent relevance of documents (e.g., it might make sense to ensure that an official product
description or FAQ is always returned near the top of the search results)
whether or not the age of documents matters significantly (in some contexts, the most recent documents
might always be the most important)

Keeping all these factors in mind, it's often helpful in the planning stages of a Solr deployment to sketch out the
types of responses you think the search application should return for sample queries. Once the application is up
and running, you can employ a series of testing methodologies, such as focus groups, in-house testing, teTREC
sts and A/B testing to fine tune the configuration of the application to best meet the needs of its users.

For more information about relevance, see Grant Ingersoll's tech article Debugging Search Application
 which is available on SearchHub.org.Relevance Issues

Query Syntax and Parsing
Solr supports several query parsers, offering search application designers great flexibility in controlling how
queries are parsed.

This section explains how to specify the query parser to be used. It also describes the syntax and features
supported by the main query parsers included with Solr and describes some other parsers that may be useful for
particular situations. There are some query parameters common to all Solr parsers; these are discussed in the
section .Common Query Parameters

The parsers discussed in this Guide are:

The Standard Query Parser
The DisMax Query Parser
The Extended DisMax Query Parser
Other Parsers

The query parser plugins are all subclasses of . If you have custom parsing needs, you may wantQParserPlugin
to extend that class to create your own query parser.

For more detailed information about the many query parsers available in Solr, see https://wiki.apache.org/solr/So
.lrQuerySyntax

Common Query Parameters

http://trec.nist.gov
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://searchhub.org/2009/09/02/debugging-search-application-relevance-issues/
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/QParserPlugin.html
https://wiki.apache.org/solr/SolrQuerySyntax
https://wiki.apache.org/solr/SolrQuerySyntax

247Apache Solr Reference Guide 6.1

The table below summarizes Solr's common query parameters, which are supported by the , ,Standard DisMax
and Request Handlers.eDisMax

Parameter Description

defType Selects the query parser to be used to process the query.

sort Sorts the response to a query in either ascending or descending order based on the
response's score or another specified characteristic.

start Specifies an offset (by default, 0) into the responses at which Solr should begin
displaying content.

rows Controls how many rows of responses are displayed at a time (default value: 10)

fq Applies a filter query to the search results.

fl Limits the information included in a query response to a specified list of fields. The
fields need to either be or stored="true" docValues="true"

debug Request additional debugging information in the response. Specifying the debug=t
 parameter returns just the timing information; specifying the iming debug=result

 parameter returns "explain" information for each of the documents returned;s
specifying the returns all of the debug information.debug=query parameter

explainOther Allows clients to specify a Lucene query to identify a set of documents. If non-blank,
the explain info of each document which matches this query, relative to the main
query (specified by the q parameter) will be returned along with the rest of the
debugging information.

timeAllowed Defines the time allowed for the query to be processed. If the time elapses before
the query response is complete, partial information may be returned.

segmentTerminateEarly Indicates that, if possible, Solr should stop collecting documents from each
individual (sorted) segment once it can determine that any subsequent documents
in that segment will not be candidates for the being returned. The default isrows
false.

omitHeader Excludes the header from the returned results, if set to true. The header contains
information about the request, such as the time the request took to complete. The
default is false.

wt Specifies the Response Writer to be used to format the query response.

logParamsList By default, Solr logs all parameters. Set this parameter to restrict which parameters
are logged. Valid entries are the parameters to be logged, separated by commas
(i.e.,). An empty list will log no parameters, sologParamsList=param1,param2
if logging all parameters is desired, do not define this additional parameter at all.

echoParams The response header can include parameters sent with the query request. This
parameter controls what is contained in that section of the response header. Valid
values are , , and . The default value is none all explicit explicit.

The following sections describe these parameters in detail.

The ParameterdefType

The defType parameter selects the query parser that Solr should use to process the main query parameter () inq

248Apache Solr Reference Guide 6.1

the request. For example:

defType=dismax

If no defType param is specified, then by default, the is used. (eg: The Standard Query Parser defType=lucen
)e

The Parametersort

The parameter arranges search results in either ascending () or descending () order. Thesort asc desc
parameter can be used with either numerical or alphabetical content. The directions can be entered in either all
lowercase or all uppercase letters (i.e., both or).asc ASC

Solr can sort query responses according to document scores or the value of any field with a single value that is
either indexed or uses (that is, any field whose attributes in the Schema include DocValues multiValued="fa

 and either or – if the field does not have DocValues enabled, thelse" docValues="true" indexed="true"
indexed terms are used to build them on the fly at runtime), provided that:

the field is non-tokenized (that is, the field has no analyzer and its contents have been parsed into tokens,
which would make the sorting inconsistent), or

the field uses an analyzer (such as the KeywordTokenizer) that produces only a single term.

If you want to be able to sort on a field whose contents you want to tokenize to facilitate searching, use a copyF
 in the the Schema to clone the field. Then search on the field and sort on its clone. directiveield

The table explains how Solr responds to various settings of the parameter.sort

Example Result

 If the sort parameter is omitted, sorting is performed as though the parameter were set to
score .desc

score desc Sorts in descending order from the highest score to the lowest score.

price asc Sorts in ascending order of the price field

inStock desc,
price asc

Sorts by the contents of the field in descending order, then within those results sortsinStock
in ascending order by the contents of the price field.

Regarding the sort parameter's arguments:

A sort ordering must include a field name (or as a pseudo field), followed by whitespace (escapedscore
as + or in URL strings), followed by a sort direction (or).%20 asc desc

Multiple sort orderings can be separated by a comma, using this syntax: sort=<field
name>+<direction>,<field name>+<direction>],...

When more than one sort criteria is provided, the second entry will only be used if the first entry
results in a tie. If there is a third entry, it will only be used if the first AND second entries are tied.
This pattern continues with further entries.

The Parameterstart

When specified, the parameter specifies an offset into a query's result set and instructs Solr to beginstart
displaying results from this offset.

The default value is "0". In other words, by default, Solr returns results without an offset, beginning where the
results themselves begin.

249Apache Solr Reference Guide 6.1

Setting the parameter to some other number, such as 3, causes Solr to skip over the preceding recordsstart
and start at the document identified by the offset.

You can use the parameter this way for paging. For example, if the parameter is set to 10, youstart rows
could display three successive pages of results by setting start to 0, then re-issuing the same query and setting
start to 10, then issuing the query again and setting start to 20.

The Parameterrows

You can use the rows parameter to paginate results from a query. The parameter specifies the maximum
number of documents from the complete result set that Solr should return to the client at one time.

The default value is 10. That is, by default, Solr returns 10 documents at a time in response to a query.

The (Filter Query) Parameterfq

The parameter defines a query that can be used to restrict the superset of documents that can be returned,fq
without influencing score. It can be very useful for speeding up complex queries, since the queries specified with

 are cached independently of the main query. When a later query uses the same filter, there's a cache hit, andfq
filter results are returned quickly from the cache.

When using the parameter, keep in mind the following:fq

The parameter can be specified multiple times in a query. Documents will only be included in the resultfq
if they are in the intersection of the document sets resulting from each instance of the parameter. In the
example below, only documents which have a popularity greater then 10 and have a section of 0 will
match.

fq=popularity:[10 TO *]&fq=section:0

Filter queries can involve complicated Boolean queries. The above example could also be written as a
single with two mandatory clauses like so:fq

fq=+popularity:[10 TO *] +section:0

The document sets from each filter query are cached independently. Thus, concerning the previous
examples: use a single containing two mandatory clauses if those clauses appear together often, andfq
use two separate parameters if they are relatively independent. (To learn about tuning cache sizes andfq
making sure a filter cache actually exists, see .)The Well-Configured Solr Instance

As with all parameters: special characters in an URL need to be properly escaped and encoded as hex
values. Online tools are available to help you with URL-encoding. For example: http://meyerweb.com/eric/t

.ools/dencoder/

The (Field List) Parameterfl

The parameter limits the information included in a query response to a specified list of fields. The fields needfl
to either be or stored="true" docValues="true".

The field list can be specified as a space-separated or comma-separated list of field names. The string "score"
can be used to indicate that the score of each document for the particular query should be returned as a field.
The wildcard character " " selects all the fields in the document which are either or * stored="true" docValu

 and (which is the default when docValues are enabled). Youes="true" useDocValuesAsStored="true"
can also add psuedo-fields, functions and transformers to the field list request.

http://meyerweb.com/eric/tools/dencoder/
http://meyerweb.com/eric/tools/dencoder/

250Apache Solr Reference Guide 6.1

This table shows some basic examples of how to use :fl

Field List Result

id name price Return only the id, name, and price fields.

id,name,price Return only the id, name, and price fields.

id name, price Return only the id, name, and price fields.

id score Return the id field and the score.

* Return all the fields in each document, as well as any fields that have stored docValues
. This is the default value of the fl parameter.useDocValuesAsStored="true"

* score Return all the fields in each document, along with each field's score.

*,dv_field_name Return all the fields in each document, and any fields that have stored docValues useD
" and the docValues from dv_field_name even if it has ocValuesAsStored="true useDo
"cValuesAsStored="false

Function Values

Functions can be computed for each document in the result and returned as a psuedo-field:

fl=id,title,product(price,popularity)

Document Transformers

Document Transformers can be used to modify the information returned about each documents in the results of
a query:

fl=id,title,[explain]

Field Name Aliases

You can change the key used to in the response for a field, function, or transformer by prefixing it with a "displ
". For example::ayName

fl=id,sales_price:price,secret_sauce:prod(price,popularity),why_score:[explain
style=nl]

"response":{"numFound":2,"start":0,"docs":[
 {
 "id":"6H500F0",
 "secret_sauce":2100.0,
 "sales_price":350.0,
 "why_score":{
 "match":true,
 "value":1.052226,
 "description":"weight(features:cache in 2) [DefaultSimilarity], result
of:",
 "details":[{
...

251Apache Solr Reference Guide 6.1

The Parameterdebug

The parameter can be specified multiple times and supports the following arguments:debug

debug=query: return debug information about the query only.
debug=timing: return debug information about how long the query took to process.
debug=results: return debug information about the score results (also known as "explain").

By default, score explanations are returned as large string values, using newlines and tab indenting
for structure & readability, but an additional parameter maydebug.explain.structured=true
be specified to return this information as nested data structures native to the response format
requested by .wt

debug=all: return all available debug information about the request request. (alternatively usage: debug
)=true

For backwards compatibility with older versions of Solr, may instead be specified as andebugQuery=true
alternative way to indicate debug=all

The default behavior is not to include debugging information.

The ParameterexplainOther

The parameter specifies a Lucene query in order to identify a set of documents. If thisexplainOther
parameter is included and is set to a non-blank value, the query will return debugging information, along with the
"explain info" of each document that matches the Lucene query, relative to the main query (which is specified by
the q parameter). For example:

q=supervillians&debugQuery=on&explainOther=id:juggernaut

The query above allows you to examine the scoring explain info of the top matching documents, compare it to
the explain info for documents matching , and determine why the rankings are not as youid:juggernaut
expect.

The default value of this parameter is blank, which causes no extra "explain info" to be returned.

The ParametertimeAllowed

This parameter specifies the amount of time, in milliseconds, allowed for a search to complete. If this time
expires before the search is complete, any partial results will be returned, but values such as , cnumFound Facet
ounts, and result may not be accurate for the entire result set.Stats

The ParametersegmentTerminateEarly

This parameter may be set to either true or false.

If set to true, and if for this collection is a whicthe <mergePolicyFactory/> SortingMergePolicyFactory
h uses a option which is compatible with specified for this query, then Solr will attemptsort the parametersort
to use an .EarlyTerminatingSortingCollector

If early termination is used, a header will be included in the .segmentTerminatedEarly responseHeader

Similar to using , when early segment termination happens values such as the ParametertimeAllowed numFo
, counts, and result may not be accurate for the entire result set.und Facet Stats

The default value of this parameter is false.

https://cwiki.apache.org/confluence/display/solr/IndexConfig+in+SolrConfig#IndexConfiginSolrConfig-mergePolicyFactory
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/index/SortingMergePolicyFactory.html
http://lucene.apache.org/core/6_1_0/misc/org/apache/lucene/search/EarlyTerminatingSortingCollector.html

252Apache Solr Reference Guide 6.1

The ParameteromitHeader

This parameter may be set to either true or false.

If set to true, this parameter excludes the header from the returned results. The header contains information
about the request, such as the time it took to complete. The default value for this parameter is false.

The Parameterwt

The parameter selects the Response Writer that Solr should use to format the query's response. For detailedwt
descriptions of Response Writers, see .Response Writers

The Parametercache=false

Solr caches the results of all queries and filter queries by default. To disable result caching, set the cache=fals
 parameter.e

You can also use the option to control the order in which non-cached filter queries are evaluated. Thiscost
allows you to order less expensive non-cached filters before expensive non-cached filters.

For very high cost filters, if and and the query implements the interfaccache=false cost>=100 PostFilter
e, a Collector will be requested from that query and used to filter documents after they have matched the main
query and all other filter queries. There can be multiple post filters; they are also ordered by cost.

For example:

// normal function range query used as a filter, all matching documents
// generated up front and cached
fq={!frange l=10 u=100}mul(popularity,price)

// function range query run in parallel with the main query like a traditional
// lucene filter
fq={!frange l=10 u=100 cache=false}mul(popularity,price)

// function range query checked after each document that already matches the query
// and all other filters. Good for really expensive function queries.
fq={!frange l=10 u=100 cache=false cost=100}mul(popularity,price)

The ParameterlogParamsList

By default, Solr logs all parameters of requests. From version 4.7, set this parameter to restrict which parameters
of a request are logged. This may help control logging to only those parameters considered important to your
organization.

For example, you could define this like:

logParamsList=q,fq

And only the 'q' and 'fq' parameters will be logged.

If no parameters should be logged, you can send as empty (i.e.,).logParamsList logParamsList=

This parameter does not only apply to query requests, but to any kind of request to Solr.

253Apache Solr Reference Guide 6.1

The ParameterechoParams

The parameter controls what information about request parameters is included in the responseechoParams
header.

The table explains how Solr responds to various settings of the parameter:echoParams

Value Meaning

explicit This is the default value. Only parameters included in the actual request, plus the parameter_
(which is a 64-bit numeric timestamp) will be added to the params section of the response header.

all Include all request parameters that contributed to the query. This will include everything defined in
the request handler definition found in as well as parameters included with thesolrconfig.xml
request, plus the parameter. If a parameter is included in the request handler definition AND the_
request, it will appear multiple times in the response header.

none Entirely removes the "params" section of the response header. No information about the request
parameters will be available in the response.

Here is an example of a JSON response where the echoParams parameter was not included, so the default of e
 is active. The request URL that created this response included three parameters - , , and :xplicit q wt indent

{
 "responseHeader": {
 "status": 0,
 "QTime": 0,
 "params": {
 "q": "solr",
 "indent": "true",
 "wt": "json",
 "_": "1458227751857"
 }
 },
 "response": {
 "numFound": 0,
 "start": 0,
 "docs": []
 }
}

This is what happens if a similar request is sent that adds to the three parameters used in theechoParams=all
previous example:

254Apache Solr Reference Guide 6.1

{
 "responseHeader": {
 "status": 0,
 "QTime": 0,
 "params": {
 "q": "solr",
 "df": "text",
 "preferLocalShards": "false",
 "indent": "true",
 "echoParams": "all",
 "rows": "10",
 "wt": "json",
 "_": "1458228887287"
 }
 },
 "response": {
 "numFound": 0,
 "start": 0,
 "docs": []
 }
}

The Standard Query Parser
Solr's default Query Parser is also known as the " " parser.lucene

The key advantage of the standard query parser is that it supports a robust and fairly intuitive syntax allowing
you to create a variety of structured queries. The largest disadvantage is that it's very intolerant of syntax errors,
as compared with something like the query parser which is designed to throw as few errors as possible.DisMax

Topics covered in this section:
Standard Query Parser Parameters
The Standard Query Parser's Response
Specifying Terms for the Standard Query Parser
Specifying Fields in a Query to the Standard Query Parser
Boolean Operators Supported by the Standard Query Parser
Grouping Terms to Form Sub-Queries
Comments
Differences between Lucene Query Parser and the Solr Standard Query Parser
Related Topics

Standard Query Parser Parameters

In addition to the , , , and Common Query Parameters Faceting Parameters Highlighting Parameters MoreLikeThis
, the standard query parser supports the parameters described in the table below.Parameters

Parameter Description

q Defines a query using standard query syntax. This parameter is mandatory.

q.op Specifies the default operator for query expressions, overriding the default operator specified in
the Schema. Possible values are "AND" or "OR".

df Specifies a default field, overriding the definition of a default field in the Schema.

Default parameter values are specified in , or overridden by query-time values in the request.solrconfig.xml

255Apache Solr Reference Guide 6.1

The Standard Query Parser's Response

By default, the response from the standard query parser contains one block, which is unnamed. If the<result>
 is used, then an additional block will be returned, using the name "debug". This will parameterdebug <lst>

contain useful debugging info, including the original query string, the parsed query string, and explain info for
each document in the <result> block. If the is also used, then additional explain info parameterexplainOther
will be provided for all the documents matching that query.

Sample Responses

This section presents examples of responses from the standard query parser.

The URL below submits a simple query and requests the XML Response Writer to use indentation to make the
XML response more readable.

http://localhost:8983/solr/techproducts/select?q=id:SP2514N

Results:

<?xml version="1.0" encoding="UTF-8"?>
<response>
<responseHeader><status>0</status><QTime>1</QTime></responseHeader>
<result numFound="1" start="0">
 <doc>
 <arr name="cat"><str>electronics</str><str>hard drive</str></arr>
 <arr name="features"><str>7200RPM, 8MB cache, IDE Ultra ATA-133</str>
 <str>NoiseGuard, SilentSeek technology, Fluid Dynamic Bearing (FDB)
motor</str></arr>
 <str name="id">SP2514N</str>
 <bool name="inStock">true</bool>
 <str name="manu">Samsung Electronics Co. Ltd.</str>
 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
 <int name="popularity">6</int>
 <float name="price">92.0</float>
 <str name="sku">SP2514N</str>
 </doc>
</result>
</response>

Here's an example of a query with a limited field list.

http://localhost:8983/solr/techproducts/select?q=id:SP2514N&fl=id+name

Results:

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThedebugParameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-TheexplainOtherParameter

256Apache Solr Reference Guide 6.1

<?xml version="1.0" encoding="UTF-8"?>
<response>
<responseHeader><status>0</status><QTime>2</QTime></responseHeader>
<result numFound="1" start="0">
 <doc>
 <str name="id">SP2514N</str>
 <str name="name">Samsung SpinPoint P120 SP2514N - hard drive - 250 GB -
ATA-133</str>
 </doc>
</result>
</response>

Specifying Terms for the Standard Query Parser

A query to the standard query parser is broken up into terms and operators. There are two types of terms: single
terms and phrases.

A single term is a single word such as "test" or "hello"
A phrase is a group of words surrounded by double quotes such as "hello dolly"

Multiple terms can be combined together with Boolean operators to form more complex queries (as described
below).

Term Modifiers

Solr supports a variety of term modifiers that add flexibility or precision, as needed, to searches. These modifiers
include wildcard characters, characters for making a search "fuzzy" or more general, and so on. The sections
below describe these modifiers in detail.

Wildcard Searches

Solr's standard query parser supports single and multiple character wildcard searches within single terms.
Wildcard characters can be applied to single terms, but not to search phrases.

Wildcard Search Type Special
Character

Example

Single character (matches a single
character)

? The search string would match both testte?t
and text.

It is important that the analyzer used for queries parses terms and phrases in a way that is consistent
with the way the analyzer used for indexing parses terms and phrases; otherwise, searches may
produce unexpected results.

257Apache Solr Reference Guide 6.1

Multiple characters (matches zero or more
sequential characters)

* The wildcard search:

 tes*

would match test, testing, and tester.

You can also use wildcard characters in the
middle of a term. For example:

 te*t

would match test and text.

 *est

would match pest and test.

Fuzzy Searches

Solr's standard query parser supports fuzzy searches based on the Damerau-Levenshtein Distance or Edit
Distance algorithm. Fuzzy searches discover terms that are similar to a specified term without necessarily being
an exact match. To perform a fuzzy search, use the tilde ~ symbol at the end of a single-word term. For example,
to search for a term similar in spelling to "roam," use the fuzzy search:

roam~

This search will match terms like roams, foam, & foams. It will also match the word "roam" itself.

An optional distance parameter specifies the maximum number of edits allowed, between 0 and 2, defaulting to
2. For example:

roam~1

This will match terms like roams & foam - but not foams since it has an edit distance of "2".

Proximity Searches

A proximity search looks for terms that are within a specific distance from one another.

To perform a proximity search, add the tilde character ~ and a numeric value to the end of a search phrase. For
example, to search for a "apache" and "jakarta" within 10 words of each other in a document, use the search:

"jakarta apache"~10

The distance referred to here is the number of term movements needed to match the specified phrase. In the
example above, if "apache" and "jakarta" were 10 spaces apart in a field, but "apache" appeared before "jakarta",
more than 10 term movements would be required to move the terms together and position "apache" to the right
of "jakarta" with a space in between.

Range Searches

A range search specifies a range of values for a field (a range with an upper bound and a lower bound). The
query matches documents whose values for the specified field or fields fall within the range. Range queries can
be inclusive or exclusive of the upper and lower bounds. Sorting is done lexicographically, except on numeric
fields. For example, the range query below matches all documents whose field has a value betweenmod_date
20020101 and 20030101, inclusive.

In many cases, stemming (reducing terms to a common stem) can produce similar effects to fuzzy
searches and wildcard searches.

258Apache Solr Reference Guide 6.1

mod_date:[20020101 TO 20030101]

Range queries are not limited to date fields or even numerical fields. You could also use range queries with
non-date fields:

title:{Aida TO Carmen}

This will find all documents whose titles are between Aida and Carmen, but not including Aida and Carmen.

The brackets around a query determine its inclusiveness.

Square brackets [] denote an inclusive range query that matches values including the upper and lower
bound.
Curly brackets { } denote an exclusive range query that matches values between the upper and lower
bounds, but excluding the upper and lower bounds themselves.
You can mix these types so one end of the range is inclusive and the other is exclusive. Here's an
example: count:{1 TO 10]

Boosting a Term with ^

Lucene/Solr provides the relevance level of matching documents based on the terms found. To boost a term use
the caret symbol with a boost factor (a number) at the end of the term you are searching. The higher the boost^
factor, the more relevant the term will be.

Boosting allows you to control the relevance of a document by boosting its term. For example, if you are
searching for

"jakarta apache" and you want the term "jakarta" to be more relevant, you can boost it by adding the ^ symbol
along with the boost factor immediately after the term. For example, you could type:

jakarta^4 apache

This will make documents with the term jakarta appear more relevant. You can also boost Phrase Terms as in
the example:

"jakarta apache"^4 "Apache Lucene"

By default, the boost factor is 1. Although the boost factor must be positive, it can be less than 1 (for example, it
could be 0.2).

Constant Score with ^=

Constant score queries are created with , which sets the entire clause to the<query_clause>^=<score>
specified score for any documents matching that clause. This is desirable when you only care about matches for
a particular clause and don't want other relevancy factors such as term frequency (the number of times the term
appears in the field) or inverse document frequency (a measure across the whole index for how rare a term is in
a field).

Example:

(description:blue OR color:blue)^=1.0 text:shoes

Specifying Fields in a Query to the Standard Query Parser

Data indexed in Solr is organized in fields, which are . Searches can take advantagedefined in the Solr Schema
of fields to add precision to queries. For example, you can search for a term only in a specific field, such as a title
field.

The Schema defines one field as a default field. If you do not specify a field in a query, Solr searches only the
default field. Alternatively, you can specify a different field or a combination of fields in a query.

To specify a field, type the field name followed by a colon ":" and then the term you are searching for within the

259Apache Solr Reference Guide 6.1

field.

For example, suppose an index contains two fields, title and text,and that text is the default field. If you want to
find a document called "The Right Way" which contains the text "don't go this way," you could include either of
the following terms in your search query:

title:"The Right Way" AND text:go

title:"Do it right" AND go

Since text is the default field, the field indicator is not required; hence the second query above omits it.

The field is only valid for the term that it directly precedes, so the query will find only "Do"title:Do it right
in the title field. It will find "it" and "right" in the default field (in this case the text field).

Boolean Operators Supported by the Standard Query Parser

Boolean operators allow you to apply Boolean logic to queries, requiring the presence or absence of specific
terms or conditions in fields in order to match documents. The table below summarizes the Boolean operators
supported by the standard query parser.

Boolean
Operator

Alternative
Symbol

Description

AND && Requires both terms on either side of the Boolean operator to be present for a
match.

NOT ! Requires that the following term not be present.

OR || Requires that either term (or both terms) be present for a match.

 + Requires that the following term be present.

 - Prohibits the following term (that is, matches on fields or documents that do not
include that term). The operator is functionally similar to the Boolean operator .- !
Because it's used by popular search engines such as Google, it may be more
familiar to some user communities.

Boolean operators allow terms to be combined through logic operators. Lucene supports AND, " ", OR, NOT and+
" " as Boolean operators.-

The OR operator is the default conjunction operator. This means that if there is no Boolean operator between
two terms, the OR operator is used. The OR operator links two terms and finds a matching document if either of
the terms exist in a document. This is equivalent to a union using sets. The symbol || can be used in place of the
word OR.

To search for documents that contain either "jakarta apache" or just "jakarta," use the query:

"jakarta apache" jakarta

or

When specifying Boolean operators with keywords such as AND or NOT, the keywords must appear in
all uppercase.

The standard query parser supports all the Boolean operators listed in the table above. The DisMax
query parser supports only and .+ -

260Apache Solr Reference Guide 6.1

"jakarta apache" OR jakarta

The Boolean Operator +

The symbol (also known as the "required" operator) requires that the term after the symbol exist somewhere+ +
in a field in at least one document in order for the query to return a match.

For example, to search for documents that must contain "jakarta" and that may or may not contain "lucene," use
the following query:

+jakarta lucene

The Boolean Operator AND ()&&

The AND operator matches documents where both terms exist anywhere in the text of a single document. This is
equivalent to an intersection using sets. The symbol can be used in place of the word AND.&&

To search for documents that contain "jakarta apache" and "Apache Lucene," use either of the following queries:

"jakarta apache" AND "Apache Lucene"

"jakarta apache" && "Apache Lucene"

The Boolean Operator NOT ()!

The NOT operator excludes documents that contain the term after NOT. This is equivalent to a difference using
sets. The symbol can be used in place of the word NOT.!

The following queries search for documents that contain the phrase "jakarta apache" but do not contain the
phrase "Apache Lucene":

"jakarta apache" NOT "Apache Lucene"

"jakarta apache" ! "Apache Lucene"

The Boolean Operator -

The symbol or "prohibit" operator excludes documents that contain the term after the symbol.- -

For example, to search for documents that contain "jakarta apache" but not "Apache Lucene," use the following
query:

"jakarta apache" -"Apache Lucene"

Escaping Special Characters

Solr gives the following characters special meaning when they appear in a query:

+ - && || ! () { } [] ^ " ~ * ? : /

To make Solr interpret any of these characters literally, rather as a special character, precede the character with
a backslash character \. For example, to search for (1+1):2 without having Solr interpret the plus sign and
parentheses as special characters for formulating a sub-query with two terms, escape the characters by
preceding each one with a backslash:

\(1\+1\)\:2

This operator is supported by both the standard query parser and the DisMax query parser.

261Apache Solr Reference Guide 6.1

Grouping Terms to Form Sub-Queries

Lucene/Solr supports using parentheses to group clauses to form sub-queries. This can be very useful if you
want to control the Boolean logic for a query.

The query below searches for either "jakarta" or "apache" and "website":

(jakarta OR apache) AND website

This adds precision to the query, requiring that the term "website" exist, along with either term "jakarta" and
"apache."

Grouping Clauses within a Field

To apply two or more Boolean operators to a single field in a search, group the Boolean clauses within
parentheses. For example, the query below searches for a title field that contains both the word "return" and the
phrase "pink panther":

title:(+return +"pink panther")

Comments

C-Style comments are supported in query strings.

Example:

"jakarta apache" /* this is a comment in the middle of a normal query string */ OR
jakarta

Comments may be nested.

Differences between Lucene Query Parser and the Solr Standard Query Parser

Solr's standard query parser differs from the Lucene Query Parser in the following ways:

A * may be used for either or both endpoints to specify an open-ended range query
field:[* TO 100] finds all field values less than or equal to 100
field:[100 TO *] finds all field values greater than or equal to 100
field:[* TO *] matches all documents with the field

Pure negative queries (all clauses prohibited) are allowed (only as a top-level clause)
-inStock:false finds all field values where inStock is not false
-field:[* TO *] finds all documents without a value for field

A hook into FunctionQuery syntax. You'll need to use quotes to encapsulate the function if it includes
parentheses, as shown in the second example below:

val:myfield
val:"recip(rord(myfield),1,2,3)"

Support for using any type of query parser as a nested clause.
inStock:true OR {!dismax qf='name manu' v='ipod'}

Support for a special syntax to indicate that some query clauses should be cached in thefilter(...)
filter cache (as a constant score boolean query). This allows sub-queries to be cached and re-used in
other queries.
For example will be cached and re-used in all three of the queries below:inStock:true

q=features:songs OR filter(inStock:true)
q=+manu:Apple +filter(inStock:true)
q=+manu:Apple & fq=inStock:true

This can even be used to cache individual clauses of complex filter queries. In the first query below, 3
items will be added to the filter cache (the top level and both clauses) and in thefq filter(...)
second query, there will be 2 cache hits, and one new cache insertion (for the new top level):fq

262Apache Solr Reference Guide 6.1

q=features:songs & fq=+filter(inStock:true) +filter(price:[* TO 100])
q=manu:Apple & fq=-filter(inStock:true) -filter(price:[* TO 100])

Range queries ("[a TO z]"), prefix queries ("a*"), and wildcard queries ("a*b") are constant-scoring (all
matching documents get an equal score). The scoring factors TF, IDF, index boost, and "coord" are not
used. There is no limitation on the number of terms that match (as there was in past versions of Lucene).

Specifying Dates and Times

Queries against fields using the type (typically range queries) should use the TrieDateField appropriate date
:syntax

timestamp:[* TO NOW]
createdate:[1976-03-06T23:59:59.999Z TO *]
createdate:[1995-12-31T23:59:59.999Z TO 2007-03-06T00:00:00Z]
pubdate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]
createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23:59:59.999Z+1YEAR]
createdate:[1976-03-06T23:59:59.999Z/YEAR TO 1976-03-06T23:59:59.999Z]

Related Topics

Local Parameters in Queries
Other Parsers

The DisMax Query Parser

The DisMax query parser is designed to process simple phrases (without complex syntax) entered by users and
to search for individual terms across several fields using different weighting (boosts) based on the significance of
each field. Additional options enable users to influence the score based on rules specific to each use case
(independent of user input).

In general, the DisMax query parser's interface is more like that of Google than the interface of the 'standard' Solr
request handler. This similarity makes DisMax the appropriate query parser for many consumer applications. It
accepts a simple syntax, and it rarely produces error messages.

The DisMax query parser supports an extremely simplified subset of the Lucene QueryParser syntax. As in
Lucene, quotes can be used to group phrases, and +/- can be used to denote mandatory and optional clauses.
All other Lucene query parser special characters (except AND and OR) are escaped to simplify the user
experience. The DisMax query parser takes responsibility for building a good query from the user's input using
Boolean clauses containing DisMax queries across fields and boosts specified by the user. It also lets the Solr
administrator provide additional boosting queries, boosting functions, and filtering queries to artificially affect the
outcome of all searches. These options can all be specified as default parameters for the handler in the solrco

 file or overridden in the Solr query URL.nfig.xml

Interested in the technical concept behind the DisMax name? DisMax stands for Maximum Disjunction. Here's a
definition of a Maximum Disjunction or "DisMax" query:

A query that generates the union of documents produced by its subqueries, and that scores each
document with the maximum score for that document as produced by any subquery, plus a tie
breaking increment for any additional matching subqueries.

Whether or not you remember this explanation, do remember that the DisMax request handler was primarily
designed to be easy to use and to accept almost any input without returning an error.

DisMax Parameters

In addition to the common request parameter, highlighting parameters, and simple facet parameters, the DisMax

263Apache Solr Reference Guide 6.1

query parser supports the parameters described below. Like the standard query parser, the DisMax query parser
allows default parameter values to be specified in , or overridden by query-time values in thesolrconfig.xml
request.

Parameter Description

q Defines the raw input strings for the query.

q.alt Calls the standard query parser and defines query input strings, when the q parameter is not
used.

qf Query Fields: specifies the fields in the index on which to perform the query. If absent, defaults to
.df

mm Minimum "Should" Match: specifies a minimum number of clauses that must match in a query. If
no 'mm' parameter is specified in the query, or as a default in , the effectivesolrconfig.xml
value of the parameter (either in the query, as a default in , or from the q.op solrconfig.xml

 option in the Schema) is used to influence the behavior. If isdefaultOperator q.op
effectively AND'ed, then mm=100%; if is OR'ed, then mm=1. Users who want to force theq.op
legacy behavior should set a default value for the 'mm' parameter in their file.solrconfig.xml
Users should add this as a configured default for their request handlers. This parameter tolerates
miscellaneous white spaces in expressions (e.g., " 3 < -25% 10 < -3\n", " \n-25%\n

).", " \n3\n "

pf Phrase Fields: boosts the score of documents in cases where all of the terms in the q parameter
appear in close proximity.

ps Phrase Slop: specifies the number of positions two terms can be apart in order to match the
specified phrase.

qs Query Phrase Slop: specifies the number of positions two terms can be apart in order to match
the specified phrase. Used specifically with the parameter.qf

tie Tie Breaker: specifies a float value (which should be something much less than 1) to use as
tiebreaker in DisMax queries. Default: 0.0

bq Boost Query: specifies a factor by which a term or phrase should be "boosted" in importance
when considering a match.

bf Boost Functions: specifies functions to be applied to boosts. (See for details about function
queries.)

The sections below explain these parameters in detail.

The Parameterq

The parameter defines the main "query" constituting the essence of the search. The parameter supports rawq
input strings provided by users with no special escaping. The + and - characters are treated as "mandatory" and
"prohibited" modifiers for terms. Text wrapped in balanced quote characters (for example, "San Jose") is treated
as a phrase. Any query containing an odd number of quote characters is evaluated as if there were no quote
characters at all.

The Parameterq.alt

If specified, the parameter defines a query (which by default will be parsed using standard query parsingq.alt

The parameter does not support wildcard characters such as *.q

264Apache Solr Reference Guide 6.1

syntax) when the main q parameter is not specified or is blank. The parameter comes in handy when youq.alt
need something like a query to match all documents (don't forget for that one!) in order to get&rows=0
collection-wide faceting counts.

The (Query Fields) Parameterqf

The parameter introduces a list of fields, each of which is assigned a boost factor to increase or decrease thatqf
particular field's importance in the query. For example, the query below:

qf="fieldOne^2.3 fieldTwo fieldThree^0.4"

assigns a boost of 2.3, leaves with the default boost (because no boost factor isfieldOne fieldTwo
specified), and a boost of 0.4. These boost factors make matches in much morefieldThree fieldOne
significant than matches in , which in turn are much more significant than matches in .fieldTwo fieldThree

The (Minimum Should Match) Parametermm

When processing queries, Lucene/Solr recognizes three types of clauses: mandatory, prohibited, and "optional"
(also known as "should" clauses). By default, all words or phrases specified in the parameter are treated asq
"optional" clauses unless they are preceded by a "+" or a "-". When dealing with these "optional" clauses, the mm
parameter makes it possible to say that a certain minimum number of those clauses must match. The DisMax
query parser offers great flexibility in how the minimum number can be specified.

The table below explains the various ways that mm values can be specified.

Syntax Example Description

Positive integer 3 Defines the minimum number of clauses that must match, regardless of
how many clauses there are in total.

Negative integer -2 Sets the minimum number of matching clauses to the total number of
optional clauses, minus this value.

Percentage 75% Sets the minimum number of matching clauses to this percentage of the
total number of optional clauses. The number computed from the
percentage is rounded down and used as the minimum.

Negative percentage -25% Indicates that this percent of the total number of optional clauses can be
missing. The number computed from the percentage is rounded down,
before being subtracted from the total to determine the minimum number.

An expression
beginning with a
positive integer
followed by a > or <
sign and another
value

3<90% Defines a conditional expression indicating that if the number of optional
clauses is equal to (or less than) the integer, they are all required, but if
it's greater than the integer, the specification applies. In this example: if
there are 1 to 3 clauses they are all required, but for 4 or more clauses
only 90% are required.

Multiple conditional
expressions involving
> or < signs

2<-25%
9<-3

Defines multiple conditions, each one being valid only for numbers
greater than the one before it. In the example at left, if there are 1 or 2
clauses, then both are required. If there are 3-9 clauses all but 25% are
required. If there are more then 9 clauses, all but three are required.

When specifying values, keep in mind the following:mm

When dealing with percentages, negative values can be used to get different behavior in edge cases. 75%
and -25% mean the same thing when dealing with 4 clauses, but when dealing with 5 clauses 75% means
3 are required, but -25% means 4 are required.
If the calculations based on the parameter arguments determine that no optional clauses are needed, the

265Apache Solr Reference Guide 6.1

usual rules about Boolean queries still apply at search time. (That is, a Boolean query containing no
required clauses must still match at least one optional clause).
No matter what number the calculation arrives at, Solr will never use a value greater than the number of
optional clauses, or a value less than 1. In other words, no matter how low or how high the calculated
result, the minimum number of required matches will never be less than 1 or greater than the number of
clauses.
When searching across multiple fields that are configured with different query analyzers, the number of
optional clauses may differ between the fields. In such a case, the value specified by mm applies to the
maximum number of optional clauses. For example, if a query clause is treated as stopword for one of the
fields, the number of optional clauses for that field will be smaller than for the other fields. A query with
such a stopword clause would not return a match in that field if mm is set to 100% because the removed
clause does not count as matched.

The default value of is 100% (meaning that all clauses must match).mm

The (Phrase Fields) Parameterpf

Once the list of matching documents has been identified using the and parameters, the parameter canfq qf pf
be used to "boost" the score of documents in cases where all of the terms in the q parameter appear in close
proximity.

The format is the same as that used by the parameter: a list of fields and "boosts" to associate with each ofqf
them when making phrase queries out of the entire q parameter.

The (Phrase Slop) Parameterps

The parameter specifies the amount of "phrase slop" to apply to queries specified with the pf parameter.ps
Phrase slop is the number of positions one token needs to be moved in relation to another token in order to
match a phrase specified in a query.

The (Query Phrase Slop) Parameterqs

The parameter specifies the amount of slop permitted on phrase queries explicitly included in the user's queryqs
string with the parameter. As explained above, slop refers to the number of positions one token needs to beqf
moved in relation to another token in order to match a phrase specified in a query.

The (Tie Breaker) Parametertie

The parameter specifies a float value (which should be something much less than 1) to use as tiebreaker intie
DisMax queries.

When a term from the user's input is tested against multiple fields, more than one field may match. If so, each
field will generate a different score based on how common that word is in that field (for each document relative to
all other documents). The parameter lets you control how much the final score of the query will betie
influenced by the scores of the lower scoring fields compared to the highest scoring field.

A value of "0.0" - the default - makes the query a pure "disjunction max query": that is, only the maximum scoring
subquery contributes to the final score. A value of "1.0" makes the query a pure "disjunction sum query" where it
doesn't matter what the maximum scoring sub query is, because the final score will be the sum of the subquery
scores. Typically a low value, such as 0.1, is useful.

The (Boost Query) Parameterbq

The parameter specifies an additional, optional, query clause that will be added to the user's main query tobq
influence the score. For example, if you wanted to add a relevancy boost for recent documents:

q=cheese
bq=date:[NOW/DAY-1YEAR TO NOW/DAY]

266Apache Solr Reference Guide 6.1

You can specify multiple parameters. If you want your query to be parsed as separate clauses with separatebq
boosts, use multiple parameters.bq

The (Boost Functions) Parameterbf

The parameter specifies functions (with optional boosts) that will be used to construct FunctionQueries whichbf
will be added to the user's main query as optional clauses that will influence the score. Any function supported
natively by Solr can be used, along with a boost value. For example:

recip(rord(myfield),1,2,3)^1.5

Specifying functions with the bf parameter is essentially just shorthand for using the param combined with thebq
 parser.{!func}

For example, if you want to show the most recent documents first, you could use either of the following:

bf=recip(rord(creationDate),1,1000,1000)
 ...or...
bq={!func}recip(rord(creationDate),1,1000,1000)

Examples of Queries Submitted to the DisMax Query Parser

All of the sample URLs in this section assume you are running Solr's "techproducts" example:

bin/solr -e techproducts

Normal results for the word "video" using the StandardRequestHandler with the default search field:

http://localhost:8983/solr/techproducts/select?q=video&fl=name+score

The "dismax" handler is configured to search across the text, features, name, sku, id, manu, and cat fields all
with varying boosts designed to ensure that "better" matches appear first, specifically: documents which match
on the name and cat fields get higher scores.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video

Note that this instance is also configured with a default field list, which can be overridden in the URL.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video&fl=*,scor
e

You can also override which fields are searched on and how much boost each field gets.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video&qf=featur
es^20.0+text^0.3

You can boost results that have a field that matches a specific value.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video&bq=cat:el
ectronics^5.0

Another instance of the handler is registered using the "instock" and has slightly different configurationqt
options, notably: a filter for (you guessed it) .inStock:true)

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video&fl=name,s
core,inStock

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video&qt=instoc

267Apache Solr Reference Guide 6.1

k&fl=name,score,inStock

One of the other really cool features in this handler is robust support for specifying the
"BooleanQuery.minimumNumberShouldMatch" you want to be used based on how many terms are in your user's
query. These allows flexibility for typos and partial matches. For the dismax handler, one and two word queries
require that all of the optional clauses match, but for three to five word queries one missing word is allowed.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=belkin+ipod

http://localhost:8983/solr/techproducts/select?defType=dismax&q=belkin+ipod+gib
berish

http://localhost:8983/solr/techproducts/select?defType=dismax&q=belkin+ipod+app
le

Just like the StandardRequestHandler, it supports the debugQuery option to viewing the parsed query, and the
score explanations for each document.

http://localhost:8983/solr/techproducts/select?defType=dismax&q=belkin+ipod+gib
berish&debugQuery=true

http://localhost:8983/solr/techproducts/select?defType=dismax&q=video+card&debu
gQuery=true

The Extended DisMax Query Parser

The Extended DisMax (eDisMax) query parser is an improved version of the . In addition toDisMax query parser
supporting all the DisMax query parser parameters, Extended Dismax:

supports the full Lucene query parser syntax.
supports queries such as AND, OR, NOT, -, and +.
treats "and" and "or" as "AND" and "OR" in Lucene syntax mode.
respects the 'magic field' names and . These are not a real fields in the Schema, but if_val_ _query_
used it helps do special things (like a function query in the case of or a nested query in the case of _val_

). If is used in a term or phrase query, the value is parsed as a function._query_ _val_
includes improved smart partial escaping in the case of syntax errors; fielded queries, +/-, and phrase
queries are still supported in this mode.
improves proximity boosting by using word shingles; you do not need the query to match all words in the
document before proximity boosting is applied.
includes advanced stopword handling: stopwords are not required in the mandatory part of the query but
are still used in the proximity boosting part. If a query consists of all stopwords, such as "to be or not to
be", then all words are required.
includes improved boost function: in Extended DisMax, the function is a multiplier rather than anboost
addend, improving your boost results; the additive boost functions of DisMax (and) are alsobf bq
supported.
supports pure negative nested queries: queries such as will match all documents.+foo (-foo)
lets you specify which fields the end user is allowed to query, and to disallow direct fielded searches.

Extended DisMax Parameters

In addition to all the , Extended DisMax includes these query parameters:DisMax parameters

The mm.autoRelax Parameter

If true, the number of clauses required () will automatically be relaxed if a clause isminimum should match
removed (by e.g. stopwords filter) from some but not all fields. Use this parameter as a workaround if youqf
experience that queries return zero hits due to uneven stopword removal between the fields.qf

Note that relaxing mm may cause undesired side effects, hurting the precision of the search, depending on the

https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser#TheDisMaxQueryParser-DisMaxParameters
https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser#TheDisMaxQueryParser-Themm(MinimumShouldMatch)Parameter
https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser#TheDisMaxQueryParser-Theqf(QueryFields)Parameter

268Apache Solr Reference Guide 6.1

nature of your index content.

The Parameterboost

A multivalued list of strings parsed as queries with scores multiplied by the score from the main query for all
matching documents. This parameter is shorthand for wrapping the query produced by eDisMax using the Boos
tQParserPlugin

The ParameterlowercaseOperators

A Boolean parameter indicating if lowercase "and" and "or" should be treated the same as operators "AND" and
"OR".

The Parameterps

Default amount of slop on phrase queries built with , and/or fields (affects boosting).pf pf2 pf3

The Parameterpf2

A multivalued list of fields with optional weights, based on pairs of word shingles.

The Parameterps2

This is similar to but overrides the slop factor used for . If not specified, is used.ps pf2 ps

The Parameterpf3

A multivalued list of fields with optional weights, based on triplets of word shingles. Similar to , except thatpf
instead of building a phrase per field out of all the words in the input, it builds a set of phrases for each field out
of each triplet of word shingles.

The Parameterps3

This is similar to but overrides the slop factor used for . If not specified, is used.ps pf3 ps

The Parameterstopwords

A Boolean parameter indicating if the configured in the query analyzer should beStopFilterFactory
respected when parsing the query: if it is false, then the in the query analyzer is ignored.StopFilterFactory

The Parameteruf

Specifies which schema fields the end user is allowed to explicitly query. This parameter supports wildcards. The
default is to allow all fields, equivalent to . To allow only title field, use . To allow title and alluf=* uf=title
fields ending with _s, use . To allow all fields except title, use . To disallow alluf=title,*_s uf=*-title
fielded searches, use .uf=-*

Field aliasing using per-field overridesqf

Per-field overrides of the parameter may be specified to provide 1-to-many aliasing from field names specifiedqf
in the query string, to field names used in the underlying query. By default, no aliasing is used and field names
specified in the query string are treated as literal field names in the index.

Examples of Queries Submitted to the Extended DisMax Query Parser

All of the sample URLs in this section assume you are running Solr's " " example:techproducts

269Apache Solr Reference Guide 6.1

bin/solr -e techproducts

Boost the result of the query term "hello" based on the document's popularity:

http://localhost:8983/solr/techproducts/select?defType=edismax&q=hello&pf=text&qf=te
xt&boost=popularity

Search for iPods OR video:

http://localhost:8983/solr/techproducts/select?defType=edismax&q=ipod+OR+video

Search across multiple fields, specifying (via boosts) how important each field is relative each other:

http://localhost:8983/solr/techproducts/select?q=video&defType=edismax&qf=features^2
0.0+text^0.3

You can boost results that have a field that matches a specific value:

http://localhost:8983/solr/techproducts/select?q=video&defType=edismax&qf=features^2
0.0+text^0.3&bq=cat:electronics^5.0

Using the "mm" param, 1 and 2 word queries require that all of the optional clauses match, but for queries with
three or more clauses one missing clause is allowed:

http://localhost:8983/solr/techproducts/select?q=belkin+ipod&defType=edismax&mm=2
http://localhost:8983/solr/techproducts/select?q=belkin+ipod+gibberish&defType=edism
ax&mm=2
http://localhost:8983/solr/techproducts/select?q=belkin+ipod+apple&defType=edismax&m
m=2

In the example below, we see a per-field override of the parameter being used to alias "name" in the queryqf
string to either the " " and " " fields:last_name first_name

defType=edismax
q=sysadmin name:Mike
qf=title text last_name first_name
f.name.qf=last_name first_name

Using negative boost

Negative query boosts have been supported at the "Query" object level for a long time (resulting in negative
scores for matching documents). Now the QueryParsers have been updated to handle this too.

Using 'slop'

Dismax and can run queries against all query fields, and also run a query in the form of a phraseEdismax
against the phrase fields. (This will work only for boosting documents, not actually for matching.) However, that
phrase query can have a 'slop,' which is the distance between the terms of the query while still considering it a
phrase match. For example:

270Apache Solr Reference Guide 6.1

q=foo bar
qf=field1^5 field2^10
pf=field1^50 field2^20
defType=dismax

With these parameters, the Dismax Query Parser generates a query that looks something like this:

(+(field1:foo^5 OR field2:foo^10) AND (field1:bar^5 OR field2:bar^10))

But it also generates another query that will only be used for boosting results:

field1:"foo bar"^50 OR field2:"foo bar"^20

Thus, any document that has the terms "foo" and "bar" will match; however if some of those documents have
both of the terms as a phrase, it will score much higher because it's more relevant.

If you add the parameter (phrase slop), the second query will instead be:ps

ps=10 field1:"foo bar"~10^50 OR field2:"foo bar"~10^20

This means that if the terms "foo" and "bar" appear in the document with less than 10 terms between each other,
the phrase will match. For example the doc that says:

Foo term1 term2 term3 *bar*

will match the phrase query.

How does one use phrase slop? Usually it is configured in the request handler (in).solrconfig

With query slop () the concept is similar, but it applies to explicit phrase queries from the user. For example, ifqs
you want to search for a name, you could enter:

q="Hans Anderson"

A document that contains "Hans Anderson" will match, but a document that contains the middle name "Christian"
or where the name is written with the last name first ("Anderson, Hans") won't. For those cases one could
configure the query field , so that even if the user searches for an explicit phrase query, a slop is applied.qs

Finally, in addition to the phrase fields () parameter, also supports the and parameters, forpf edismax pf2 pf3
fields over which to create bigram and trigram phrase queries. The phrase slop for these parameters' queries
can be specified using the and parameters, respectively. If you use / but / , then theps2 ps3 pf2 pf3 ps2 ps3
phrase slop for these parameters' queries will be taken from the parameter, if any.ps

Using the 'magic fields' _val_ and _query_

The Solr Query Parser's use of _val_ and _query_ differs from the Lucene Query Parser in the
following ways:

If the magic field name is used in a term or phrase query, the value is parsed as a function._val_

It provides a hook into syntax. Quotes are necessary to encapsulate the function whenFunctionQuery
it includes parentheses. For example:

http://wiki.apache.org/solr/FunctionQuery

271Apache Solr Reference Guide 6.1

val:myfield
val:"recip(rord(myfield),1,2,3)"

The Solr Query Parser offers nested query support for any type of query parser (via QParserPlugin).
Quotes are often necessary to encapsulate the nested query if it contains reserved characters. For
example:

query:"{!dismax qf=myfield}how now brown cow"

Although not technically a syntax difference, note that if you use the Solr type, any queries onTrieDateField
those fields (typically range queries) should use either the Complete ISO 8601 Date syntax that field supports, or
the to get relative dates. For example:DateMath Syntax

timestamp:[* TO NOW]
createdate:[1976-03-06T23:59:59.999Z TO *]
createdate:[1995-12-31T23:59:59.999Z TO 2007-03-06T00:00:00Z]
pubdate:[NOW-1YEAR/DAY TO NOW/DAY+1DAY]
createdate:[1976-03-06T23:59:59.999Z TO 1976-03-06T23:59:59.999Z+1YEAR]
createdate:[1976-03-06T23:59:59.999Z/YEAR TO 1976-03-06T23:59:59.999Z]

Function Queries
Function queries enable you to generate a relevancy score using the actual value of one or more numeric fields.
Function queries are supported by the , , and query parsers.DisMax Extended DisMax standard

Function queries use . The functions can be a constant (numeric or string literal), a field, anotherfunctions
function or a parameter substitution argument. You can use these functions to modify the ranking of results for
users. These could be used to change the ranking of results based on a user's location, or some other
calculation.

Function query topics covered in this section:
Using Function Query
Available Functions
Example Function Queries
Sort By Function
Related Topics

Using Function Query

Functions must be expressed as function calls (for example, instead of simply).sum(a,b) a+b

There are several ways of using function queries in a Solr query:

Via an explicit QParser that expects function arguments, such or . For example: func frange

q={!func}div(popularity,price)&fq={!frange l=1000}customer_ratings

TO must be uppercase, or Solr will report a 'Range Group' error.

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/schema/TrieDateField.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/util/DateMathParser.html
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-FunctionQueryParser
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-FunctionRangeQueryParser

272Apache Solr Reference Guide 6.1

In a Sort expression. For example:

sort=div(popularity,price) desc, score desc

Add the results of functions as psuedo-fields to documents in query results. For instance, for:

&fl=sum(x, y),id,a,b,c,score

the output would be:

...
<str name="id">foo</str>
<float name="sum(x,y)">40</float>
<float name="score">0.343</float>
...

Use in a parameter that is explicitly for specifying functions, such as the EDisMax query parser's p boost
aram, or DisMax query parser's . (Note that the parameter actually takes (boost function) parameterbf bf
a list of function queries separated by white space and each with an optional boost. Make sure you
eliminate any internal white space in single function queries when using). For example:bf

q=dismax&bf="ord(popularity)^0.5 recip(rord(price),1,1000,1000)^0.3"

Introduce a function query inline in the lucene QParser with the keyword. For example:_val_

q=_val_:mynumericfield _val_:"recip(rord(myfield),1,2,3)"

Only functions with fast random access are recommended.

Available Functions

The table below summarizes the functions available for function queries.

Function Description Syntax Examples

abs Returns the absolute value of the
specified value or function.

abs(x)
abs(-5)

and Returns a value of true if and only if all
of its operands evaluate to true.

and(not(exists(popularity)),exists(p
rice)): returns for any document whichtrue
has a value in the field, but does not haveprice
a value in the fieldpopularity

"constant" Specifies a floating point constant. 1.5

def def is short for default. Returns the
value of field "field", or if the field does
not exist, returns the default value
specified. and yields the first value
where .)exists()==true

def(rating,5): This function returnsdef()
the rating, or if no rating specified in the doc,
returns 5

 equivalent to def(myfield, 1.0): if(exist
s(myfield),myfield,1.0)

div Divides one value or function by
another. div(x,y) divides x by y.

div(1,y)
div(sum(x,100),max(y,1))

https://cwiki.apache.org/confluence/display/solr/The+DisMax+Query+Parser#TheDisMaxQueryParser-Thebf(BoostFunctions)Parameter

273Apache Solr Reference Guide 6.1

dist Return the distance between two
vectors (points) in an n-dimensional
space. Takes in the power, plus two or
more ValueSource instances and
calculates the distances between the
two vectors. Each ValueSource must
be a number. There must be an even
number of ValueSource instances
passed in and the method assumes
that the first half represent the first
vector and the second half represent
the second vector.

dist(2, x, y, 0, 0): calculates the
Euclidean distance between (0,0) and (x,y) for
each document

: calculates thedist(1, x, y, 0, 0)
Manhattan (taxicab) distance between (0,0) and
(x,y) for each document

 Euclidean distancedist(2, x,y,z,0,0,0):
between (0,0,0) and (x,y,z) for each document.

: Manhattan distancedist(1,x,y,z,e,f,g)
between (x,y,z) and (e,f,g) where each letter is a
field name

docfreq(field,val) Returns the number of documents that
contain the term in the field. This is a
constant (the same value for all
documents in the index).

You can quote the term if it's more
complex, or do parameter substitution
for the term value.

docfreq(text,'solr')

...&defType=func

&q=docfreq(text,$myterm)

&myterm=solr

exists Returns TRUE if any member of the
field exists.

exists(author) returns TRUE for any
document has a value in the "author" field.

 returns TRUEexists(query(price:5.00))
if "price" matches "5.00".

field Returns the numeric docValues or
indexed value of the field with the
specified name. In it's simplest (single
argument) form, this function can only
be used on single valued fields, and
can be called using the name of the
field as a string, or for most
conventional field names simply use
the field name by itself with out using
the syntax.field(...)

When using docValues, an optional
2nd argument can be specified to
select the " or " " value ofmin" max
multivalued fields.

0 is returned for documents without a
value in the field.

These 3 examples are all equivalent:

myFloatFieldName
field(myFloatFieldName)
field("myFloatFieldName")

The last form is convinient when your field name
is atypical:

field("my complex float
fieldName")

For multivalued docValues fields:

field(myMultiValuedFloatField,min)
field(myMultiValuedFloatField,max)

hsin The Haversine distance calculates the
distance between two points on a
sphere when traveling along the
sphere. The values must be in radians.

 also take a Boolean argument tohsin
specify whether the function should
convert its output to radians.

hsin(2, true, x, y, 0, 0)

274Apache Solr Reference Guide 6.1

idf Inverse document frequency; a
measure of whether the term is
common or rare across all documents.
Obtained by dividing the total number
of documents by the number of
documents containing the term, and
then taking the logarithm of that
quotient. See also .tf

idf(fieldName,'solr'): measures the
inverse of the frequency of the occurrence of the
term in .'solr' fieldName

if Enables conditional function queries.
In :if(test,value1,value2)

test is or refers to a logical value
or expression that returns a logical
value (TRUE or FALSE).
value1 is the value that is
returned by the function if yietest
lds TRUE.
value2 is the value that is
returned by the function if yietest
lds FALSE.

An expression can be any function
which outputs boolean values, or even
functions returning numeric values, in
which case value 0 will be interpreted
as false, or strings, in which case
empty string is interpreted as false.

if(termfreq(cat,'electronics'),popul
arity,42) :
This function checks each document for the to
see if it contains the term " " in the electronics

 field. If it does, then the value of the cat popula
 field is returned, otherwise the value of irity 42

s returned.

linear Implements where and arem*x+c m c
constants and is an arbitraryx
function. This is equivalent to sum(pr

, but slightly moreoduct(m,x),c)
efficient as it is implemented as a
single function.

linear(x,m,c)
 returns linear(x,2,4) 2*x+4

log Returns the log base 10 of the
specified function.

log(x)

log(sum(x,100))

map Maps any values of an input function x
that fall within min and max inclusive
to the specified target. The arguments
min and max must be constants. The
arguments and cantarget default
be constants or functions. If the value
of x does not fall between min and
max, then either the value of x is
returned, or a default value is returned
if specified as a 5th argument.

map(x,min,max,target)
 - changes any values of 0 to 1.map(x,0,0,1)

This can be useful in handling default 0 values.

map(x,min,max,target,default)
 - changes any valuesmap(x,0,100,1,-1)

between and to , and all other values to0 100 1
.-1

map(x,0,100,sum(x,599),docfreq(text,
solr)) - changes any values between 0 and 10

 0 to x+599, and all other values to frequency of
the term 'solr' in the field text.

275Apache Solr Reference Guide 6.1

max Returns the maximum numeric value
of multiple nested functions or
constants, which are specified as
arguments: . The maxmax(x,y,...)
function can also be useful for
"bottoming out" another function or
field at some specified constant.

(Use the syntfield(myfield,max)
ax for selecting the maximum value of

)a single multivalued field

max(myfield,myotherfield,0)

maxdoc Returns the number of documents in
the index, including those that are
marked as deleted but have not yet
been purged. This is a constant (the
same value for all documents in the
index).

maxdoc()

min Returns the minimum numeric value of
multiple nested functions of constants,
which are specified as arguments: min

. The min function can(x,y,...)
also be useful for providing an "upper
bound" on a function using a constant.

(Use the field(myfield,min) synt
ax for selecting the minimum value of

)a single multivalued field

min(myfield,myotherfield,0)

ms Returns milliseconds of difference
between its arguments. Dates are
relative to the Unix or POSIX time
epoch, midnight, January 1, 1970
UTC. Arguments may be the name of
an indexed , or dateTrieDateField
math based on a constant date or NOW
.

ms(): Equivalent to ,ms(NOW)
number of milliseconds since the
epoch.
ms(a): Returns the number of
milliseconds since the epoch that
the argument represents.
ms(a,b) : Returns the number of
milliseconds that b occurs before a
(that is, a - b)

ms(NOW/DAY)
 ms(2000-01-01T00:00:00Z)

 ms(mydatefield)
 ms(NOW,mydatefield)

 ms(mydatefield,2000-01-01T00:00:00Z)
ms(datefield1,datefield2)

norm()field Returns the "norm" stored in the index
for the specified field. This is the
product of the index time boost and
the length normalization factor,
according to the for the field.Similarity

norm(fieldName)

not The logically negated value of the
wrapped function.

not(exists(author)): TRUE only when exi
 is false.sts(author)

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/Similarity.html

276Apache Solr Reference Guide 6.1

numdocs Returns the number of documents in
the index, not including those that are
marked as deleted but have not yet
been purged. This is a constant (the
same value for all documents in the
index).

numdocs()

or A logical disjunction. or(value1,value2): TRUE if either value1
or is true.value2

ord Returns the ordinal of the indexed field
value within the indexed list of terms
for that field in Lucene index order
(lexicographically ordered by unicode
value), starting at 1. In other words, for
a given field, all values are ordered
lexicographically; this function then
returns the offset of a particular value
in that ordering. The field must have a
maximum of one value per document
(not multi-valued). 0 is returned for
documents without a value in the field.

See also below.rord

ord(myIndexedField)

Example: If there were only three values
("apple","banana","pear") for a particular field X,
then: would be 1 for documentsord(X)
containing "apple", 2 for documnts containing
"banana", etc...

pow Raises the specified base to the
specified power. raises x topow(x,y)
the power of y.

pow(x,y)
 pow(x,log(y))

 the same as pow(x,0.5): sqrt

product Returns the product of multiple values
or functions, which are specified in a
comma-separated list. mamul(...)
y also be used as an alias for this
function.

product(x,y,...)
 product(x,2)

product(x,y)
mul(x,y)

query Returns the score for the given
subquery, or the default value for
documents not matching the query.
Any type of subquery is supported
through either parameter
de-referencing or direct$otherparam
specification of the query string in the

 through the key.Local Parameters v

query(subquery, default)

q=product(popularity, query({!dismax
: returns the product of thev='solr rocks'})

popularity and the score of the DisMax query.

q=product(popularity, query($qq))&qq
: equivalent to the={!dismax}solr rocks

previous query, using parameter de-referencing.

q=product(popularity, query($qq,0.1)
: specifies a)&qq={!dismax}solr rocks

default score of 0.1 for documents that don't
match the DisMax query.

ord() depends on the
position in an index and can
change when other
documents are inserted or
deleted.

277Apache Solr Reference Guide 6.1

recip Performs a reciprocal function with re
 implementing cip(x,m,a,b) a/(m*

 where are constants, andx+b) m,a,b
 is any arbitrarily complex function.x

When a and b are equal, and x>=0,
this function has a maximum value of
1 that drops as x increases. Increasing
the value of a and b together results in
a movement of the entire function to a
flatter part of the curve. These
properties can make this an ideal
function for boosting more recent
documents when x is rord(datefie

.ld)

recip(myfield,m,a,b)
recip(rord(creationDate),1,1000,1000
)

rord Returns the reverse ordering of that
returned by .ord

rord(myDateField)

scale Scales values of the function x such
that they fall between the specified mi

 and inclusive.nTarget maxTarget
The current implementation traverses
all of the function values to obtain the
min and max, so it can pick the correct
scale.

The current implementation cannot
distinguish when documents have
been deleted or documents that have
no value. It uses 0.0 values for these
cases. This means that if values are
normally all greater than 0.0, one can
still end up with 0.0 as the min value to
map from. In these cases, an
appropriate map() function could be
used as a workaround to change 0.0
to a value in the real range, as shown
here:
scale(map(x,0,0,5),1,2)

scale(x,minTarget,maxTarget)
: scales the values of x such thatscale(x,1,2)

all values will be between 1 and 2 inclusive.

sqedist The Square Euclidean distance
calculates the 2-norm (Euclidean
distance) but does not take the square
root, thus saving a fairly expensive
operation. It is often the case that
applications that care about Euclidean
distance do not need the actual
distance, but instead can use the
square of the distance. There must be
an even number of ValueSource
instances passed in and the method
assumes that the first half represent
the first vector and the second half
represent the second vector.

sqedist(x_td, y_td, 0, 0)

278Apache Solr Reference Guide 6.1

sqrt Returns the square root of the
specified value or function.

sqrt(x)sqrt(100)sqrt(sum(x,100))

strdist Calculate the distance between two
strings. Uses the Lucene spell checker

 interface andStringDistance
supports all of the implementations
available in that package, plus allows
applications to plug in their own via
Solr's resource loading capabilities. st

 takes (string1, string2, distancerdist
measure). Possible values for distance
measure are:

jw: Jaro-Winkler

edit: Levenstein or Edit distance

ngram: The NGramDistance, if
specified, can optionally pass in the
ngram size too. Default is 2.

FQN: Fully Qualified class Name for
an implementation of the
StringDistance interface. Must have a
no-arg constructor.

strdist("SOLR",id,edit)

sub Returns x-y from sub(x,y). sub(myfield,myfield2)
sub(100,sqrt(myfield))

sum Returns the sum of multiple values or
functions, which are specified in a
comma-separated list. mayadd(...)
be used as an alias for this function

sum(x,y,...) sum(x,1)
 sum(x,y)

sum(sqrt(x),log(y),z,0.5)
add(x,y)

sumtotaltermfreq Returns the sum of totaltermfreq
values for all terms in the field in the
entire index (i.e., the number of
indexed tokens for that field). (Aliases

 to .)sumtotaltermfreq sttf

If doc1:(fieldX:A B C) and doc2:(fieldX:A A A A):
 = 2 (A appears in 2 docs) docFreq(fieldX:A)

 = 4 (A appears 4freq(doc1, fieldX:A)
times in doc 2)

 = 5 (A appears 5totalTermFreq(fieldX:A)
times across all docs)

 = 7 in ,sumTotalTermFreq(fieldX) fieldX
there are 5 As, 1 B, 1 C

termfreq Returns the number of times the term
appears in the field for that document.

termfreq(text,'memory')

279Apache Solr Reference Guide 6.1

tf Term frequency; returns the term
frequency factor for the given term,
using the for the field. The Similarity t

 value increases proportionallyf-idf
to the number of times a word appears
in the document, but is offset by the
frequency of the word in the
document, which helps to control for
the fact that some words are generally
more common than others. See also

.idf

tf(text,'solr')

top Causes the function query argument to
derive its values from the top-level
IndexReader containing all parts of an
index. For example, the ordinal of a
value in a single segment will be
different from the ordinal of that same
value in the complete index.

The and functionsord() rord()
implicitly use , and hence top() ord(

 is equivalent to foo) top(ord(foo)
.)

totaltermfreq Returns the number of times the term
appears in the field in the entire index.
(Aliases to .)totaltermfreq ttf

ttf(text,'memory')

xor() Logical exclusive disjunction, or one or
the other but not both.

xor(field1,field2) returns TRUE if either f
 or is true; FALSE if both are true.ield1 field2

Example Function Queries

To give you a better understanding of how function queries can be used in Solr, suppose an index stores the
dimensions in meters x,y,z of some hypothetical boxes with arbitrary names stored in field . Supposeboxname
we want to search for box matching name but ranked according to volumes of boxes. The queryfindbox
parameters would be:

q=boxname:findbox _val_:"product(x,y,z)"

This query will rank the results based on volumes. In order to get the computed volume, you will need to request
the , which will contain the resultant volume:score

&fl=*, score

Suppose that you also have a field storing the weight of the box as . To sort by the density of the boxweight
and return the value of the density in score, you would submit the following query:

http://localhost:8983/solr/collection_name/select?q=boxname:findbox
val:"div(weight,product(x,y,z))"&fl=boxname x y z weight score

Sort By Function

You can sort your query results by the output of a function. For example, to sort results by distance, you could

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/Similarity.html

280Apache Solr Reference Guide 6.1

enter:

http://localhost:8983/solr/collection_name/select?q=*:*&sort=dist(2, point1, point2)
desc

Sort by function also supports pseudo-fields: fields can be generated dynamically and return results as though it
was normal field in the index. For example,

&fl=id,sum(x, y),score

would return:

<str name="id">foo</str>
<float name="sum(x,y)">40</float>
<float name="score">0.343</float>

Related Topics

FunctionQuery

Local Parameters in Queries

Local parameters are arguments in a Solr request that are specific to a query parameter. Local parameters
provide a way to add meta-data to certain argument types such as query strings. (In Solr documentation, local
parameters are sometimes referred to as LocalParams.)

Local parameters are specified as prefixes to arguments. Take the following query argument, for example:

q=solr rocks

We can prefix this query string with local parameters to provide more information to the Standard Query Parser.
For example, we can change the default operator type to "AND" and the default field to "title":

q={!q.op=AND df=title}solr rocks

These local parameters would change the query to require a match on both "solr" and "rocks" while searching
the "title" field by default.

Basic Syntax of Local Parameters

To specify a local parameter, insert the following before the argument to be modified:

Begin with {!

Insert any number of key=value pairs separated by white space

End with } and immediately follow with the query argument

You may specify only one local parameters prefix per argument. Values in the key-value pairs may be quoted via
single or double quotes, and backslash escaping works within quoted strings.

Query Type Short Form

If a local parameter value appears without a name, it is given the implicit name of "type". This allows short-form
representation for the type of query parser to use when parsing a query string. Thus

q={!dismax qf=myfield}solr rocks

https://wiki.apache.org/solr/FunctionQuery

281Apache Solr Reference Guide 6.1

is equivalent to:

q={!type=dismax qf=myfield}solr rocks

If no "type" is specified (either explicitly or implicitly) then the is used by default. Thuslucene parser

fq={!df=summary}solr rocks

is equivilent to:

fq={!type=lucene df=summary}solr rocks

Specifying the Parameter Value with the ' ' Keyv

A special key of within local parameters is an alternate way to specify the value of that parameter.v

q={!dismax qf=myfield}solr rocks

is equivalent to

q={!type=dismax qf=myfield v='solr rocks'}

Parameter Dereferencing

Parameter dereferencing or indirection lets you use the value of another argument rather than specifying it
directly. This can be used to simplify queries, decouple user input from query parameters, or decouple front-end
GUI parameters from defaults set in .solrconfig.xml

q={!dismax qf=myfield}solr rocks

is equivalent to:

q={!type=dismax qf=myfield v=$qq}&qq=solr rocks

Other Parsers

In addition to the main query parsers discussed earlier, there are several other query parsers that can be used
instead of or in conjunction with the main parsers for specific purposes. This section details the other parsers,
and gives examples for how they might be used.

Many of these parsers are expressed the same way as .Local Parameters in Queries

Query parsers discussed in this section:
Block Join Query Parsers
Boost Query Parser
Collapsing Query Parser
Complex Phrase Query Parser
Field Query Parser
Function Query Parser
Function Range Query Parser
Graph Query Parser
Join Query Parser
Lucene Query Parser
Max Score Query Parser
More Like This Query Parser
Nested Query Parser
Old Lucene Query Parser
Prefix Query Parser
Raw Query Parser
Re-Ranking Query Parser

282Apache Solr Reference Guide 6.1

Simple Query Parser
Spatial Query Parsers
Surround Query Parser
Switch Query Parser
Term Query Parser
Terms Query Parser
XML Query Parser

Block Join Query Parsers

There are two query parsers that support block joins. These parsers allow indexing and searching for relational
content that has been . indexed as nested documents

The example usage of the query parsers below assumes these two documents and each of their child
documents have been indexed:

<add>
 <doc>
 <field name="id">1</field>
 <field name="title">Solr has block join support</field>
 <field name="content_type">parentDocument</field>
 <doc>
 <field name="id">2</field>
 <field name="comments">SolrCloud supports it too!</field>
 </doc>
 </doc>
 <doc>
 <field name="id">3</field>
 <field name="title">New Lucene and Solr release</field>
 <field name="content_type">parentDocument</field>
 <doc>
 <field name="id">4</field>
 <field name="comments">Lots of new features</field>
 </doc>
 </doc>
</add>

Block Join Children Query Parser

This parser takes a query that matches some parent documents and returns their children. The syntax for this
parser is: . The parameter is a filter thatq={!child of=<allParents>}<someParents> allParents
matches ; here you would define the field and value that you used to identify only parent documents all parent

. The parameter identifies a query that will match some of the parent documents. Thedocuments someParents
output is the children.

Using the example documents above, we can construct a query such as q={!child
. We only get one document in response:of="content_type:parentDocument"}title:lucene

<result name="response" numFound="1" start="0">
 <doc>
 <str name="id">4</str>
 <str name="comments">Lots of new features</str>
 </doc>
</result>

Block Join Parent Query Parser

283Apache Solr Reference Guide 6.1

This parser takes a query that matches child documents and returns their parents. The syntax for this parser is
similar: . Again the parameter The parameter q={!parent which=<allParents>}<someChildren> allPa

 is a filter that matches ; here you would define the field and value that you usedrents only parent documents
to identify . The parameter is a query that matches some or all of theall parent documents someChildren
child documents. Note that the query for should match only child documents or you may get ansomeChildren
exception.

Again using the example documents above, we can construct a query such as q={!parent
. We get this document in response:which="content_type:parentDocument"}comments:SolrCloud

<result name="response" numFound="1" start="0">
 <doc>
 <str name="id">1</str>
 <arr name="title"><str>Solr has block join support</str></arr>
 <arr name="content_type"><str>parentDocument</str></arr>
 </doc>
</result>

Scoring

You can optionally use the local parameter to return scores of the subordinate query. The values to usescore
for this parameter define the type of aggregation, which are (average), (maximum), (minimum), avg max min to

. Implicit default is which returns . tal (sum) none 0.0

Boost Query Parser

BoostQParser extends the and creates a boosted query from the input value. The mainQParserPlugin
value is the query to be boosted. Parameter is the function query to use as the boost. The query to be boostedb
may be of any type.

Examples:

Creates a query "foo" which is boosted (scores are multiplied) by the function query :log(popularity)

{!boost b=log(popularity)}foo

Creates a query "foo" which is boosted by the date boosting function referenced in ReciprocalFloatFunctio
:n

{!boost b=recip(ms(NOW,mydatefield),3.16e-11,1,1)}foo

Using which
 A common mistake is to try to filter parents with a filter, as in this bad example:which

q={!parent which=" "}comments:SolrCloudtitle:join

Instead, you should use a sibling mandatory clause as a filter:

q= +{!parent which=" "}comments:Sol +title:join content_type:parentDocument
rCloud

284Apache Solr Reference Guide 6.1

Collapsing Query Parser

The is really a that provides more performant field collapsing than Solr'sCollapsingQParser post filter
standard approach when the number of distinct groups in the result set is high. This parser collapses the result
set to a single document per group before it forwards the result set to the rest of the search components. So all
downstream components (faceting, highlighting, etc...) will work with the collapsed result set.

Details about using the can be found in the section .CollapsingQParser Collapse and Expand Results

Complex Phrase Query Parser

The provides support for wildcards, ORs, etc., inside phrase queries using Lucene's ComplexPhraseQParser
. Under the covers, this query parser makes use of the Span group of queries, ComplexPhraseQueryParser

e.g., spanNear, spanOr, etc., and is subject to the same limitations as that family or parsers.

Parameter Description

inOrder Set to true to force phrase queries to match terms in the order specified. Default: true

df The default search field.

Examples:

{!complexphrase inOrder=true}name:"Jo* Smith"

{!complexphrase inOrder=false}name:"(john jon jonathan~) peters*"

A mix of ordered and unordered complex phrase queries:

+_query_:"{!complexphrase inOrder=true}manu:\"a* c*\"" +_query_:"{!complexphrase
inOrder=false df=name}\"bla* pla*\""

Limitations

Performance is sensitive to the number of unique terms that are associated with a pattern. For instance,
searching for "a*" will form a large OR clause (technically a SpanOr with many terms) for all of the terms in your
index for the indicated field that start with the single letter 'a'. It may be prudent to restrict wildcards to at least
two or preferably three letters as a prefix. Allowing very short prefixes may result in to many low-quality
documents being returned.

MaxBooleanClauses

You may need to increase MaxBooleanClauses in as a result of the term expansion above:solrconfig.xml

<maxBooleanClauses>4096</maxBooleanClauses>

This property is described in more detail in the section .Query Sizing and Warming

Stopwords

It is recommended not to use stopword elimination with this query parser. Lets say we add , , to the up to stopwo

http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/complexPhrase/ComplexPhraseQueryParser.html
https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-QuerySizingandWarming

285Apache Solr Reference Guide 6.1

 for your collection, and index a document containing the text rds.txt "Stores up to 15,000 songs, 25,00
in a field named "features". photos, or 150 yours of video"

 While the query below does not use this parser:

q=features:"Stores up to 15,000"

the document is returned. The next query that use the Complex Phrase Query Parser, as in this query:does

q=features:"sto* up to 15*"&defType=complexphrase

does return that document because SpanNearQuery has no good way to handle stopwords in a waynot
analogous to PhraseQuery. If you must remove stopwords for your use case, use a custom filter factory or
perhaps a customized synonyms filter that reduces given stopwords to some impossible token.

Field Query Parser

The extends the and creates a field query from the input value, applying textFieldQParser QParserPlugin
analysis and constructing a phrase query if appropriate. The parameter is the field to be queried.f

Example:

{!field f=myfield}Foo Bar

This example creates a phrase query with "foo" followed by "bar" (assuming the analyzer for is a textmyfield
field with an analyzer that splits on whitespace and lowercase terms). This is generally equivalent to the Lucene
query parser expression .myfield:"Foo Bar"

Function Query Parser

The extends the and creates a function query from the input value. This isFunctionQParser QParserPlugin
only one way to use function queries in Solr; for another, more integrated, approach, see the section on Function

.Queries

Example:

{!func}log(foo)

Function Range Query Parser

The extends the and creates a range query over a function. This isFunctionRangeQParser QParserPlugin
also referred to as , as seen in the examples below.frange

Other parameters:

Parameter Description

l The lower bound, optional

u The upper bound, optional

incl Include the lower bound: true/false, optional, default=true

286Apache Solr Reference Guide 6.1

incu Include the upper bound: true/false, optional, default=true

Examples:

{!frange l=1000 u=50000}myfield

fq={!frange l=0 u=2.2} sum(user_ranking,editor_ranking)

Both of these examples are restricting the results by a range of values found in a declared field or a function
query. In the second example, we're doing a sum calculation, and then defining only values between 0 and 2.2
should be returned to the user.

For more information about range queries over functions, see Yonik Seeley's introductory blog post Ranges over
, hosted at SearchHub.org.Functions in Solr 1.4

Graph Query Parser

The query parser does a breadth first, cyclic aware, graph traversal of all documents that are "reachable"graph
from a starting set of root documents identified by a wrapped query. The graph is built according to linkages
between documents based on the terms found in " " and " " fields that you specify as part of the queryfrom to

Parameters

Parameter Description

to The field name of matching documents to inspect to identify outgoing edges for graph
traversal. Defaults to .edge_ids

from The field name to of candidate documents to inspect to identify incoming graph edges.
Defaults to .node_id

traversalFilter An optional query that can be supplied to limit the scope of documents that are traversed.

maxDepth Integer specifying how deep the breadth first search of the graph should go begining with the
initial query. Defaults to -1 (unlimited)

returnRoot Boolean to indicate if the documents that matched the original query (to define the starting
points for graph) should be included in the final results. Defaults to true

returnOnlyLeaf Boolean that indicates if the results of the query should be filtered so that only documents
with no outgoing edges are returned. Defaults to false

useAutn Boolean that indicates if an Automatons should be compiled for each iteration of the breadth
first search, which may be faster for some graphs. Defaults to false.

Limitations

The parser only works in single node Solr installations, or with collections that use exactly 1graph SolrCloud
shard.

Examples

To understand how the graph parser works, consider the following Directed Cyclic Graph, containing 8 nodes (A
to H) and 9 edges (1 to 9):

http://searchhub.org/2009/07/06/ranges-over-functions-in-solr-14/
http://searchhub.org/2009/07/06/ranges-over-functions-in-solr-14/

287Apache Solr Reference Guide 6.1

One way to model this graph as Solr documents, would be to create one document per node, with mutivalued
fields identifying the incoming and outgoing edges for each node:

curl -H 'Content-Type: application/json'
'http://localhost:8983/solr/my_graph/update?commit=true' --data-binary '[
 {"id":"A","foo": 7, "out_edge":["1","9"], "in_edge":["4","2"] },
 {"id":"B","foo": 12, "out_edge":["3","6"], "in_edge":["1"] },
 {"id":"C","foo": 10, "out_edge":["5","2"], "in_edge":["9"] },
 {"id":"D","foo": 20, "out_edge":["4","7"], "in_edge":["3","5"] },
 {"id":"E","foo": 17, "out_edge":[], "in_edge":["6"] },
 {"id":"F","foo": 11, "out_edge":[], "in_edge":["7"] },
 {"id":"G","foo": 7, "out_edge":["8"], "in_edge":[] },
 {"id":"H","foo": 10, "out_edge":[], "in_edge":["8"] }
]'

With the model shown above, the following query demonstrates a simple traversal of all nodes reachable from
node A:

288Apache Solr Reference Guide 6.1

http://localhost:8983/solr/my_graph/query?fl=id&q={!graph+from=in_edge+to=out_edge}i
d:A
...
"response":{"numFound":6,"start":0,"docs":[
 { "id":"A" },
 { "id":"B" },
 { "id":"C" },
 { "id":"D" },
 { "id":"E" },
 { "id":"F" }]
}

We can also use the to limit the graph traversal to only nodes with maximum value of 15 intraversalFilter
the field. In this case that means D, E, and F are excluded – F has a value of , but it is unreachablefoo foo=11
because the traversal skipped D:

http://localhost:8983/solr/my_graph/query?fl=id&q={!graph+from=in_edge+to=out_edge+t
raversalFilter='foo:[*+TO+15]'}id:A
...
"response":{"numFound":3,"start":0,"docs":[
 { "id":"A" },
 { "id":"B" },
 { "id":"C" }]
}

The examples shown so far have all used a query for a single document () as the root node for the graph"id:A"
traversal, but any query can be used to identify multiple documents to use as root nodes. The next example
demonstrates using the param to find all nodes that are at most one edge away from an root nodemaxDepth
with a value in the field less then or equal to 10:foo

http://localhost:8983/solr/my_graph/query?fl=id&q={!graph+from=in_edge+to=out_edge+m
axDepth=1}foo:[*+TO+10]
...
"response":{"numFound":6,"start":0,"docs":[
 { "id":"A" },
 { "id":"B" },
 { "id":"C" },
 { "id":"D" },
 { "id":"G" },
 { "id":"H" }]
}

Simplified Models

The Document & Field modelling used in the above examples enumerated all of the outgoing and income edges
for each node explicitly, to help demonstrate exactly how the "from" and "to" params work, and to give you an
idea of what is possible. With multiple sets of fields like these for identifying incoming and outgoing edges, it's
possible to model many independent Directed Graphs that contain some or all of the documents in your
collection.

But in many cases it can also be possible to drastically simplify the model used.

For Example: The same graph shown in the diagram above can be modelled by Solr Documents that represent
each node and know only the ids of the nodes they link to, with out knowing anything about the incoming links:

289Apache Solr Reference Guide 6.1

curl -H 'Content-Type: application/json'
'http://localhost:8983/solr/alt_graph/update?commit=true' --data-binary '[
 {"id":"A","foo": 7, "out_edge":["B","C"] },
 {"id":"B","foo": 12, "out_edge":["E","D"] },
 {"id":"C","foo": 10, "out_edge":["A","D"] },
 {"id":"D","foo": 20, "out_edge":["A","F"] },
 {"id":"E","foo": 17, "out_edge":[] },
 {"id":"F","foo": 11, "out_edge":[] },
 {"id":"G","foo": 7, "out_edge":["H"] },
 {"id":"H","foo": 10, "out_edge":[] }
]'

With this alternative document model, all of the same queries demonstrated above can still be executed, simply
by changing the " " param to replace the " " field with the " " field:from in_edge id

http://localhost:8983/solr/alt_graph/query?fl=id&q={!graph+from=id+to=out_edge+maxDe
pth=1}foo:[*+TO+10]
...
"response":{"numFound":6,"start":0,"docs":[
 { "id":"A" },
 { "id":"B" },
 { "id":"C" },
 { "id":"D" },
 { "id":"G" },
 { "id":"H" }]
}

Join Query Parser

JoinQParser extends the . It allows normalizing relationships between documents with a joinQParserPlugin
operation. This is different from the concept of a join in a relational database because no information is being
truly joined. An appropriate SQL analogy would be an "inner query".

Examples:

Find all products containing the word "ipod", join them against manufacturer docs and return the list of
manufacturers:

{!join from=manu_id_s to=id}ipod

Find all manufacturer docs named "belkin", join them against product docs, and filter the list to only products with
a price less than $12:

q = {!join from=id to=manu_id_s}compName_s:Belkin
fq = price:[* TO 12]

The join operation is done on a term basis, so the "from" and "to" fields must use compatible field types. For
example: joining between a and a will not work, likewise joining between a StrField TrieIntField StrFiel

 and a that uses will only work for values that are already lowerd TextField LowerCaseFilterFactory
cased in the string field.

Scoring

290Apache Solr Reference Guide 6.1

You can optionally use the parameter to return scores of the subordinate query. The values to use for thisscore
parameter define the type of aggregation, which are (average), (maximum), (minimum) , or avg max min total

.none

Joining Across Collections

You can also specify a parameter to join with a field from another core or collection. If running infromIndex
SolrCloud mode, then the collection specified in the parameter must have a single shard and afromIndex
replica on all Solr nodes where the collection you're joining to has a replica.

Let's consider an example where you want to use a Solr join query to filter movies by directors that have won an
Oscar. Specifically, imagine we have two collections with the following fields:

movies: id, title, director_id, ...

movie_directors: id, name, has_oscar, ...

To filter movies by directors that have won an Oscar using a Solr join on the collection, youmovie_directors
can send the following filter query to the collection:movies

fq={!join from=id fromIndex=movie_directors to=director_id}has_oscar:true

Notice that the query criteria of the filter () is based on a field in the collection specified using has_oscar:true
. Keep in mind that you cannot return fields from the collection using join queries, youfromIndex fromIndex

can only use the fields for filtering results in the "to" collection (movies).

Next, let's understand how these collections need to be deployed in your cluster. Imagine the collectionmovies
is deployed to a four node SolrCloud cluster and has two shards with a replication factor of two. Specifically, the

 collection has replicas on the following four nodes:movies

node 1: movies_shard1_replica1

node 2: movies_shard1_replica2

node 3: movies_shard2_replica1

node 4: movies_shard2_replica2

To use the collection in Solr join queries with the collection, it needs to have a replicamovie_directors movies
on each of the four nodes. In other words, must have one shard and replication factor of four:movie_directors

node 1: movie_directors_shard1_replica1

node 2: movie_directors_shard1_replica2

node 3: movie_directors_shard1_replica3

node 4: movie_directors_shard1_replica4

At query time, the will access the local replica of the collection to perform theJoinQParser movie_directors
join. If a local replica is not available or active, then the query will fail. At this point, it should be clear that since
you're limited to a single shard and the data must be replicated across all nodes where it is needed, this
approach works better with smaller data sets where there is a one-to-many relationship between the from
collection and the to collection. Moreover, if you add a replica to the to collection, then you also need to add a
replica for the from collection.

For more information about join queries, see the Solr Wiki page on . Erick Erickson has also written a blogJoins
post about join performance called , hosted by SearchHub.org.Solr and Joins

Lucene Query Parser

http://wiki.apache.org/solr/Join
http://searchhub.org/2012/06/20/solr-and-joins/

291Apache Solr Reference Guide 6.1

The extends the by parsing Solr's variant on the Lucene QueryParserLuceneQParser QParserPlugin
syntax. This is effectively the same query parser that is used in Lucene. It uses the operators , the defaultq.op
operator ("OR" or "AND") and , the default field name.df

Example:

{!lucene q.op=AND df=text}myfield:foo +bar -baz

For more information about the syntax for the Lucene Query Parser, see the .Classic QueryParser javadocs

Max Score Query Parser

The extends the but returns the Max score from the clauses. It does thisMaxScoreQParser LuceneQParser
by wrapping all clauses in a with tie=1.0. Any or clausesSHOULD DisjunctionMaxQuery MUST PROHIBITED
are passed through as-is. Non-boolean queries, e.g. NumericRange falls-through to the parserLuceneQParser
behavior.

Example:

{!maxscore tie=0.01}C OR (D AND E)

More Like This Query Parser

MLTQParser enables retrieving documents that are similar to a given document. It uses Lucene's existing More
 logic and also works in SolrCloud mode. The document identifier used here is the unique id value andLikeThis

not the Lucene internal document id. The list of returned documents excludes the queried document.

This query parser takes the following parameters:

Parameter Description

qf Specifies the fields to use for similarity.

mintf Specifies the Minimum Term Frequency, the frequency below which terms will be ignored in the
source document.

mindf Specifies the Minimum Document Frequency, the frequency at which words will be ignored when
they do not occur in at least this many documents.

maxdf Specifies the Maximum Document Frequency, the frequency at which words will be ignored
when they occur in more than this many documents.

minwl Sets the minimum word length below which words will be ignored.

maxwl Sets the maximum word length above which words will be ignored.

maxqt Sets the maximum number of query terms that will be included in any generated query.

maxntp Sets the maximum number of tokens to parse in each example document field that is not stored
with TermVector support.

boost Specifies if the query will be boosted by the interesting term relevance. It can be either "true" or
"false".

Examples:

http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/classic/package-summary.html#package_description

292Apache Solr Reference Guide 6.1

Find documents like the document with id=1 and using the field for similarity.name

{!mlt qf=name}1

Adding more constraints to what qualifies as similar using mintf and mindf.

{!mlt qf=name mintf=2 mindf=3}1

Nested Query Parser

The extends the and creates a nested query, with the ability for that query toNestedParser QParserPlugin
redefine its type via local parameters. This is useful in specifying defaults in configuration and letting clients
indirectly reference them.

Example:

{!query defType=func v=$q1}

If the parameter is price, then the query would be a function query on the price field. If the parameter isq1 q1
{!lucene}inStock:true}} then a term query is created from the Lucene syntax string that matches documents with

. These parameters would be defined in , in the section:inStock=true solrconfig.xml defaults

<lst name="defaults">
 <str name="q1">{!lucene}inStock:true</str>
</lst>

For more information about the possibilities of nested queries, see Yonik Seeley's blog post Nested Queries in
, hosted by SearchHub.org.Solr

Old Lucene Query Parser

OldLuceneQParser extends the by parsing Solr's variant of Lucene's QueryParser syntax,QParserPlugin
including the deprecated sort specification after the query.

Example:

{!lucenePlusSort} myfield:foo +bar -baz;price asc

Prefix Query Parser

PrefixQParser extends the by creating a prefix query from the input value. Currently noQParserPlugin
analysis or value transformation is done to create this prefix query. The parameter is , the field. The string afterf
the prefix declaration is treated as a wildcard query.

Example:

{!prefix f=myfield}foo

This would be generally equivalent to the Lucene query parser expression .myfield:foo*

http://searchhub.org/2009/03/31/nested-queries-in-solr/
http://searchhub.org/2009/03/31/nested-queries-in-solr/

293Apache Solr Reference Guide 6.1

Raw Query Parser

RawQParser extends the by creating a term query from the input value without any textQParserPlugin
analysis or transformation. This is useful in debugging, or when raw terms are returned from the terms
component (this is not the default). The only parameter is , which defines the field to search.f

Example:

{!raw f=myfield}Foo Bar

This example constructs the query: .TermQuery(Term("myfield","Foo Bar"))

For easy filter construction to drill down in faceting, the is recommended. For full analysis onTermQParserPlugin
all fields, including text fields, you may want to use the .FieldQParserPlugin

Re-Ranking Query Parser

The is a special purpose parser for Re-Ranking the top result of a simple query usingReRankQParserPlugin
a more complex ranking query.

Details about using the can be found in the section.ReRankQParserPlugin Query Re-Ranking

Simple Query Parser

The Simple query parser in Solr is based on Lucene's SimpleQueryParser. This query parser is designed to
allow users to enter queries however they want, and it will do its best to interpret the query and return results.

This parser takes the following parameters:

Parameter Description

294Apache Solr Reference Guide 6.1

q.operators Comma-separated list of names of parsing operators to enable. By default, all operations are
enabled, and this parameter can be used to effectively disable specific operators as needed, by
excluding them from the list. Passing an empty string with this parameter disables all operators.

Name Operator Description Example query

AND + Specifies AND token1+token2

NOT | Specifies OR token1|token2

OR - Specifies NOT -token3

PREFIX * Specifies a prefix query term*

PHRASE " Creates a phrase "term1
term2"

PRECEDENCE () Specifies precedence; tokens inside the
parenthesis will be analyzed first. Otherwise,
normal order is left to right.

token1 +
(token2 |
token3)

ESCAPE \ Put it in front of operators to match them
literally

C\+\+

WHITESPACE space or
[\r\t\n]

Delimits tokens. If not enabled, whitespace
splitting will not be performed prior to analysis.

term1 term2

FUZZY ~N At the end of terms, specifies a fuzzy query term~1

NEAR ~N At the end of phrases, specifies a NEAR
query

"term1
term2"~5

q.op Defines the default operator to use if none is defined by the user. Allowed values are and AND OR
. is used if none is specified.OR

qf A list of query fields and boosts to use when building the query.

df Defines the default field if none is defined in the Schema, or overrides the default field if it is
already defined.

Any errors in syntax are ignored and the query parser will interpret queries as best it can. However, this can lead
to odd results in some cases.

Spatial Query Parsers

There are two spatial QParsers in Solr: and . But there are other ways to query spatially: usinggeofilt bbox
the parser with a distance function, using the standard (lucene) query parser with the range syntax tofrange
pick the corners of a rectangle, or with RPT and BBoxField you can use the standard query parser but use a
special syntax within quotes that allows you to pick the spatial predicate.

All these things are documented further in the section Spatial Search .

Surround Query Parser

The enables the Surround query syntax, which provides proximity search functionality. SurroundQParser
There are two positional operators: creates an ordered span query and creates an unordered one. Bothw n
operators take a numeric value to indicate distance between two terms. The default is 1, and the maximum is 99.

295Apache Solr Reference Guide 6.1

Note that the query string is not analyzed in any way.

Example:

{!surround} 3w(foo, bar)

This example would find documents where the terms "foo" and "bar" were no more than 3 terms away from each
other (i.e., no more than 2 terms between them).

This query parser will also accept boolean operators (, , and , in either upper- or lowercase),AND OR NOT
wildcards, quoting for phrase searches, and boosting. The and operators can also be expressed in upper- orw n
lowercase.

The non-unary operators (everything but) support both infix and prefix NOT (a AND b AND c) AND(a, b, c)
notation.

More information about Surround queries can be found at .http://wiki.apache.org/solr/SurroundQueryParser

Switch Query Parser

SwitchQParser is a that acts like a "switch" or "case" statement.QParserPlugin

The primary input string is trimmed and then prefixed with for use as a key to lookup a "switch case" incase.
the parser's local params. If a matching local param is found the resulting param value will then be parsed as a
subquery, and returned as the parse result.

The local param can be optionally be specified as a switch case to match missing (or blank) input strings.case
The local param can optionally be specified as a default case to use if the input string does not matchdefault
any other switch case local params. If default is not specified, then any input which does not match a switch case
local param will result in a syntax error.

In the examples below, the result of each query is "XXX":

{!switch case.foo=XXX case.bar=zzz case.yak=qqq}foo

{!switch case.foo=qqq case.bar=XXX case.yak=zzz} bar // extra whitespace is trimmed

{!switch case.foo=qqq case.bar=zzz default=XXX}asdf // fallback to the default

{!switch case=XXX case.bar=zzz case.yak=qqq} // blank input uses 'case'

A practical usage of this , is in specifying fq params in the configuration of aQParsePlugin appends
SearchHandler, to provide a fixed set of filter options for clients using custom parameter names. Using the
example configuration below, clients can optionally specify the custom parameters and toin_stock shipping
override the default filtering behavior, but are limited to the specific set of legal values (shipping=any|free,
in_stock=yes|no|all).

http://wiki.apache.org/solr/SurroundQueryParser

296Apache Solr Reference Guide 6.1

<requestHandler name="/select" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="in_stock">yes</str>
 <str name="shipping">any</str>
 </lst>
 <lst name="appends">
 <str name="fq">{!switch case.all='*:*'
 case.yes='inStock:true'
 case.no='inStock:false'
 v=$in_stock}</str>
 <str name="fq">{!switch case.any='*:*'
 case.free='shipping_cost:0.0'
 v=$shipping}</str>
 </lst>
</requestHandler>

Term Query Parser

TermQParser extends the by creating a single term query from the input value equivalent to QParserPlugin r
. This is useful for generating filter queries from the external human readable termseadableToIndexed()

returned by the faceting or terms components. The only parameter is , for the field.f

Example:

{!term f=weight}1.5

For text fields, no analysis is done since raw terms are already returned from the faceting and terms
components. To apply analysis to text fields as well, see the , above.Field Query Parser

If no analysis or transformation is desired for any type of field, see the , above.Raw Query Parser

Terms Query Parser

TermsQParser, functions similarly to the but takes in multiple values separated by commasTerm Query Parser
and returns documents matching any of the specified values. This can be useful for generating filter queries
from the external human readable terms returned by the faceting or terms components, and may be more
efficient in some cases than using the to generate an boolean query since the defaultStandard Query Parser
implementation " " avoids scoring.method

This query parser takes the following parameters:

Parameter Description

f The field on which to search. Required.

separator Separator to use when parsing the input. If set to " " (a single blank space), will trim additional
white space from the input terms. Defaults to " ".,

method The internal query-building implementation: , , , or termsFilter booleanQuery automaton do
. Defaults to " ".cValuesTermsFilter termsFilter

Examples:

297Apache Solr Reference Guide 6.1

{!terms f=tags}software,apache,solr,lucene

{!terms f=categoryId method=booleanQuery separator=" "}8 6 7 5309

 XML Query Parser

The extends the and supports the creation of queries from XML. Example:XmlQParserPlugin QParserPlugin

Parameter Value

defType xmlparser

q <BooleanQuery fieldName="description">
<Clause occurs="must"> <TermQuery>shirt</TermQuery> </Clause>
<Clause occurs="mustnot"> <TermQuery>plain</TermQuery> </Clause>
<Clause occurs="should"> <TermQuery>cotton</TermQuery> </Clause>
<Clause occurs="must">
<BooleanQuery fieldName="size">
<Clause occurs="should"> <TermsQuery>S M L</TermsQuery> </Clause>
</BooleanQuery>
</Clause>
</BooleanQuery>

The XmlQParser implementation uses the class which extends Lucene's class. XMLSolrCoreParser CoreParser
elements are mapped to classes as follows:QueryBuilder

XML element QueryBuilder class

<BooleanQuery> BooleanQueryBuilder

<BoostingTermQuery> BoostingTermBuilder

<ConstantScoreQuery> ConstantScoreQueryBuilder

<DisjunctionMaxQuery> DisjunctionMaxQueryBuilder

<MatchAllDocsQuery> MatchAllDocsQueryBuilder

<RangeQuery> RangeQueryBuilder

<SpanFirst> SpanFirstBuilder

<SpanNear> SpanNearBuilder

<SpanNot> SpanNotBuilder

<SpanOr> SpanOrBuilder

<SpanOrTerms> SpanOrTermsBuilder

<SpanTerm> SpanTermBuilder

<TermQuery> TermQueryBuilder

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/XmlQParserPlugin.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/QParserPlugin.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/search/SolrCoreParser.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/CoreParser.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/QueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/BooleanQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/BoostingTermBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/ConstantScoreQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/DisjunctionMaxQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/MatchAllDocsQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/RangeQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanFirstBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanNearBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanNotBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanOrBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanOrTermsBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/SpanTermBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/TermQueryBuilder.html

298Apache Solr Reference Guide 6.1

<TermsQuery> TermsQueryBuilder

<UserQuery> UserInputQueryBuilder

<LegacyNumericRangeQuery> LegacyNumericRangeQuery(Builder) is deprecated

Faceting
As described in the section , faceting is the arrangement of search results intoOverview of Searching in Solr
categories based on indexed terms. Searchers are presented with the indexed terms, along with numerical
counts of how many matching documents were found were each term. Faceting makes it easy for users to
explore search results, narrowing in on exactly the results they are looking for.

Topics covered in this section:
General Parameters
Field-Value Faceting Parameters
Range Faceting
Pivot (Decision Tree) Faceting
Interval Faceting
Local Parameters for Faceting
Related Topics

General Parameters

The table below summarizes the general parameters for controlling faceting.

Parameter Description

facet If set to true, enables faceting.

facet.query Specifies a Lucene query to generate a facet count.

These parameters are described in the sections below.

The Parameterfacet

If set to "true," this parameter enables facet counts in the query response. If set to "false" to a blank or
missing value, this parameter disables faceting. None of the other parameters listed below will have any
effect unless this parameter is set to "true." The default value is blank.

The Parameterfacet.query

This parameter allows you to specify an arbitrary query in the Lucene default syntax to generate a facet
count. By default, Solr's faceting feature automatically determines the unique terms for a field and returns a
count for each of those terms. Using , you can override this default behavior and select exactlyfacet.query
which terms or expressions you would like to see counted. In a typical implementation of faceting, you will
specify a number of parameters. This parameter can be particularly useful forfacet.query
numeric-range-based facets or prefix-based facets.

You can set the parameter multiple times to indicate that multiple queries should be used asfacet.query
separate facet constraints.

To use facet queries in a syntax other than the default syntax, prefix the facet query with the name of the
query notation. For example, to use the hypothetical query parser, you could set the myfunc facet.query
parameter like so:

http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/TermsQueryBuilder.html
http://lucene.apache.org/core/6_1_0/queryparser/org/apache/lucene/queryparser/xml/builders/UserInputQueryBuilder.html

299Apache Solr Reference Guide 6.1

facet.query={!myfunc}name~fred

Field-Value Faceting Parameters

Several parameters can be used to trigger faceting based on the indexed terms in a field.

When using this parameter, it is important to remember that "term" is a very specific concept in Lucene: it
relates to the literal field/value pairs that are indexed after any analysis occurs. For text fields that include
stemming, lowercasing, or word splitting, the resulting terms may not be what you expect. If you want Solr to
perform both analysis (for searching) and faceting on the full literal strings, use the directive incopyField
your Schema to create two versions of the field: one Text and one String. Make sure both are indexed="tr

. (For more information about the directive, see .)ue" copyField Documents, Fields, and Schema Design

The table below summarizes Solr's field value faceting parameters.

Parameter Description

facet.field Identifies a field to be treated as a facet.

facet.prefix Limits the terms used for faceting to those that begin with the specified prefix.

facet.contains Limits the terms used for faceting to those that contain the specified substring.

facet.contains.ignoreCase If facet.contains is used, ignore case when searching for the specified
substring.

facet.sort Controls how faceted results are sorted.

facet.limit Controls how many constraints should be returned for each facet.

facet.offset Specifies an offset into the facet results at which to begin displaying facets.

facet.mincount Specifies the minimum counts required for a facet field to be included in the
response.

facet.missing Controls whether Solr should compute a count of all matching results which
have no value for the field, in addition to the term-based constraints of a facet
field.

facet.method Selects the algorithm or method Solr should use when faceting a field.

facet.enum.cache.minDF (Advanced) Specifies the minimum document frequency (the number of
documents matching a term) for which the should be usedfilterCache
when determining the constraint count for that term.

facet.overrequest.count (Advanced) A number of documents, beyond the effective tofacet.limit
request from each shard in a distributed search

facet.overrequest.ratio (Advanced) A multiplier of the effective to request from eachfacet.limit
shard in a distributed search

facet.threads (Advanced) Controls parallel execution of field faceting

These parameters are described in the sections below.

The Parameterfacet.field

300Apache Solr Reference Guide 6.1

The parameter identifies a field that should be treated as a facet. It iterates over each Term infacet.field
the field and generate a facet count using that Term as the constraint. This parameter can be specified
multiple times in a query to select multiple facet fields.

The Parameterfacet.prefix

The parameter limits the terms on which to facet to those starting with the given string prefix.facet.prefix
This does not limit the query in any way, only the facets that would be returned in response to the query.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.prefix

The Parameterfacet.contains

The parameter limits the terms on which to facet to those containing the given substring.facet.contains
This does not limit the query in any way, only the facets that would be returned in response to the query.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.contains

The Parameterfacet.contains.ignoreCase

If is used, the parameter causes case to be ignoredfacet.contains facet.contains.ignoreCase
when matching the given substring against candidate facet terms.

This parameter can be specified on a per-field basis with the syntax of f.<fieldname>.facet.contains
..ignoreCase

The Parameterfacet.sort

This parameter determines the ordering of the facet field constraints.

facet.sort
Setting

Results

count Sort the constraints by count (highest count first).

index Return the constraints sorted in their index order (lexicographic by indexed term). For
terms in the ASCII range, this will be alphabetically sorted.

The default is if is greater than 0, otherwise, the default is .count facet.limit index

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.sort

The Parameterfacet.limit

This parameter specifies the maximum number of constraint counts (essentially, the number of facets for a
field that are returned) that should be returned for the facet fields. A negative value means that Solr will return
unlimited number of constraint counts.

The default value is 100.

If you do not set this parameter to at least one field in the schema, none of the other parameters
described in this section will have any effect.

301Apache Solr Reference Guide 6.1

This parameter can be specified on a per-field basis to apply a distinct limit to each field with the syntax of f.
.<fieldname>.facet.limit

The Parameterfacet.offset

The parameter indicates an offset into the list of constraints to allow paging.facet.offset

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.offset

The Parameterfacet.mincount

The parameter specifies the minimum counts required for a facet field to be included infacet.mincount
the response. If a field's counts are below the minimum, the field's facet is not returned.

The default value is 0.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.mincount

The Parameterfacet.missing

If set to true, this parameter indicates that, in addition to the Term-based constraints of a facet field, a count
of all results that match the query but which have no facet value for the field should be computed and
returned in the response.

The default value is false.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.missing

The Parameterfacet.method

The facet.method parameter selects the type of algorithm or method Solr should use when faceting a field.

Setting Results

enum Enumerates all terms in a field, calculating the set intersection of documents that match the term
with documents that match the query. This method is recommended for faceting multi-valued
fields that have only a few distinct values. The average number of values per document does not
matter. For example, faceting on a field with U.S. States such as Alabama, Alaska, ...

 would lead to fifty cached filters which would be used over and over again. The Wyoming filte
 should be large enough to hold all the cached filters.rCache

fc Calculates facet counts by iterating over documents that match the query and summing the
terms that appear in each document. This is currently implemented using an UnInvertedField
cache if the field either is multi-valued or is tokenized (according to)FieldType.isTokened()
. Each document is looked up in the cache to see what terms/values it contains, and a tally is
incremented for each value. This method is excellent for situations where the number of indexed
values for the field is high, but the number of values per document is low. For multi-valued fields,
a hybrid approach is used that uses term filters from the for terms that matchfilterCache
many documents. The letters stand for field cache.fc

fcs Per-segment field faceting for single-valued string fields. Enable with andfacet.method=fcs
control the number of threads used with the local parameter. This parameter allowsthreads
faceting to be faster in the presence of rapid index changes.

302Apache Solr Reference Guide 6.1

The default value is (except for fields using the field type) since it tends to use less memoryfc BoolField
and is faster when a field has many unique terms in the index.

This parameter can be specified on a per-field basis with the syntax of .f.<fieldname>.facet.method

The Parameterfacet.enum.cache.minDf

This parameter indicates the minimum document frequency (the number of documents matching a term) for
which the filterCache should be used when determining the constraint count for that term. This is only used
with the method of faceting.facet.method=enum

A value greater than zero decreases the filterCache's memory usage, but increases the time required for the
query to be processed. If you are faceting on a field with a very large number of terms, and you wish to
decrease memory usage, try setting this parameter to a value between 25 and 50, and run a few tests. Then,
optimize the parameter setting as necessary.

The default value is 0, causing the filterCache to be used for all terms in the field.

This parameter can be specified on a per-field basis with the syntax of f.<fieldname>.facet.enum.cac
.he.minDF

Over-Request Parameters

In some situations, the accuracy in selecting the "top" constraints returned for a facet in a distributed Solr
query can be improved by "Over Requesting" the number of desired constraints (ie:) fromfacet.limit
each of the individual Shards. In these situations, each shard is by default asked for the top "10 + (1.5 *

" constraints.facet.limit)

In some situations, depending on how your docs are partitioned across your shards, and what facet.limit
value you used, you may find it advantageous to increase or decrease the amount of over-requesting Solr
does. This can be achieved by setting the (defaults to 10) and facet.overrequest.count facet.over

 (defaults to 1.5) parameters.request.ratio

The Parameterfacet.threads

This param will cause loading the underlying fields used in faceting to be executed in parallel with the number
of threads specified. Specify as where is the maximum number of threads used.facet.threads=N N
Omitting this parameter or specifying the thread count as 0 will not spawn any threads, and only the main
request thread will be used. Specifying a negative number of threads will create up to Integer.MAX_VALUE
threads.

Range Faceting

You can use Range Faceting on any date field or any numeric field that supports range queries. This is
particularly useful for stitching together a series of range queries (as facet by query) for things like prices. As
of Solr 3.1, Range Faceting is preferred over (described below).Date Faceting

Parameter Description

facet.range Specifies the field to facet by range.

facet.range.start Specifies the start of the facet range.

facet.range.end Specifies the end of the facet range.

303Apache Solr Reference Guide 6.1

facet.range.gap Specifies the span of the range as a value to be added to the lower bound.

facet.range.hardend A boolean parameter that specifies how Solr handles a range gap that cannot be
evenly divided between the range start and end values. If true, the last range
constraint will have the value an upper bound. If false, the lastfacet.range.end
range will have the smallest possible upper bound greater then facet.range.end
such that the range is the exact width of the specified range gap. The default value
for this parameter is false.

facet.range.include Specifies inclusion and exclusion preferences for the upper and lower bounds of the
range. See the topic for more detailed information.facet.range.include

facet.range.other Specifies counts for Solr to compute in addition to the counts for each facet range
constraint.

facet.range.method Specifies the algorithm or method to use for calculating facets.

The Parameterfacet.range

The parameter defines the field for which Solr should create range facets. For example:facet.range

facet.range=price&facet.range=age

facet.range=lastModified_dt

The Parameterfacet.range.start

The parameter specifies the lower bound of the ranges. You can specify thisfacet.range.start
parameter on a per field basis with the syntax of . For example:f.<fieldname>.facet.range.start

f.price.facet.range.start=0.0&f.age.facet.range.start=10

f.lastModified_dt.facet.range.start=NOW/DAY-30DAYS

The Parameterfacet.range.end

The facet.range.end specifies the upper bound of the ranges. You can specify this parameter on a per field
basis with the syntax of . For example:f.<fieldname>.facet.range.end

f.price.facet.range.end=1000.0&f.age.facet.range.start=99

f.lastModified_dt.facet.range.end=NOW/DAY+30DAYS

The Parameterfacet.range.gap

The span of each range expressed as a value to be added to the lower bound. For date fields, this should be
expressed using the (such as,). syntaxDateMathParser facet.range.gap=%2B1DAY ... '+1DAY'
You can specify this parameter on a per-field basis with the syntax of .f.<fieldname>.facet.range.gap
For example:

f.price.facet.range.gap=100&f.age.facet.range.gap=10

f.lastModified_dt.facet.range.gap=+1DAY

The Parameterfacet.range.hardend

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/util/DateMathParser.html

304Apache Solr Reference Guide 6.1

The parameter is a Boolean parameter that specifies how Solr should handlefacet.range.hardend
cases where the does not divide evenly between and facet.range.gap facet.range.start facet.ra

. If , the last range constraint will have the value as an upper bound. If nge.end true facet.range.end fals
, the last range will have the smallest possible upper bound greater then such that thee facet.range.end

range is the exact width of the specified range gap. The default value for this parameter is false.

This parameter can be specified on a per field basis with the syntax f.<fieldname>.facet.range.hard
.end

The Parameterfacet.range.include

By default, the ranges used to compute range faceting between and facet.range.start facet.range.
 are inclusive of their lower bounds and exclusive of the upper bounds. The "before" range defined withend

the parameter is exclusive and the "after" range is inclusive. This default, equivalentfacet.range.other
to "lower" below, will not result in double counting at the boundaries. You can use the facet.range.inclu

 parameter to modify this behavior using the following options:de

Option Description

lower All gap-based ranges include their lower bound.

upper All gap-based ranges include their upper bound.

edge The first and last gap ranges include their edge bounds (lower for the first one, upper for the last
one) even if the corresponding upper/lower option is not specified.

outer The "before" and "after" ranges will be inclusive of their bounds, even if the first or last ranges
already include those boundaries.

all Includes all options: lower, upper, edge, outer.

You can specify this parameter on a per field basis with the syntax of f.<fieldname>.facet.range.inc
, and you can specify it multiple times to indicate multiple choices.lude

The Parameterfacet.range.other

The parameter specifies that in addition to the counts for each range constraintfacet.range.other
between and , counts should also be computed for these options:facet.range.start facet.range.end

Option Description

before All records with field values lower then lower bound of the first range.

after All records with field values greater then the upper bound of the last range.

between All records with field values between the start and end bounds of all ranges.

none Do not compute any counts.

all Compute counts for before, between, and after.

This parameter can be specified on a per field basis with the syntax of f.<fieldname>.facet.range.ot

To ensure you avoid double-counting, do not choose both and , do not choose ,lower upper outer
and do not choose .all

305Apache Solr Reference Guide 6.1

. In addition to the option, this parameter can be specified multiple times to indicate multiple choices,her all
but will override all other options.none

The Parameterfacet.range.method

The parameter selects the type of algorithm or method Solr should use for rangefacet.range.method
faceting. Both methods produce the same results, but performance may vary.

Method Description

filter This method generates the ranges based on other facet.range parameters, and for each of them
executes a filter that later intersects with the main query resultset to get the count. It will make
use of the filterCache, so it will benefit of a cache large enough to contain all ranges.

dv This method iterates the documents that match the main query, and for each of them finds the
correct range for the value. This method will make use of (if enabled for the field) ordocValues
fieldCache. "dv" method is not supported for field type DateRangeField or when using group.fac

.ets

Default value for this parameter is "filter".

The facet.mincount Parameter in Range Faceting

The parameter, the same one as used in field faceting is also applied to range faceting.facet.mincount
When used, no ranges with a count below the minimum will be included in the response.

Pivot (Decision Tree) Faceting

Pivoting is a summarization tool that lets you automatically sort, count, total or average data stored in a table.
The results are typically displayed in a second table showing the summarized data. Pivot faceting lets you
create a summary table of the results from a faceting documents by multiple fields.

Another way to look at it is that the query produces a Decision Tree, in that Solr tells you "for facet A, the
constraints/counts are X/N, Y/M, etc. If you were to constrain A by X, then the constraint counts for B would
be S/P, T/Q, etc.". In other words, it tells you in advance what the "next" set of facet results would be for a
field if you apply a constraint from the current facet results.

facet.pivot

The parameter defines the fields to use for the pivot. Multiple values will createfacet.pivot facet.pivot
multiple "facet_pivot" sections in the response. Separate each list of fields with a comma.

facet.pivot.mincount

The parameter defines the minimum number of documents that need to match infacet.pivot.mincount
order for the facet to be included in results. The default is 1.

Date Ranges & Time Zones
Range faceting on date fields is a common situation where the parameter can be useful to ensure TZ
that the "facet counts per day" or "facet counts per month" are based on a meaningful definition of
when a given day/month "starts" relative to a particular TimeZone.

For more information, see the examples in the section.Working with Dates

https://cwiki.apache.org/confluence/display/solr/Working+with+Dates#WorkingwithDates-TZ

306Apache Solr Reference Guide 6.1

Using the " " example, A query URL like this one will returns the data below,bin/solr -e techproducts
with the pivot faceting results found in the section "facet_pivot":

http://localhost:8983/solr/techproducts/select?q=*:*&facet.pivot=cat,popularity,i
nStock
 &facet.pivot=popularity,cat&facet=true&facet.field=cat&facet.limit=5
 &rows=0&wt=json&indent=true&facet.pivot.mincount=2

"facet_counts":{
 "facet_queries":{},
 "facet_fields":{
 "cat":[
 "electronics",14,
 "currency",4,
 "memory",3,
 "connector",2,
 "graphics card",2]},
 "facet_dates":{},
 "facet_ranges":{},
 "facet_pivot":{
 "cat,popularity,inStock":[{
 "field":"cat",
 "value":"electronics",
 "count":14,
 "pivot":[{
 "field":"popularity",
 "value":6,
 "count":5,
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":5}]},
...

Combining Stats Component With Pivots

In addition to some of the supported by other types of faceting, a local general local parameters stats
parameters can be used with to refer to instances (by tag) that you wouldfacet.pivot stats.field
like to have computed for each Pivot Constraint.

In the example below, two different (overlapping) sets of statistics are computed for each of the facet.pivot
result hierarchies:

stats=true
stats.field={!tag=piv1,piv2 min=true max=true}price
stats.field={!tag=piv2 mean=true}popularity
facet=true
facet.pivot={!stats=piv1}cat,inStock
facet.pivot={!stats=piv2}manu,inStock

Results:

"facet_pivot":{
 "cat,inStock":[{

307Apache Solr Reference Guide 6.1

 "field":"cat",
 "value":"electronics",
 "count":12,
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":8,
 "stats":{
 "stats_fields":{
 "price":{
 "min":74.98999786376953,
 "max":399.0}}}},
 {
 "field":"inStock",
 "value":false,
 "count":4,
 "stats":{
 "stats_fields":{
 "price":{
 "min":11.5,
 "max":649.989990234375}}}}],
 "stats":{
 "stats_fields":{
 "price":{
 "min":11.5,
 "max":649.989990234375}}}},
 {
 "field":"cat",
 "value":"currency",
 "count":4,
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":4,
 "stats":{
 "stats_fields":{
 "price":{
 ...
 "manu,inStock":[{
 "field":"manu",
 "value":"inc",
 "count":8,
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":7,
 "stats":{
 "stats_fields":{
 "price":{
 "min":74.98999786376953,
 "max":2199.0},
 "popularity":{
 "mean":5.857142857142857}}}},
 {
 "field":"inStock",
 "value":false,
 "count":1,
 "stats":{
 "stats_fields":{

308Apache Solr Reference Guide 6.1

 "price":{
 "min":479.95001220703125,
 "max":479.95001220703125},
 "popularity":{

309Apache Solr Reference Guide 6.1

 "mean":7.0}}}}],
 ...

Combining Facet Queries And Facet Ranges With Pivot Facets

A local parameter can be used with to refer to instances (by tag) thatquery facet.pivot facet.query
should be computed for each pivot constraint. Similarly, a local parameter can be used with range facet.p

 to refer to instances.ivot facet.range

In the example below, two query facets are computed for each of the result hierarchies:facet.pivot

facet=true
facet.query={!tag=q1}manufacturedate_dt:[2006-01-01T00:00:00Z TO NOW]
facet.query={!tag=q1}price:[0 TO 100]
facet.pivot={!query=q1}cat,inStock

"facet_counts": {
 "facet_queries": {
 "{!tag=q1}manufacturedate_dt:[2006-01-01T00:00:00Z TO NOW]": 9,
 "{!tag=q1}price:[0 TO 100]": 7
 },
 "facet_fields": {},
 "facet_dates": {},
 "facet_ranges": {},
 "facet_intervals": {},
 "facet_heatmaps": {},
 "facet_pivot": {
 "cat,inStock": [
 {
 "field": "cat",
 "value": "electronics",
 "count": 12,
 "queries": {
 "{!tag=q1}manufacturedate_dt:[2006-01-01T00:00:00Z TO NOW]": 9,
 "{!tag=q1}price:[0 TO 100]": 4
 },
 "pivot": [
 {
 "field": "inStock",
 "value": true,
 "count": 8,
 "queries": {
 "{!tag=q1}manufacturedate_dt:[2006-01-01T00:00:00Z TO NOW]": 6,
 "{!tag=q1}price:[0 TO 100]": 2
 }
 },
 ...

In a similar way, in the example below, two range facets are computed for each of the resultfacet.pivot
hierarchies:

310Apache Solr Reference Guide 6.1

facet=true
facet.range={!tag=r1}manufacturedate_dt
facet.range.start=2006-01-01T00:00:00Z
facet.range.end=NOW/YEAR
facet.range.gap=+1YEAR
facet.pivot={!range=r1}cat,inStock

"facet_counts":{
 "facet_queries":{},
 "facet_fields":{},
 "facet_dates":{},
 "facet_ranges":{
 "manufacturedate_dt":{
 "counts":[
 "2006-01-01T00:00:00Z",9,
 "2007-01-01T00:00:00Z",0,
 "2008-01-01T00:00:00Z",0,
 "2009-01-01T00:00:00Z",0,
 "2010-01-01T00:00:00Z",0,
 "2011-01-01T00:00:00Z",0,
 "2012-01-01T00:00:00Z",0,
 "2013-01-01T00:00:00Z",0,
 "2014-01-01T00:00:00Z",0],
 "gap":"+1YEAR",
 "start":"2006-01-01T00:00:00Z",
 "end":"2015-01-01T00:00:00Z"}},
 "facet_intervals":{},
 "facet_heatmaps":{},
 "facet_pivot":{
 "cat,inStock":[{
 "field":"cat",
 "value":"electronics",
 "count":12,
 "ranges":{
 "manufacturedate_dt":{
 "counts":[
 "2006-01-01T00:00:00Z",9,
 "2007-01-01T00:00:00Z",0,
 "2008-01-01T00:00:00Z",0,
 "2009-01-01T00:00:00Z",0,
 "2010-01-01T00:00:00Z",0,
 "2011-01-01T00:00:00Z",0,
 "2012-01-01T00:00:00Z",0,
 "2013-01-01T00:00:00Z",0,
 "2014-01-01T00:00:00Z",0],
 "gap":"+1YEAR",
 "start":"2006-01-01T00:00:00Z",
 "end":"2015-01-01T00:00:00Z"}},
 "pivot":[{
 "field":"inStock",
 "value":true,
 "count":8,
 "ranges":{
 "manufacturedate_dt":{
 "counts":[
 "2006-01-01T00:00:00Z",6,

311Apache Solr Reference Guide 6.1

 "2007-01-01T00:00:00Z",0,
 "2008-01-01T00:00:00Z",0,
 "2009-01-01T00:00:00Z",0,
 "2010-01-01T00:00:00Z",0,
 "2011-01-01T00:00:00Z",0,
 "2012-01-01T00:00:00Z",0,
 "2013-01-01T00:00:00Z",0,
 "2014-01-01T00:00:00Z",0],
 "gap":"+1YEAR",

312Apache Solr Reference Guide 6.1

 "start":"2006-01-01T00:00:00Z",
 "end":"2015-01-01T00:00:00Z"}}},
 ...

Additional Pivot Parameters

Although deviates in name from the parameter used by fieldfacet.pivot.mincount facet.mincount
faceting, many other Field faceting parameters described above can also be used with pivot faceting:

facet.limit
facet.offset
facet.sort
facet.overrequest.count
facet.overrequest.ratio

Interval Faceting

Another supported form of faceting is interval faceting. This sounds similar to range faceting, but the
functionality is really closer to doing facet queries with range queries. Interval faceting allows you to set
variable intervals and count the number of documents that have values within those intervals in the specified
field.

Even though the same functionality can be achieved by using a facet query with range queries, the
implementation of these two methods is very different and will provide different performance depending on
the context. If you are concerned about the performance of your searches you should test with both options.
Interval faceting tends to be better with multiple intervals for the same fields, while facet query tend to be
better in environments where filter cache is more effective (static indexes for example). This method will use

 if they are enabled for the field, will use fieldCache otherwise.docValues

Name What it does

facet.interval Specifies the field to facet by interval.

facet.interval.set Sets the intervals for the field.

The parameterfacet.interval

This parameter Indicates the field where interval faceting must be applied. It can be used multiple times in the
same request to indicate multiple fields.

facet.interval=price&facet.interval=size

The parameterfacet.interval.set

This parameter is used to set the intervals for the field, it can be specified multiple times to indicate multiple
intervals. This parameter is global, which means that it will be used for all fields indicated with facet.inter

 unless there is an override for a specific field. To override this parameter on a specific field you can use: val
, for example:f.<fieldname>.facet.interval.set

f.price.facet.interval.set=[0,10]&f.price.facet.interval.set=(10,100]

Interval Syntax

313Apache Solr Reference Guide 6.1

Intervals must begin with either '(' or '[', be followed by the start value, then a comma (','), the end value, and
finally a closing ')' or ']’.

For example:

(1,10) -> will include values greater than 1 and lower than 10
[1,10) -> will include values greater or equal to 1 and lower than 10
[1,10] -> will include values greater or equal to 1 and lower or equal to 10

The initial and end values cannot be empty. If the interval needs to be unbounded, the special character '*'
can be used for both, start and end limit. When using '*', '(' and '[', and ')' and ']' will be treated equal. [*,*] will
include all documents with a value in the field. The interval limits may be strings but there is no need to add
quotes. All the text until the comma will be treated as the start limit, and the text after that will be the end limit.
For example: [Buenos Aires,New York]. Keep in mind that a string-like comparison will be done to match
documents in string intervals (case-sensitive). The comparator can't be changed.

Commas, brackets and square brackets can be escaped by using '\' in front of them. Whitespaces before and
after the values will be omitted. The start limit can't be grater than the end limit. Equal limits are allowed, this
allows you to indicate the specific values that you want to count, like [A,A], [B,B] and [C,Z].

Interval faceting supports output key replacement described below. Output keys can be replaced in both the f
 and in the . For example:acet.interval parameter facet.interval.set parameter

&facet.interval={!key=popularity}some_field
&facet.interval.set={!key=bad}[0,5]
&facet.interval.set={!key=good}[5,*]
&facet=true

Local Parameters for Faceting

The allows overriding global settings. It can also provide a method of adding metadata toLocalParams syntax
other parameter values, much like XML attributes.

Tagging and Excluding Filters

You can tag specific filters and exclude those filters when faceting. This is useful when doing multi-select
faceting.

Consider the following example query with faceting:

q=mainquery&fq=status:public&fq=doctype:pdf&facet=true&facet.field=doctyp

e

Because everything is already constrained by the filter , the facetdoctype:pdf facet.field=doctype
command is currently redundant and will return 0 counts for everything except .doctype:pdf

To implement a multi-select facet for doctype, a GUI may want to still display the other doctype values and
their associated counts, as if the constraint had not yet been applied. For example: doctype:pdf

=== Document Type ===
 [] Word (42)
 [x] PDF (96)
 [] Excel(11)
 [] HTML (63)

To return counts for doctype values that are currently not selected, tag filters that directly constrain doctype,

http://doctypepdf

314Apache Solr Reference Guide 6.1

and exclude those filters when faceting on doctype.

q=mainquery&fq=status:public&fq={!tag=dt}doctype:pdf&facet=true&facet.fie

ld={!ex=dt}doctype

Filter exclusion is supported for all types of facets. Both the and local parameters may specifytag ex
multiple values by separating them with commas.

Changing the Output Key

To change the output key for a faceting command, specify a new name with the local parameter. Forkey
example:

facet.field={!ex=dt key=mylabel}doctype

The parameter setting above causes the field facet results for the "doctype" field to be returned using the key
"mylabel" rather than "doctype" in the response. This can be helpful when faceting on the same field multiple
times with different exclusions.

Related Topics

SimpleFacetParameters from the Solr Wiki.
Heatmap Faceting (Spatial)

BlockJoin Faceting

It's a common requirement to aggregate children facet counts by their parents, i.e., if a parent document has
several children documents, all of them need to increment facet value count only once. This functionality is
provided by two search components with slightly different performance: the , andBlockJoinFacetComponent
the .BlockJoinDocSetFacetComponent

These components are considered experimental, and must be explicitly enabled for a request handler in solrco
, in the same way as any other .nfig.xml search component

This example shows how you could add both search components to and define them in twosolrconfig.xml
different request handlers:

http://wiki.apache.org/solr/SimpleFacetParameters

315Apache Solr Reference Guide 6.1

<searchComponent name="bjqFacetComponent"
class="org.apache.solr.search.join.BlockJoinFacetComponent"/>
 <searchComponent name="bjqDocsetFacetComponent"
class="org.apache.solr.search.join.BlockJoinDocSetFacetComponent"/>

 <requestHandler name="/bjqfacet"
class="org.apache.solr.handler.component.SearchHandler">
 <lst name="defaults">
 <str name="shards.qt">/bjqfacet</str>
 </lst>
 <arr name="last-components">
 <str>bjqFacetComponent</str>
 </arr>
 </requestHandler>

 <requestHandler name="/bjqdocsetfacet"
class="org.apache.solr.handler.component.SearchHandler">
 <lst name="defaults">
 <str name="shards.qt">/bjqdocsetfacet</str>
 </lst>
 <arr name="last-components">
 <str>bjqDocsetFacetComponent</str>
 </arr>
 </requestHandler>

One of these components can be added into any search request handler.

The difference between the and is in theBlockJoinFacetComponent BlockJoinDocSetFacetComponent
way they deal with Solr's caches.

The disables queryResult cache for the request it takes part in.BlockJoinFacetComponent
The uses the filter cache, which might have worse performance ifBlockJoinDocSetFacetComponent
commits are frequent.

In most cases, the differences are negligible. Both components work with distributed search in SolrCloud mode.

Documents should be added in children-parent blocks as described in .indexing nested child documents
Examples:

solrconfig.xml

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-NestedChildDocuments

316Apache Solr Reference Guide 6.1

<add>
 <doc>
 <field name="id">1</field>
 <field name="type_s">parent</field>
 <doc>
 <field name="id">11</field>
 <field name="COLOR_s">Red</field>
 <field name="SIZE_s">XL</field>
 <field name="PRICE_i">6</field>
 </doc>
 <doc>
 <field name="id">12</field>
 <field name="COLOR_s">Red</field>
 <field name="SIZE_s">XL</field>
 <field name="PRICE_i">7</field>
 </doc>
 <doc>
 <field name="id">13</field>
 <field name="COLOR_s">Blue</field>
 <field name="SIZE_s">L</field>
 <field name="PRICE_i">5</field>
 </doc>
 </doc>
 <doc>
 <field name="id">2</field>
 <field name="type_s">parent</field>
 <doc>
 <field name="id">21</field>
 <field name="COLOR_s">Blue</field>
 <field name="SIZE_s">XL</field>
 <field name="PRICE_i">6</field>
 </doc>
 <doc>
 <field name="id">22</field>
 <field name="COLOR_s">Blue</field>
 <field name="SIZE_s">XL</field>
 <field name="PRICE_i">7</field>
 </doc>
 <doc>
 <field name="id">23</field>
 <field name="COLOR_s">Red</field>
 <field name="SIZE_s">L</field>
 <field name="PRICE_i">5</field>
 </doc>
 </doc>
</add>

Queries are constructed the same way as for a . For example:Parent Block Join query

http://localhost:8983/solr/bjqfacet?q={!parent
which=type_s:parent}SIZE_s:XL&child.facet.field=COLOR_s

As a result we should have facets for Red(1) and Blue(1), because matches on children and areid=11 id=12

document sample

https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers

317Apache Solr Reference Guide 6.1

aggregated into single hit into parent with . The key components of the request are:id=1

url part meaning

/bjqfacet The name of the request handler that has been defined with one of block join
facet components enabled.

q={!parent ...}.. The mandatory parent query as a main query. The parent query could also be a
subordinate clause in a more complex query.

child.facet.field=... The child document field, which might be repeated many times with several
fields, as necessary.

Highlighting
Highlighting in Solr allows fragments of documents that match the user's query to be included with the query
response. The fragments are included in a special section of the response (the section), and thehighlighting
client uses the formatting clues also included to determine how to present the snippets to users.

Solr provides a collection of highlighting utilities which allow a great deal of control over the fields fragments are
taken from, the size of fragments, and how they are formatted. The highlighting utilities can be called by various
Request Handlers and can be used with the , , or query parsers.DisMax Extended DisMax standard

There are three highlighting implementations available:

Standard Highlighter: The is the swiss-army knife of the highlighters. It has theStandard Highlighter
most sophisticated and fine-grained query representation of the three highlighters. For example, this
highlighter is capable of providing precise matches even for advanced queryparsers such as the surroun

 parser. It does not require any special datastructures such as , although it will use them ifd termVectors
they are present. If they are not, this highlighter will re-analyze the document on-the-fly to highlight it. This
highlighter is a good choice for a wide variety of search use-cases.

FastVector Highlighter: The requires term vector options (, FastVector Highlighter termVectors termP
, and) on the field, and is optimized with that in mind. It tends to work better forositions termOffsets

more languages than the Standard Highlighter, because it supports Unicode breakiterators. On the other
hand, its query-representation is less advanced than the Standard Highlighter: for example it will not work
well with the parser. This highlighter is a good choice for large documents and highlighting textsurround
in a variety of languages.

Postings Highlighter: The requires to bePostings Highlighter storeOffsetsWithPositions
configured on the field. This is a much more compact and efficient structure than term vectors, but is not
appropriate for huge numbers of query terms (e.g. wildcard queries). Like the FastVector Highlighter, it
supports Unicode algorithms for dividing up the document. On the other hand, it has the most coarse
query-representation: it focuses on summary quality and ignores the structure of the query completely,
ranking passages based solely on query terms and statistics. This highlighter a good choice for classic
full-text keyword search.

Configuring Highlighting

The configuration for highlighting, whichever implementation is chosen, is first to configure a search component
and then reference the component in one or more request handlers.

The exact parameters for the search component vary depending on the implementation, but there is a robust
example in the used in the " " example which shows how to configure bothsolrconfig.xml techproducts
the Standard Highlighter and the FastVector Highlighter (see the section for details on howPostings Highlighter
to configure that implementation).

318Apache Solr Reference Guide 6.1

Standard Highlighter

The standard highlighter (AKA the default highlighter) doesn't require any special indexing parameters on the
fields to highlight. However you can optionally turn on , , and fortermVectors termPositions termOffsets
any field to be highlighted. This will avoid having to run documents through the analysis chain at query-time and
will make highlighting significantly faster and use less memory, particularly for large text fields, and even more so
when . is enabledhl.usePhraseHighlighter

Standard Highlighting Parameters

The table below describes Solr's parameters for the Standard highlighter. These parameters can be defined in
the highlight search component, as defaults for the specific request handler, or passed to the request handler
with the query.

Parameter Default Value Description

hl blank (no highlight) When set to , enables highlighted snippets to betrue
generated in the query response. If set to or tofalse
a blank or missing value, disables highlighting.

hl.q blank Specifies an overriding query term for highlighting. If
 is specified, the highlighter will use that termhl.q

rather than the main query term.

hl.qparser blank Specifies a qparser to use for the hl.q query. If
blank, will use the defType of the overall query.

hl.fl blank Specifies a list of fields to highlight. Accepts a
comma- or space-delimited list of fields for which
Solr should generate highlighted snippets. If left
blank, highlights the defaultSearchField (or the field
specified the parameter if used) for thedf
StandardRequestHandler. For the
DisMaxRequestHandler, the fields are used asqf
defaults.

A '*' can be used to match field globs, such as
'text_*' or even '*' to highlight on all fields where
highlighting is possible. When using '*', consider
adding .hl.requireFieldMatch=true

hl.snippets 1 Specifies maximum number of highlighted snippets
to generate per field. It is possible for any number of
snippets from zero to this value to be generated.
This parameter accepts per-field overrides.

hl.fragsize 100 Specifies the size, in characters, of fragments to
consider for highlighting. indicates that no0
fragmenting should be considered and the whole
field value should be used. This parameter accepts
per-field overrides.

319Apache Solr Reference Guide 6.1

hl.mergeContiguous false Instructs Solr to collapse contiguous fragments into
a single fragment. A value of indicatestrue
contiguous fragments will be collapsed into single
fragment. This parameter accepts per-field
overrides. The default value, , is also thefalse
backward-compatible setting.

hl.requireFieldMatch false If set to , highlights terms only if they appear intrue
the specified field. If , terms are highlighted infalse
all requested fields regardless of which field
matched the query.

hl.maxAnalyzedChars 51200 Specifies the number of characters into a document
that Solr should look for suitable snippets.

hl.maxMultiValuedToExamine integer.MAX_VALUE Specifies the maximum number of entries in a
multi-valued field to examine before stopping. This
can potentially return zero results if the limit is
reached before any matches are found. If used with
the , whichever limit ismaxMultiValuedToMatch
reached first will determine when to stop looking.

hl.maxMultiValuedToMatch integer.MAX_VALUE Specifies the maximum number of matches in a
multi-valued field that are found before stopping. If h

 is also defined,l.maxMultiValuedToExamine
whichever limit is reached first will determine when
to stop looking.

hl.alternateField blank Specifies a field to be used as a backup default
summary if Solr cannot generate a snippet (i.e.,
because no terms match). This parameter accepts
per-field overrides.

hl.maxAlternateFieldLength unlimited Specifies the maximum number of characters of the
field to return. Any value less than or equal to 0
means the field's length is unlimited. This parameter
is only used in conjunction with the hl.alternate

 parameter.Field

hl.highlightAlternate true If set to , and istrue hl.alternateFieldName
active, Solr will show the entire alternate field, with
highlighting of occurrences. If hl.maxAlternateF

 is used, Solr returns max charactieldLength=N N
ers surrounding the best matching fragment. If set
to , or if there is no match in the alternate fieldfalse
either, the alternate field will be shown without
highlighting.

hl.formatter simple Selects a formatter for the highlighted output.
Currently the only legal value is , whichsimple
surrounds a highlighted term with a customizable
pre- and post-text snippet. This parameter accepts
per-field overrides.

320Apache Solr Reference Guide 6.1

hl.simple.pre
hl.simple.post

 and Specifies the text that should appear before (hl.si
) and after () ample.pre hl.simple.post

highlighted term, when using the simple formatter.
This parameter accepts per-field overrides.

hl.fragmenter gap Specifies a text snippet generator for highlighted
text. The standard fragmenter is , which createsgap
fixed-sized fragments with gaps for multi-valued
fields. Another option is , which tries to createregex
fragments that resemble a specified regular
expression. This parameter accepts per-field
overrides.

hl.usePhraseHighlighter true If set to , Solr will highlight phrase queries (andtrue
other advanced position-sensitive queries)
accurately. If , the parts of the phrase will befalse
highlighted everywhere instead of only when it forms
the given phrase.

hl.highlightMultiTerm true If set to , Solr will highlight wildcard queries (andtrue
other subclasses). If , theyMultiTermQuery false
won't be highlighted at all.

hl.regex.slop 0.6 When using the regex fragmenter (hl.fragmenter
), this parameter defines the factor by which=regex

the fragmenter can stray from the ideal fragment
size (given by) to accommodate ahl.fragsize
regular expression. For instance, a slop of 0.2 with h

 should yield fragments betweenl.fragsize=100
80 and 120 characters in length.

It is usually good to provide a slightly smaller hl.fr
 value when using the regex fragmenter.agsize

hl.regex.pattern blank Specifies the regular expression for fragmenting.
This could be used to extract sentences.

hl.regex.maxAnalyzedChars 10000 Instructs Solr to analyze only this many characters
from a field when using the regex fragmenter (after
which, the fragmenter produces fixed-sized
fragments). Applying a complicated regex to a huge
field is computationally expensive.

hl.preserveMulti false If , multi-valued fields will return all values in thetrue
order they were saved in the index. If , onlyfalse
values that match the highlight request will be
returned.

hl.payloads (automatic) When is true and thehl.usePhraseHighlighter
indexed field has payloads but not term vectors
(generally quite rare), the index's payloads will be
read into the highlighter's memory index along with
the postings. If this may happen and you know you
don't need them for highlighting (i.e. your queries
don't filter by payload) then you can save a little
memory by setting this to false.

321Apache Solr Reference Guide 6.1

Related Content

HighlightingParameters from the Solr wiki
Highlighting javadocs

FastVector Highlighter

The FastVectorHighlighter is a TermVector-based highlighter that offers higher performance than the standard
highlighter in many cases. To use the FastVectorHighlighter, set the paramhl.useFastVectorHighlighter
eter to .true

You must also turn on , , and for each field that will betermVectors termPositions termOffsets
highlighted. Lastly, you should use a boundary scanner to prevent the FastVectorHighlighter from truncating your
terms. In most cases, using the boundary scanner will give you excellent results. See thebreakIterator
section for more details about boundary scanners.Using Boundary Scanners with the Fast Vector Highlighter

FastVector Highlighter Parameters

The table below describes Solr's parameters for this highlighter, many of which overlap with the standard
highlighter. These parameters can be defined in the highlight search component, as defaults for the specific
request handler, or passed to the request handler with the query.

Parameter Default Description

hl blank (no highlighting) When set to , enables highlighted snippets to betrue
generated in the query response. A or blankfalse
value disables highlighting.

hl.useFastVectorHighlighter false When set to , enables the FastVectortrue
Highlighter.

hl.q blank Specifies an overriding query term for highlighting. If
 is specified, the highlighter will use that termhl.q

rather than the main query term.

hl.fl blank Specifies a list of fields to highlight. Accepts a
comma- or space-delimited list of fields for which
Solr should generate highlighted snippets. If left
blank, highlights the defaultSearchField (or the field
specified the parameter if used) for thedf
StandardRequestHandler. For the
DisMaxRequestHandler, the fields are used asqf
defaults.

A '*' can be used to match field globs, such as
'text_*' or even '*' to highlight on all fields where
highlighting is possible. When using '*', consider
adding .hl.requireFieldMatch=true

hl.snippets 1 Specifies maximum number of highlighted snippets
to generate per field. It is possible for any number of
snippets from zero to this value to be generated.
This parameter accepts per-field overrides.

http://wiki.apache.org/solr/HighlightingParameters
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/highlight/package-summary.html

322Apache Solr Reference Guide 6.1

hl.fragsize 100 Specifies the size, in characters, of fragments to
consider for highlighting. indicates that no0
fragmenting should be considered and the whole
field value should be used. This parameter accepts
per-field overrides.

hl.requireFieldMatch false If set to , highlights terms only if they appear intrue
the specified field. If , terms are highlighted infalse
all requested fields regardless of which field
matched the query.

hl.maxMultiValuedToExamine integer.MAX_VALUE Specifies the maximum number of entries in a
multi-valued field to examine before stopping. This
can potentially return zero results if the limit is
reached before any matches are found. If used with
the , whichever limit ismaxMultiValuedToMatch
reached first will determine when to stop looking.

hl.maxMultiValuedToMatch integer.MAX_VALUE Specifies the maximum number of matches in a
multi-valued field that are found before stopping. If h

 is also defined,l.maxMultiValuedToExamine
whichever limit is reached first will determine when
to stop looking.

hl.alternateField blank Specifies a field to be used as a backup default
summary if Solr cannot generate a snippet (i.e.,
because no terms match). This parameter accepts
per-field overrides.

hl.maxAlternateFieldLength unlimited Specifies the maximum number of characters of the
field to return. Any value less than or equal to 0
means the field's length is unlimited. This parameter
is only used in conjunction with the hl.alternate

 parameter.Field

hl.highlightAlternate true If set to , and istrue hl.alternateFieldName
active, Solr will show the entire alternate field, with
highlighting of occurrences. If hl.maxAlternateF

 is used, Solr returns max charactieldLength=N N
ers surrounding the best matching fragment. If set
to , or if there is no match in the alternate fieldfalse
either, the alternate field will be shown without
highlighting.

hl.tag.pre
hl.tag.post

 and Specifies the text that should appear before (hl.ta
) and after () a highlightedg.pre hl.tag.post

term. This parameter accepts per-field overrides.

hl.phraseLimit integer.MAX_VALUE To improve the performance of the
FastVectorHighlighter, you can set a limit on the
number (int) of phrases to be analyzed for
highlighting.

hl.usePhraseHighlighter true If set to , Solr will use the Lucene SpanScorertrue
class to highlight phrase terms only when they
appear within the query phrase in the document.

323Apache Solr Reference Guide 6.1

hl.preserveMulti false If , multi-valued fields will return all values in thetrue
order they were saved in the index. If , thefalse
default, only values that match the highlight request
will be returned.

hl.fragListBuilder weighted The snippet fragmenting algorithm. The frweighted
agListBuilder uses IDF-weights to order fragments.
Other options are , which returns the entiresingle
field contents as one snippet, or . You cansimple
select a fragListBuilder with this parameter, or
modify an existing implementation in solrconfig.

 to be the default by adding "default=true".xml

hl.fragmentsBuilder default The fragments builder is responsible for formatting
the fragments, which uses and markup
(if and are nothl.tag.pre hl.tag.post
defined). Another pre-configured choice is ,colored
which is an example of how to use the fragments
builder to insert HTML into the snippets for colored
highlights if you choose. You can also implement
your own if you'd like. You can select a fragments
builder with this parameter, or modify an existing
implementation in to be thesolrconfig.xml
default by adding "default=true".

Using Boundary Scanners with the Fast Vector Highlighter

The Fast Vector Highlighter will occasionally truncate highlighted words. To prevent this, implement a boundary
scanner in , then use the parameter to specify the boundary scannersolrconfig.xml hl.boundaryScanner
for highlighting.

Solr supports two boundary scanners: and .breakIterator simple

The Boundary ScannerbreakIterator

The boundary scanner offers excellent performance right out of the box by taking locale andbreakIterator
boundary type into account. In most cases you will want to use the boundary scanner. TobreakIterator
implement the boundary scanner, add this code to the section of your breakIterator highlighting solrc

 file, adjusting the type, language, and country values as appropriate to your application:onfig.xml

<boundaryScanner name="breakIterator"
class="solr.highlight.BreakIteratorBoundaryScanner">
 <lst name="defaults">
 <str name="hl.bs.type">WORD</str>
 <str name="hl.bs.language">en</str>
 <str name="hl.bs.country">US</str>
 </lst>
</boundaryScanner>

Possible values for the parameter are WORD, LINE, SENTENCE, and CHARACTER.hl.bs.type

The Boundary Scannersimple

The boundary scanner scans term boundaries for a specified maximum character value (simple hl.bs.maxSc
) and for common delimiters such as punctuation marks (). The boundary scanner mayan hl.bs.chars simple

324Apache Solr Reference Guide 6.1

be useful for some custom To implement the boundary scanner, add this code to the sesimple highlighting
ction of your file, adjusting the values as appropriate to your application:solrconfig.xml

<boundaryScanner name="simple" class="solr.highlight.SimpleBoundaryScanner"
default="true">
 <lst name="defaults">
 <str name="hl.bs.maxScan">10</str>
 <str name="hl.bs.chars">.,!?\t\n</str>
 </lst>
</boundaryScanner>

Related Content

HighlightingParameters from the Solr wiki
Highlighting javadocs

Postings Highlighter

PostingsHighlighter focuses on good document summaries and efficiency, but is less flexible than the other
highlighters. It uses significantly less disk space, and provides a performant approach if queries have a low
number of terms relative to the number of results per page. However, the drawbacks are that it is not a query
matching debugger (it focuses on fast highlighting for full-text search) and it does not allow broken analysis
chains.

To use this highlighter, you must turn on for the field. There is no need to turnstoreOffsetsWithPositions
on , , or in fields since this highlighter does not make use of termtermVectors termPositions termOffsets
vectors.

Configuring Postings Highlighter

The configuration for the Postings Highlighter is done in .solrconfig.xml

First, define the search component:

<searchComponent class="solr.HighlightComponent" name="highlight">
 <highlighting class="org.apache.solr.highlight.PostingsSolrHighlighter"/>
</searchComponent>

Note in this example, we have named the search component "highlight". If you started with a default solrconfi
 file, then you already have a component with that name. You should either replace the default with thisg.xml

example, or rename the search component that is already there so there is no confusion about which search
component implementation Solr should use.

Then in the request handler, you can define the defaults, as in this example:

http://wiki.apache.org/solr/HighlightingParameters
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/highlight/package-summary.html

325Apache Solr Reference Guide 6.1

<requestHandler name="standard" class="solr.StandardRequestHandler">
 <lst name="defaults">
 <int name="hl.snippets">1</int>
 <str name="hl.tag.pre"></str>
 <str name="hl.tag.post"></str>
 <str name="hl.tag.ellipsis">... </str>
 <bool name="hl.defaultSummary">true</bool>
 <str name="hl.encoder">simple</str>
 <float name="hl.score.k1">1.2</float>
 <float name="hl.score.b">0.75</float>
 <float name="hl.score.pivot">87</float>
 <str name="hl.bs.language"></str>
 <str name="hl.bs.country"></str>
 <str name="hl.bs.variant"></str>
 <str name="hl.bs.type">SENTENCE</str>
 <int name="hl.maxAnalyzedChars">10000</int>
 </lst>
</requestHandler>

This example shows all of the defaults for each parameter. If you intend to keep all of the defaults, you would not
need to add anything to the request handler and could override the default values at query time as needed.

Postings Highlighter Parameters

The table below describes Solr's parameters for this highlighter. These parameters can be set as defaults (as in
the examples), or the default values can be changed in the request handler or at query time. Most of the
parameters can be specified per-field (exceptions noted below).

Parameter Default Description

hl blank (no
highlight)

When set to , enables highlighted snippets to be generatedtrue
in the query response. If set to or to a blank or missingfalse
value, disables highlighting.

hl.q blank Specifies an overriding query term for highlighting. If ishl.q
specified, the highlighter will use that term rather than the main
query term.

hl.fl blank Specifies a list of fields to highlight. Accepts a comma- or
space-delimited list of fields for which Solr should generate
highlighted snippets. If left blank, highlights the
defaultSearchField (or the field specified the parameter ifdf
used) for the StandardRequestHandler. For the
DisMaxRequestHandler, the fields are used as defaults. qf

A '*' can be used to match field globs, such as 'text_*' or even '*'
to highlight on all fields where highlighting is possible. When
using '*', consider adding .hl.requireFieldMatch=true

hl.snippets 1 Specifies maximum number of highlighted snippets to generate
per field. It is possible for any number of snippets from zero to
this value to be generated. This parameter accepts per-field
overrides.

hl.tag.pre Specifies the text that should appear before a highlighted term.

326Apache Solr Reference Guide 6.1

hl.tag.post Specifies the text that should appear after a highlighted term.

hl.tag.ellipsis "... " Specifies the text that should join two unconnected passages in
the resulting snippet.

hl.maxAnalyzedChars 10000 Specifies the number of characters into a document that Solr
should look for suitable snippets. This parameter does not
accept per-field overrides.

hl.multiValuedSeparatorChar " " (space) Specifies the logical separator between multi-valued fields.

hl.defaultSummary true If , a field should have a default summary if highlightingtrue
finds no matching passages.

hl.encoder simple Defines the encoding for the resulting snippet. The value simple
applies no escaping, while will escape HTML characters inhtml
the text.

hl.score.k1 1.2 Specifies BM25 term frequency normalization parameter 'k1'.
For example, it can be set to "0" to rank passages solely based
on the number of query terms that match.

hl.score.b 0.75 Specifies BM25 length normalization parameter 'b'. For
example, it can be set to "0" to ignore the length of passages
entirely when ranking.

hl.score.pivot 87 Specifies BM25 average passage length in characters.

hl.bs.language blank Specifies the breakiterator language for dividing the document
into passages.

hl.bs.country blank Specifies the breakiterator country for dividing the document
into passages.

hl.bs.variant blank Specifies the breakiterator variant for dividing the document into
passages.

hl.bs.type SENTENCE Specifies the breakiterator type for dividing the document into
passages. Can be , , , ,SENTENCE WORD CHARACTER LINE
or .WHOLE

Related Content

PostingsHighlighter from the Solr wiki
PostingsSolrHighlighter javadoc

Spell Checking
The SpellCheck component is designed to provide inline query suggestions based on other, similar, terms. The
basis for these suggestions can be terms in a field in Solr, externally created text files, or fields in other Lucene
indexes.

Topics covered in this section:
Configuring the SpellCheckComponent
Spell Check Parameters
Distributed SpellCheck

http://wiki.apache.org/solr/PostingsHighlighter
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/highlight/PostingsSolrHighlighter.html

327Apache Solr Reference Guide 6.1

Configuring the SpellCheckComponent

Define Spell Check in solrconfig.xml

The first step is to specify the source of terms in . There are three approaches to spellsolrconfig.xml
checking in Solr, discussed below.

IndexBasedSpellChecker

The uses a Solr index as the basis for a parallel index used for spell checking. ItIndexBasedSpellChecker
requires defining a field as the basis for the index terms; a common practice is to copy terms from some fields
(such as , , etc.) to another field created for spell checking. Here is a simple example of configuring title body s

 with the :olrconfig.xml IndexBasedSpellChecker

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.IndexBasedSpellChecker</str>
 <str name="spellcheckIndexDir">./spellchecker</str>
 <str name="field">content</str>
 <str name="buildOnCommit">true</str>
 <!-- optional elements with defaults
 <str
name="distanceMeasure">org.apache.lucene.search.spell.LevensteinDistance</str>
 <str name="accuracy">0.5</str>
 -->
 </lst>
</searchComponent>

The first element defines the to use the . The isearchComponent solr.SpellCheckComponent classname
s the specific implementation of the SpellCheckComponent, in this case .solr.IndexBasedSpellChecker
Defining the is optional; if not defined, it will default to .classname IndexBasedSpellChecker

The defines the location of the directory that holds the spellcheck index, while the spellcheckIndexDir fiel
 defines the source field (defined in the Schema) for spell check terms. When choosing a field for the spellcheckd

index, it's best to avoid a heavily processed field to get more accurate results. If the field has many word
variations from processing synonyms and/or stemming, the dictionary will be created with those variations in
addition to more valid spelling data.

Finally, defines whether to build the spell check index at every commit (that is, every time newbuildOnCommit
documents are added to the index). It is optional, and can be omitted if you would rather set it to .false

DirectSolrSpellChecker

The uses terms from the Solr index without building a parallel index like the DirectSolrSpellChecker Index
. This spell checker has the benefit of not having to be built regularly, meaning that theBasedSpellChecker

terms are always up-to-date with terms in the index. Here is how this might be configured in solrconfig.xml

328Apache Solr Reference Guide 6.1

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="name">default</str>
 <str name="field">name</str>
 <str name="classname">solr.DirectSolrSpellChecker</str>
 <str name="distanceMeasure">internal</str>
 <float name="accuracy">0.5</float>
 <int name="maxEdits">2</int>
 <int name="minPrefix">1</int>
 <int name="maxInspections">5</int>
 <int name="minQueryLength">4</int>
 <float name="maxQueryFrequency">0.01</float>
 <float name="thresholdTokenFrequency">.01</float>
 </lst>
</searchComponent>

When choosing a to query for this spell checker, you want one which has relatively little analysisfield
performed on it (particularly analysis such as stemming). Note that you need to specify a field to use for the
suggestions, so like the , you may want to copy data from fields like , ,IndexBasedSpellChecker title body
etc., to a field dedicated to providing spelling suggestions.

Many of the parameters relate to how this spell checker should query the index for term suggestions. The dista
 defines the metric to use during the spell check query. The value "internal" uses the defaultnceMeasure

Levenshtein metric, which is the same metric used with the other spell checker implementations.

Because this spell checker is querying the main index, you may want to limit how often it queries the index to be
sure to avoid any performance conflicts with user queries. The setting defines the threshold for a validaccuracy
suggestion, while defines the number of changes to the term to allow. Since most spelling mistakesmaxEdits
are only 1 letter off, setting this to 1 will reduce the number of possible suggestions (the default, however, is 2);
the value can only be 1 or 2. defines the minimum number of characters the terms should share.minPrefix
Setting this to 1 means that the spelling suggestions will all start with the same letter, for example.

The parameter defines the maximum number of possible matches to review before returningmaxInspections
results; the default is 5. defines how many characters must be in the query beforeminQueryLength
suggestions are provided; the default is 4. sets the maximum threshold for the number ofmaxQueryFrequency
documents a term must appear in before being considered as a suggestion. This can be a percentage (such as
.01, or 1%) or an absolute value (such as 4). A lower threshold is better for small indexes. Finally, tresholdTok

 sets the minimum number of documents a term must appear in, and can also be expressed as aenFrequency
percentage or an absolute value.

FileBasedSpellChecker

The uses an external file as a spelling dictionary. This can be useful if using Solr asFileBasedSpellChecker
a spelling server, or if spelling suggestions don't need to be based on actual terms in the index. In solrconfig

, you would define the searchComponent as so:.xml

329Apache Solr Reference Guide 6.1

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="classname">solr.FileBasedSpellChecker</str>
 <str name="name">file</str>
 <str name="sourceLocation">spellings.txt</str>
 <str name="characterEncoding">UTF-8</str>
 <str name="spellcheckIndexDir">./spellcheckerFile</str>
 <!-- optional elements with defaults
 <str
name="distanceMeasure">org.apache.lucene.search.spell.LevensteinDistance</str>
 <str name="accuracy">0.5</str>
 -->
 </lst>
</searchComponent>

The differences here are the use of the to define the location of the file of terms and the usesourceLocation
of to define the encoding of the terms file.characterEncoding

WordBreakSolrSpellChecker

WordBreakSolrSpellChecker offers suggestions by combining adjacent query terms and/or breaking terms
into multiple words. It is a enhancement, leveraging Lucene's SpellCheckComponent WordBreakSpellChec

. It can detect spelling errors resulting from misplaced whitespace without the use of shingle-basedker
dictionaries and provides collation support for word-break errors, including cases where the user has a mix of
single-word spelling errors and word-break errors in the same query. It also provides shard support.

Here is how it might be configured in :solrconfig.xml

<searchComponent name="spellcheck" class="solr.SpellCheckComponent">
 <lst name="spellchecker">
 <str name="name">wordbreak</str>
 <str name="classname">solr.WordBreakSolrSpellChecker</str>
 <str name="field">lowerfilt</str>
 <str name="combineWords">true</str>
 <str name="breakWords">true</str>
 <int name="maxChanges">10</int>
 </lst>
</searchComponent>

Some of the parameters will be familiar from the discussion of the other spell checkers, such as , name classna
, and . New for this spell checker is , which defines whether words should be combinedme field combineWords

in a dictionary search (default is true); , which defines if words should be broken during a dictionarybreakWords
search (default is true); and , an integer which defines how many times the spell checker shouldmaxChanges
check collation possibilities against the index (default is 10).

The spellchecker can be configured with a traditional checker (ie:). The results areDirectSolrSpellChecker
combined and collations can contain a mix of corrections from both spellcheckers.

Add It to a Request Handler

In the previous example, is used to name this specific definition of the spellchecker. Multiplename
definitions can co-exist in a single , and the helps to differentiate them. If onlysolrconfig.xml name
defining one spellchecker, no name is required.

330Apache Solr Reference Guide 6.1

Queries will be sent to a . If every request should generate a suggestion, then you would add theRequestHandler
following to the that you are using:requestHandler

<str name="spellcheck">true</str>

One of the possible parameters is the to use, and multiples can be defined. Withspellcheck.dictionary
multiple dictionaries, all specified dictionaries are consulted and results are interleaved. Collations are created
with combinations from the different spellcheckers, with care taken that multiple overlapping corrections do not
occur in the same collation.

Here is an example with multiple dictionaries:

<requestHandler name="spellCheckWithWordbreak"
class="org.apache.solr.handler.component.SearchHandler">
 <lst name="defaults">
 <str name="spellcheck.dictionary">default</str>
 <str name="spellcheck.dictionary">wordbreak</str>
 <str name="spellcheck.count">20</str>
 </lst>
 <arr name="last-components">
 <str>spellcheck</str>
 </arr>
</requestHandler>

Spell Check Parameters

The SpellCheck component accepts the parameters described in the table below.

Parameter Description

spellcheck Turns on or off SpellCheck suggestions for the request. If , thentrue
spelling suggestions will be generated.

spellcheck.q or q Selects the query to be spellchecked.

spellcheck.build Instructs Solr to build a dictionary for use in spellchecking.

spellcheck.collate Causes Solr to build a new query based on the best suggestion for each
term in the submitted query.

spellcheck.maxCollations This parameter specifies the maximum number of collations to return.

spellcheck.maxCollationTries This parameter specifies the number of collation possibilities for Solr to
try before giving up.

spellcheck.maxCollationEvaluations This parameter specifies the maximum number of word correction
combinations to rank and evaluate prior to deciding which collation
candidates to test against the index.

spellcheck.collateExtendedResults If true, returns an expanded response detailing the collations found. If s
 is false, this parameter will be ignored.pellcheck.collate

spellcheck.collateMaxCollectDocs The maximum number of documents to collect when testing potential
Collations

331Apache Solr Reference Guide 6.1

spellcheck.collateParam.* Specifies param=value pairs that can be used to override normal query
params when validating collations

spellcheck.count Specifies the maximum number of spelling suggestions to be returned.

spellcheck.dictionary Specifies the dictionary that should be used for spellchecking.

spellcheck.extendedResults Causes Solr to return additional information about spellcheck results,
such as the frequency of each original term in the index (origFreq) as
well as the frequency of each suggestion in the index (frequency). Note
that this result format differs from the non-extended one as the returned
suggestion for a word is actually an array of lists, where each list holds
the suggested term and its frequency.

spellcheck.onlyMorePopular Limits spellcheck responses to queries that are more popular than the
original query.

spellcheck.maxResultsForSuggest The maximum number of hits the request can return in order to both
generate spelling suggestions and set the "correctlySpelled" element to
"false".

spellcheck.alternativeTermCount The count of suggestions to return for each query term existing in the
index and/or dictionary.

spellcheck.reload Reloads the spellchecker.

spellcheck.accuracy Specifies an accuracy value to help decide whether a result is
worthwhile.

spellcheck.<DICT_NAME>.key Specifies a key/value pair for the implementation handling a given
dictionary.

The Parameterspellcheck

This parameter turns on SpellCheck suggestions for the request. If , then spelling suggestions will betrue
generated.

The or Parameterspellcheck.q q

This parameter specifies the query to spellcheck. If is defined, then it is used; otherwise thespellcheck.q
original input query is used. The parameter is intended to be the original query, minus any extraspellcheck.q
markup like field names, boosts, and so on. If the parameter is specified, then the q SpellingQueryConverte

 class is used to parse it into tokens; otherwise the is used. The choice of which oner WhitespaceTokenizer
to use is up to the application. Essentially, if you have a spelling "ready" version in your application, then it is
probably better to use . Otherwise, if you just want Solr to do the job, use the parameter.spellcheck.q q

The Parameterspellcheck.build

If set to , this parameter creates the dictionary that the SolrSpellChecker will use for spell-checking. In atrue
typical search application, you will need to build the dictionary before using the SolrSpellChecker. However, it's

The SpellingQueryConverter class does not deal properly with non-ASCII characters. In this case, you
have either to use , or implement your own QueryConverter.spellcheck.q

https://cwiki.apache.org/confluence/display/solr/Tokenizers#Tokenizers-WhiteSpaceTokenizer

332Apache Solr Reference Guide 6.1

not always necessary to build a dictionary first. For example, you can configure the spellchecker to use a
dictionary that already exists.

The dictionary will take some time to build, so this parameter should not be sent with every request.

The Parameterspellcheck.reload

If set to true, this parameter reloads the spellchecker. The results depend on the implementation of SolrSpellC
. In a typical implementation, reloading the spellchecker means reloading the dictionary.hecker.reload()

The Parameterspellcheck.count

This parameter specifies the maximum number of suggestions that the spellchecker should return for a term. If
this parameter isn't set, the value defaults to 1. If the parameter is set but not assigned a number, the value
defaults to 5. If the parameter is set to a positive integer, that number becomes the maximum number of
suggestions returned by the spellchecker.

The Parameterspellcheck.onlyMorePopular

If , Solr will to return suggestions that result in more hits for the query than the existing query. Note that thistrue
will return more popular suggestions even when the given query term is present in the index and considered
"correct".

The Parameterspellcheck.maxResultsForSuggest

For example, if this is set to 5 and the user's query returns 5 or fewer results, the spellchecker will report
"correctlySpelled=false" and also offer suggestions (and collations if requested). Setting this greater than zero is
useful for creating "did-you-mean?" suggestions for queries that return a low number of hits.

The Parameterspellcheck.alternativeTermCount

Specify the number of suggestions to return for each query term existing in the index and/or dictionary.
Presumably, users will want fewer suggestions for words with docFrequency>0. Also setting this value turns "on"
context-sensitive spell suggestions.

The Parameterspellcheck.extendedResults

This parameter causes to Solr to include additional information about the suggestion, such as the frequency in
the index.

The Parameterspellcheck.collate

If , this parameter directs Solr to take the best suggestion for each token (if one exists) and construct a newtrue
query from the suggestions. For example, if the input query was "jawa class lording" and the best suggestion for
"jawa" was "java" and "lording" was "loading", then the resulting collation would be "java class loading".

The spellcheck.collate parameter only returns collations that are guaranteed to result in hits if re-queried, even
when applying original parameters. This is especially helpful when there is more than one correction perfq
query.

This only returns a query to be used. It does not actually run the suggested query.

333Apache Solr Reference Guide 6.1

The Parameterspellcheck.maxCollations

The maximum number of collations to return. The default is . This parameter is ignored if 1 spellcheck.colla
 is false.te

The Parameterspellcheck.maxCollationTries

This parameter specifies the number of collation possibilities for Solr to try before giving up. Lower values ensure
better performance. Higher values may be necessary to find a collation that can return results. The default value
is , which maintains backwards-compatible (Solr 1.4) behavior (do not check collations). This parameter is0
ignored if is false.spellcheck.collate

The Parameterspellcheck.maxCollationEvaluations

This parameter specifies the maximum number of word correction combinations to rank and evaluate prior to
deciding which collation candidates to test against the index. This is a performance safety-net in case a user
enters a query with many misspelled words. The default is combinations, which should work well in most10,000
situations.

The Parameterspellcheck.collateExtendedResults

If , this parameter returns an expanded response format detailing the collations Solr found. The default valuetrue
is and this is ignored if is false.false spellcheck.collate

The Parameterspellcheck.collateMaxCollectDocs

This parameter specifies the maximum number of documents that should be collect when testing potential
collations against the index. A value of indicates that all documents should be collected, resulting in exact0
hit-counts. Otherwise an estimation is provided as a performance optimization in cases where exact hit-counts
are unnecessary – the higher the value specified, the more precise the estimation.

The default value for this parameter is , but when is , the0 spellcheck.collateExtendedResults false
optimization is always used as if a had been specified.1

The Parameter Prefixspellcheck.collateParam.*

This parameter prefix can be used to specify any additional parameters that you wish to the Spellchecker to use
when internally validating collation queries. For example, even if your regular search results allow for loose
matching of one or more query terms via parameters like & " you can specify override params"q.op=OR mm=20%
such as " " to require thatspellcheck.collateParam.q.op=AND&spellcheck.collateParam.mm=100%
only collations consisting of words that are all found in at least one document may be returned.

The Parameterspellcheck.dictionary

This parameter causes Solr to use the dictionary named in the parameter's argument. The default setting is
"default". This parameter can be used to invoke a specific spellchecker on a per request basis.

The Parameterspellcheck.accuracy

Specifies an accuracy value to be used by the spell checking implementation to decide whether a result is

334Apache Solr Reference Guide 6.1

worthwhile or not. The value is a float between 0 and 1. Defaults to .Float.MIN_VALUE

The Parameterspellcheck.<DICT_NAME>.key

Specifies a key/value pair for the implementation handling a given dictionary. The value that is passed through is
just (is stripped off.key=value spellcheck.<DICT_NAME>.

For example, given a dictionary called , would result in foo spellcheck.foo.myKey=myValue myKey=myVal
 being passed through to the implementation handling the dictionary .ue foo

Example

Using Solr's " " example, this query shows the results of a simple request thatbin/solr -e techproducts
defines a query using the parameter, and forces the collations to require all input terms mustspellcheck.q
match:

http://localhost:8983/solr/techproducts/spell?df=text&spellcheck.q=delll+ultra+sha
rp&spellcheck=true&spellcheck.collateParam.q.op=AND

Results:

https://cwiki.apache.org/confluence/h
https://cwiki.apache.org/confluence/h

335Apache Solr Reference Guide 6.1

<lst name="spellcheck">
 <lst name="suggestions">
 <lst name="delll">
 <int name="numFound">1</int>
 <int name="startOffset">0</int>
 <int name="endOffset">5</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">dell</str>
 <int name="freq">1</int>
 </lst>
 </arr>
 </lst>
 <lst name="ultra sharp">
 <int name="numFound">1</int>
 <int name="startOffset">6</int>
 <int name="endOffset">17</int>
 <int name="origFreq">0</int>
 <arr name="suggestion">
 <lst>
 <str name="word">ultrasharp</str>
 <int name="freq">1</int>
 </lst>
 </arr>
 </lst>
 </lst>
 <bool name="correctlySpelled">false</bool>
 <lst name="collations">
 <lst name="collation">
 <str name="collationQuery">dell ultrasharp</str>
 <int name="hits">1</int>
 <lst name="misspellingsAndCorrections">
 <str name="delll">dell</str>
 <str name="ultra sharp">ultrasharp</str>
 </lst>
 </lst>
 </lst>
</lst>

Distributed SpellCheck

The also supports spellchecking on distributed indexes. If you are using theSpellCheckComponent
SpellCheckComponent on a request handler other than "/select", you must provide the following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about
distributed indexing, see Distributed Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards. This parameter is not required for
the request handler./select

For example: /http://localhost:8983/solr/techproducts spell?spellcheck=true&spellcheck.
build=true&spellcheck.q=toyata&shards.qt=/spell&shards=solr-shard1:8983/solr/techpr

http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr

336Apache Solr Reference Guide 6.1

oducts,solr-shard2:8983/solr/techproducts

In case of a distributed request to the SpellCheckComponent, the shards are requested for at least five
suggestions even if the parameter value is less than five. Once the suggestions arespellcheck.count
collected, they are ranked by the configured distance measure (Levenstein Distance by default) and then by
aggregate frequency.

Query Re-Ranking
Query Re-Ranking allows you to run a simple query (A) for matching documents and then re-rank the top N
documents using the scores from a more complex query (B). Since the more costly ranking from query B is only
applied to the top N documents it will have less impact on performance then just using the complex query B by
itself – the trade off is that documents which score very low using the simple query A may not be considered
during the re-ranking phase, even if they would score very highly using query B.

Specifying A Ranking Query

A Ranking query can be specified using the " " request parameter. The "rq" parameter must specify a queryrq
string that when parsed, produces a . This could also be done with a custom you haveRankQuery QParserPlugin
written as a plugin, but most users can just use the " " parser provided with Solr.rerank

The " " parser wraps a query specified by an local parameter, along with additional parameters indicatingrerank
how many documents should be re-ranked, and how the final scores should be computed:

Parameter Default Description

reRankQuery (Mandatory) The query string for your complex ranking query - in most cases wia variable
ll be used to refer to another request parameter.

reRankDocs 200 The number of top N documents from the original query that should be
re-ranked. This number will be treated as a minimum, and may be increased
internally automatically in order to rank enough documents to satisfy the
query (ie: start+rows)

reRankWeight 2.0 A multiplicative factor that will be applied to the score from the reRankQuery
for each of the top matching documents, before that score is added to the
original score

In the example below, the top 1000 documents matching the query "greetings" will be re-ranked using the query
"(hi hello hey hiya)". The resulting scores for each of those 1000 documents will be 3 times their score from the
"(hi hello hey hiya)", plus the score from the original "gretings" query:

q=greetings&rq={!rerank reRankQuery=$rqq reRankDocs=1000
reRankWeight=3}&rqq=(hi+hello+hey+hiya)

If a document matches the original query, but does not match the re-ranking query, the document's original score
will remain.

Combining Ranking Queries With Other Solr Features

The " " parameter and the re-ranking feature in general works well with other Solr features. For example, it canrq
be used in conjunction with the to re-rank the group heads after they've been collapsed. It alsocollapse parser
preserves the order of documents elevated by the . And it even has it's own custom explainelevation component
so you can see how the re-ranking scores were derived when looking at .debug information

http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
http://localhost:8983/solr/techproducts/select?spellcheck=true&spellcheck.build=true&spellcheck.q=toyata&qt=/spell&shards.qt=/spell&shards=solr-shard1:8983/solr,solr-shard2:8983/solr
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThedebugParameter

337Apache Solr Reference Guide 6.1

Transforming Result Documents
Document Transformers can be used to modify the information returned about each documents in the results of
a query.

Using Document Transformers
Available Transformers

[value] - ValueAugmenterFactory
[explain] - ExplainAugmenterFactory
[child] - ChildDocTransformerFactory
[shard] - ShardAugmenterFactory
[docid] - DocIdAugmenterFactory
[elevated] and [excluded]
[json] / [xml]
[subquery]

Subquery Parameters Shift
Document field as an input for subquery params
Cores and Collections in SolrCloud

Using Document Transformers

When executing a request, a document transformer can be used by including it in the parameter using squarefl
brackets, for example:

fl=id,name,score,[shard]

Some transformers allow, or require, local parameters which can be specified as key value pairs inside the
brackets:

fl=id,name,score,[explain style=nl]

As with regular fields, you can change the key used when a Transformer adds a field to a document via a prefix:

fl=id,name,score,my_val_a:[value v=42 t=int],my_val_b:[value v=7 t=float]

The sections below discuss exactly what these various transformers do.

Available Transformers

[value] - ValueAugmenterFactory

Modifies every document to include the exact same value, as if it were a stored field in every document:

q=*:*&fl=id,greeting:[value v='hello']

The above query would produce results like the following:

338Apache Solr Reference Guide 6.1

<result name="response" numFound="32" start="0">
 <doc>
 <str name="id">1</str>
 <str name="greeting">hello</str></doc>
 </doc>
 ...

By default, values are returned as a String, but a " " parameter can be specified using a value of int, float,t
double, or date to force a specific return type:

q=*:*&fl=id,my_number:[value v=42 t=int],my_string:[value v=42]

In addition to using these request parameters, you can configure additional named instances of
ValueAugmenterFactory, or override the default behavior of the existing transformer in your[value]
solrconfig.xml file:

<transformer name="mytrans2"
class="org.apache.solr.response.transform.ValueAugmenterFactory" >
 <int name="value">5</int>
</transformer>
<transformer name="value"
class="org.apache.solr.response.transform.ValueAugmenterFactory" >
 <double name="defaultValue">5</double>
</transformer>

The " " option forces an explicit value to always be used, while the " " option provides avalue defaultValue
default that can still be overridden using the " " and " " local parameters.v t

[explain] - ExplainAugmenterFactory

Augments each document with an inline explanation of it's score exactly like the information available about each
document in the debug section:

q=features:cache&wt=json&fl=id,[explain style=nl]

Supported values for " " are " ", and " ", and "nl" which returns the information as structured data:style text html

"response":{"numFound":2,"start":0,"docs":[
 {
 "id":"6H500F0",
 "[explain]":{
 "match":true,
 "value":1.052226,
 "description":"weight(features:cache in 2) [DefaultSimilarity], result
of:",
 "details":[{
...

A default style can be configured by specifying an "args" parameter in your configuration:

339Apache Solr Reference Guide 6.1

<transformer name="explain"
class="org.apache.solr.response.transform.ExplainAugmenterFactory" >
 <str name="args">nl</str>
</transformer>

[child] - ChildDocTransformerFactory

This transformer returns all of each parent document matching your query in a flat listdescendant documents
nested inside the matching parent document. This is useful when you have indexed nested child documents and
want to retrieve the child documents for the relevant parent documents for any type of search query.

fl=id,[child parentFilter=doc_type:book childFilter=doc_type:chapter limit=100]

Note that this transformer can be used even though the query itself is not a .Block Join query

When using this transformer, the parameter must be specified, and works the same as in allparentFilter
Block Join Queries, additional optional parameters are:

childFilter - query to filter which child documents should be included, this can be particularly useful
when you have multiple levels of hierarchical documents (default: all children)
limit - the maximum number of child documents to be returned per parent document (default: 10)

[shard] - ShardAugmenterFactory

This transformer adds information about what shard each individual document came from in a distributed
request.

ShardAugmenterFactory does not support any request parameters, or configuration options.

[docid] - DocIdAugmenterFactory

This transformer adds the internal Lucene document id to each document – this is primarily only useful for
debugging purposes.

DocIdAugmenterFactory does not support any request parameters, or configuration options.

[elevated] and [excluded]

These transformers are available only when using the .Query Elevation Component

[elevated] annotates each document to indicate if it was elevated or not.
[excluded] annotates each document to indicate if it would have been excluded - this is only supported
if you also use the parameter.markExcludes

fl=id,[elevated],[excluded]&excludeIds=GB18030TEST&elevateIds=6H500F0&markExcludes=t
rue

https://cwiki.apache.org/confluence/display/solr/Uploading+Data+with+Index+Handlers#UploadingDatawithIndexHandlers-NestedChildDocuments
https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-BlockJoinQueryParsers

340Apache Solr Reference Guide 6.1

"response":{"numFound":32,"start":0,"docs":[
 {
 "id":"6H500F0",
 "[elevated]":true,
 "[excluded]":false},
 {
 "id":"GB18030TEST",
 "[elevated]":false,
 "[excluded]":true},
 {
 "id":"SP2514N",
 "[elevated]":false,
 "[excluded]":false},
...

[json] / [xml]

These transformers replace field value containing a string representation of a valid XML or JSON structure with
the actual raw XML or JSON structure rather than just the string value. Each applies only to the specific writer,
such that only applies to and only applies to . [json] wt=json [xml] wt=xml

fl=id,source_s:[json]&wt=json

[subquery]

This transformer executes a separate query per transforming document passing document fields as an input for
subquery parameters. It's usually used with and query parsers, and is intended to be an{!join} {!parent}
improvement for .[child]

It must be given an unique name: fl=*,children:[subquery]
There might be a few of them, eg .fl=*,sons:[subquery],daughters:[subquery]
Every occurrence adds a field into a result document with the given name, the value of this[subquery]
field is a document list, which is a result of executing subquery using document fields as an input.

Here is how it looks like in various formats:

<result name="response" numFound="2" start="0">
 <doc>
 <int name="id">1</int>
 <arr name="title">
 <str>vdczoypirs</str>
 </arr>
 <result name="children" numFound="1" start="0">
 <doc>
 <int name="id">2</int>
 <arr name="title">
 <str>vdczoypirs</str>
 </arr>
 </doc>
 </result>
 </doc>
 ...

341Apache Solr Reference Guide 6.1

"response":{
 "numFound":2, "start":0,
 "docs":[
 {
 "id":1,
 "subject":["parentDocument"],
 "title":["xrxvomgu"],
 "children":{
 "numFound":1, "start":0,
 "docs":[
 { "id":2,
 "cat":["childDocument"]
 }
]
 }},
 {
 "id":4,
 ...

SolrDocumentList subResults = (SolrDocumentList)doc.getFieldValue("children");

Subquery Parameters Shift

If subquery is declared as , subquery parameters are prefixed with the given name andfl=*,foo:[subquery]
period. eg

q=*:*&fl=*, :[subquery]& q=to be continued& rows=10& sort=id descfoo foo. foo. foo.

Document field as an input for subquery params

It's necessary to pass some document field values as a parameter for subquery. It's supported via implicit row.f
parameter, and can be (but might not only) referred via Local Parameters syntax: ieldname

q=namne:john&fl=name,id,depts:[subquery]&depts.q={!terms f=id }&deptsv=$row.dept_id
.rows=10

Here departmens are retrieved per every employee in search result. We can say that it's like SQL join ON
.emp.dept_id=dept.id

Note, when document field has multiple values they are concatenated with comma by default, it can be changed
by local parameter , this mimics to work smoothly with it.foo:[subquery separator=' '] {!terms}

Cores and Collections in SolrCloud

Use to invoke subquery on another core on the same node, it'sfoo:[subquery fromIndex=departments]
what does for non-SolrCloud mode. But in case of SolrCloud just (and only) explicitly specify its' native {!join}
parameters like for subquery, eg:collection, shards

q=*:*&fl=*,foo:[subquery]&foo.q=cloud& =departmentsfoo.collection

Suggester
The SuggestComponent in Solr provides users with automatic suggestions for query terms. You can use this to
implement a powerful auto-suggest feature in your search application.

342Apache Solr Reference Guide 6.1

Although it is possible to use the functionality to power autosuggest behavior, Solr has aSpell Checking
dedicated designed for this functionality. This approach utilizes Lucene's SuggesterSuggestComponent
implementation and supports all of the lookup implementations available in Lucene.

The main features of this Suggester are:

Lookup implementation pluggability
Term dictionary pluggability, giving you the flexibility to choose the dictionary implementation
Distributed support

The found in Solr's " " example has the new Suggester implementationsolrconfig.xml techproducts
configured already. For more on search components, see the section RequestHandlers and SearchComponents

.in SolrConfig
Covered in this section:

Configuring Suggester in solrconfig.xml
Adding the Suggest Search Component
Adding the Suggest Request Handler

Example Usages
Get Suggestions with Weights
Multiple Dictionaries
Context Filtering

Configuring Suggester in solrconfig.xml

The " " example has a search component and a requesttechproducts solrconfig.xml suggest /suggest
handler already configured. You can use that as the basis for your configuration, or create it from scratch, as
detailed below.

Adding the Suggest Search Component

The first step is to add a search component to and tell it to use the SuggestComponent. Heresolrconfig.xml
is some sample code that could be used.

<searchComponent name="suggest" class="solr.SuggestComponent">
 <lst name="suggester">
 <str name="name">mySuggester</str>
 <str name="lookupImpl">FuzzyLookupFactory</str>
 <str name="dictionaryImpl">DocumentDictionaryFactory</str>
 <str name="field">cat</str>
 <str name="weightField">price</str>
 <str name="suggestAnalyzerFieldType">string</str>
 <str name="buildOnStartup">false</str>
 </lst>
</searchComponent>

Suggester Search Component Parameters

The Suggester search component takes several configuration parameters. The choice of the lookup
implementation (, how terms are found in the suggestion dictionary) and the dictionarylookupImpl
implementation (, how terms are stored in the suggestion dictionary) will dictate some of thedictionaryImpl
parameters required. Below are the main parameters that can be used no matter what lookup or dictionary
implementation is used. In the following sections additional parameters are provided for each implementation.

Parameter Description

http://lucene.apache.org/solr/api/solr-core/org/apache/solr/handler/component/SuggestComponent.html

343Apache Solr Reference Guide 6.1

searchComponent
name

Arbitrary name for the search component.

name A symbolic name for this suggester. You can refer to this name in the URL parameters
and in the SearchHandler configuration. It is possible to have mutiples of these

lookupImpl Lookup implementation. There are several possible implementations, described below in
the section . If not set, the default lookup isLookup Implementations
JaspellLookupFactory.

dictionaryImpl The dictionary implementation to use. There are several possible implementations,
described below in the section . If not set, the defaultDictionary Implementations
dictionary implementation is HighFrequencyDictionaryFactory unless a sourceLocatio

 is used, in which case, the dictionary implementation will be FileDictionaryFactoryn

field A field from the index to use as the basis of suggestion terms. If issourceLocation
empty (meaning any dictionary implementation other than FileDictionaryFactory) then
terms from this field in the index will be used.

To be used as the basis for a suggestion, the field must be stored. You may want to use
 to create a special 'suggest' field comprised of terms from other fields incopyField rules

documents. In any event, you likely want a minimal amount of analysis on the field, so an
additional option is to create a field type in your schema that only uses basic tokenizers or
filters. One option for such a field type is shown here:

<fieldType class="solr.TextField" name="textSuggest"
positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.StandardFilterFactory"/>
 <filter class="solr.LowerCaseFilterFactory"/>
 </analyzer>
</fieldType>

However, this minimal analysis is not required if you want more analysis to occur on
terms. If using the AnalyzingLookupFactory as your lookupImpl, however, you have the
option of defining the field type rules to use for index and query time analysis.

sourceLocation The path to the dictionary file if using the FileDictionaryFactory. If this value is empty then
the main index will be used as a source of terms and weights.

storeDir The location to store the dictionary file.

buildOnCommit or
buildOnOptimize

If true then the lookup data structure will be rebuilt after soft-commit. If false, the default,
then the lookup data will be built only when requested by URL parameter suggest.bui

. Use to rebuild the dictionary with every soft-commit, or ld=true buildOnCommit buil
 to build the dictionary only when the index is optimized. Some lookupdOnOptimize

implementations may take a long time to build, specially with large indexes, in such
cases, using buildOnCommit or buildOnOptimize, particularly with a high frequency of
softCommits is not recommended, and it's recommended instead to build the suggester
at a lower frequency by manually issuing requests with .suggest.build=true

344Apache Solr Reference Guide 6.1

buildOnStartup If true then the lookup data structure will be built when Solr starts or when the core is
reloaded. If this parameter is not specified, the suggester will check if the lookup data
structure is present on disk and build it if not found. Enabling this to true could lead to the
core talking longer to load (or reload) as the suggester data structure needs to be built,
which can sometimes take a long time. It’s usually preferred to have this setting set to
'false' and build suggesters manually issuing requests with .suggest.build=true

Lookup Implementations

The lookupImpl parameter defines the algorithms used to look up terms in the suggest index. There are
several possible implementations to choose from, and some require additional parameters to be configured.

AnalyzingLookupFactory

A lookup that first analyzes the incoming text and adds the analyzed form to a weighted FST, and then does the
same thing at lookup time.

This implementation uses the following additional properties:

suggestAnalyzerFieldType: The field type to use for the query-time and build-time term suggestion
analysis.
exactMatchFirst: If true, the default, exact suggestions are returned first, even if they are prefixes or other
strings in the FST have larger weights.
preserveSep: If true, the default, then a separator between tokens is preserved. This means that
suggestions are sensitive to tokenization (e.g., baseball is different from base ball).
preservePositionIncrements: If true, the suggester will preserve position increments. This means that
token filters which leave gaps (for example, when StopFilter matches a stopword) the position would be
respected when building the suggester. The default is false.

FuzzyLookupFactory

This is a suggester which is an extension of the AnalyzingSuggester but is fuzzy in nature. The similarity is
measured by the Levenshtein algorithm.

This implementation uses the following additional properties:

exactMatchFirst: If true, the default, exact suggestions are returned first, even if they are prefixes or other
strings in the FST have larger weights.
preserveSep: If true, the default, then a separator between tokens is preserved. This means that
suggestions are sensitive to tokenization (e.g., baseball is different from base ball).
maxSurfaceFormsPerAnalyzedForm: Maximum number of surface forms to keep for a single analyzed
form. When there are too many surface forms we discard the lowest weighted ones.
maxGraphExpansions: When building the FST ("index-time"), we add each path through the tokenstream
graph as an individual entry. This places an upper-bound on how many expansions will be added for a
single suggestion. The default is -1 which means there is no limit.
preservePositionIncrements: If true, the suggester will preserve position increments. This means that
token filters which leave gaps (for example, when StopFilter matches a stopword) the position would be
respected when building the suggester. The default is false.
maxEdits: The maximum number of string edits allowed. The systems hard limit is 2. The default is 1.
transpositions: If true, the default, transpositions should be treated as a primitive edit operation.
nonFuzzyPrefix: The length of the common non fuzzy prefix match which must match a suggestion. The
default is 1.
minFuzzyLength: The minimum length of query before which any string edits will be allowed. The default
is 3.
unicodeAware: If true, maxEdits, minFuzzyLength, transpositions and nonFuzzyPrefix parameters will be
measured in unicode code points (actual letters) instead of bytes. The default is false.

AnalyzingInfixLookupFactory

345Apache Solr Reference Guide 6.1

Analyzes the input text and then suggests matches based on prefix matches to any tokens in the indexed text.
This uses a Lucene index for its dictionary.

This implementation uses the following additional properties.

indexPath: When using AnalyzingInfixSuggester you can provide your own path where the index will get
built. The default is analyzingInfixSuggesterIndexDir and will be created in your collections data directory.
minPrefixChars: Minimum number of leading characters before PrefixQuery is used (default is 4). Prefixes
shorter than this are indexed as character ngrams (increasing index size but making lookups faster).
allTermsRequired: Boolean option for multiple terms. Default is true - all terms required.
highlight: Highlight suggest terms. Default is true.

This implementation supports .Context Filtering

BlendedInfixLookupFactory

An extension of the AnalyzingInfixSuggester which provides additional functionality to weight prefix matches
across the matched documents. You can tell it to score higher if a hit is closer to the start of the suggestion or
vice versa.

This implementation uses the following additional properties:

blenderType: used to calculate weight coefficient using the position of the first matching word. Can be one
of:

position_linear: weightFieldValue*(1 - 0.10*position): Matches to the start will be given a higher
score (Default)
position_reciprocal: weightFieldValue/(1+position): Matches to the end will be given a higher score.

exponent: an optional configuration variable for the position_reciprocal blenderType used to
control how fast the score will increase or decrease. Default 2.0

numFactor: The factor to multiply the number of searched elements from which results will be pruned.
Default is 10.
indexPath: When using BlendedInfixSuggester you can provide your own path where the index will get
built. The default directory name is blendedInfixSuggesterIndexDir and will be created in your collections
data directory.
minPrefixChars: Minimum number of leading characters before PrefixQuery is used (default 4). Prefixes
shorter than this are indexed as character ngrams (increasing index size but making lookups faster).

This implementation supports Context Filtering.

FreeTextLookupFactory

It looks at the last tokens plus the prefix of whatever final token the user is typing, if present, to predict the most
likely next token. The number of previous tokens that need to be considered can also be specified. This
suggester would only be used as a fallback, when the primary suggester fails to find any suggestions.

This implementation uses the following additional properties:

suggest : The analyzer used at "query-time" and "build-time" to analyzeFreeTextAnalyzerFieldType
suggestions. This field is required.
ngrams: The max number of tokens out of which singles will be make the dictionary. The default value is
2. Increasing this would mean you want more than the previous 2 tokens to be taken into consideration
when making the suggestions.

FSTLookupFactory

An automaton-based lookup. This implementation is slower to build, but provides the lowest memory cost. We
recommend using this implementation unless you need more sophisticated matching results, in which case you
should use the Jaspell implementation.

This implementation uses the following additional properties:

exactMatchFirst: If true, the default, exact suggestions are returned first, even if they are prefixes or other

346Apache Solr Reference Guide 6.1

strings in the FST have larger weights.
weightBuckets: The number of separate buckets for weights which the suggester will use while building its
dictionary.

TSTLookupFactory

A simple compact ternary trie based lookup.

WFSTLookupFactory

A weighted automaton representation which is an alternative to FSTLookup for more fine-grained ranking.
WFSTLookup does not use buckets, but instead a shortest path algorithm. Note that it expects weights to be
whole numbers. If weight is missing it's assumed to be 1.0. Weights affect the sorting of matching suggestions
when is selected: weights are treated as "popularity" score, withspellcheck.onlyMorePopular=true
higher weights preferred over suggestions with lower weights.

JaspellLookupFactory

A more complex lookup based on a ternary trie from the project. Use this implementation if you needJaSpell
more sophisticated matching results.

Dictionary Implementations

The dictionary implementations define how terms are stored. There are several options, and multiple dictionaries
can be used in a single request if necessary.

DocumentDictionaryFactory

A dictionary with terms, weights, and an optional payload taken from the index.

This dictionary implementation takes the following parameters in addition to parameters described for the
Suggester generally and for the lookup implementation:

weightField: A field that is stored or a numeric DocValue field. This field is optional.
payloadField: The payloadField should be a field that is stored. This field is optional.
contextField: Field to be used for context filtering. Note that only some lookup implementations support
filtering.

DocumentExpressionDictionaryFactory

This dictionary implementation is the same as the DocumentDictionaryFactory but allows users to specify an
arbitrary expression into the 'weightExpression' tag.

This dictionary implementation takes the following parameters in addition to parameters described for the
Suggester generally and for the lookup implementation:

payloadField: The payloadField should be a field that is stored. This field is optional.
weightExpression: An arbitrary expression used for scoring the suggestions. The fields used must be
numeric fields. This field is required.
contextField: Field to be used for context filtering. Note that only some lookup implementations support
filtering.

HighFrequencyDictionaryFactory

This dictionary implementation allows adding a threshold to prune out less frequent terms in cases where very
common terms may overwhelm other terms.

This dictionary implementation takes one parameter in addition to parameters described for the Suggester
generally and for the lookup implementation:

threshold: A value between zero and one representing the minimum fraction of the total documents where

http://jaspell.sourceforge.net/

347Apache Solr Reference Guide 6.1

a term should appear in order to be added to the lookup dictionary.

FileDictionaryFactory

This dictionary implementation allows using an external file that contains suggest entries. Weights and payloads
can also be used.

If using a dictionary file, it should be a plain text file in UTF-8 encoding. Blank lines and lines that start with a '#'
are ignored. You can use both single terms and phrases in the dictionary file. If adding weights or payloads,
those should be separated from terms using the delimiter defined with the property (thefieldDelimiter
default is '\t', the tab representation).

This dictionary implementation takes one parameter in addition to parameters described for the Suggester
generally and for the lookup implementation:

fieldDelimiter: Specify the delimiter to be used separating the entries, weights and payloads. The default is
tab ('\t').

This is a sample dictionary file.

acquire
accidentally\t2.0
accommodate\t3.0

Multiple Dictionaries

It is possible to include multiple dictionaryImpl definitions in a single SuggestComponent definition.

To do this, simply define separate suggesters, as in this example:

<searchComponent name="suggest" class="solr.SuggestComponent">
 <lst name="suggester">
 <str name="name">mySuggester</str>
 <str name="lookupImpl">FuzzyLookupFactory</str>
 <str name="dictionaryImpl">DocumentDictionaryFactory</str>
 <str name="field">cat</str>
 <str name="weightField">price</str>
 <str name="suggestAnalyzerFieldType">string</str>
 </lst>
 <lst name="suggester">
 <str name="name">altSuggester</str>
 <str name="dictionaryImpl">DocumentExpressionDictionaryFactory</str>
 <str name="lookupImpl">FuzzyLookupFactory</str>
 <str name="field">product_name</str>
 <str name="weightExpression">((price * 2) + ln(popularity))</str>
 <str name="sortField">weight</str>
 <str name="sortField">price</str>
 <str name="storeDir">suggest_fuzzy_doc_expr_dict</str>
 <str name="suggestAnalyzerFieldType">text_en</str>
 </lst>
</searchComponent>

When using these Suggesters in a query, you would define multiple 'suggest.dictionary' parameters in the
request, referring to the names given for each Suggester in the search component definition. The response will
include the terms in sections for each Suggester. See the section below for an example request andExamples
response.

348Apache Solr Reference Guide 6.1

Adding the Suggest Request Handler

After adding the search component, a request handler must be added to . This requestsolrconfig.xml
handler works the , and allows you to configure default parameters for servingsame as any other request handler
suggestion requests. The request handler definition must incorporate the "suggest" search component defined
previously.

<requestHandler name="/suggest" class="solr.SearchHandler" startup="lazy">
 <lst name="defaults">
 <str name="suggest">true</str>
 <str name="suggest.count">10</str>
 </lst>
 <arr name="components">
 <str>suggest</str>
 </arr>
</requestHandler>

Suggest Request Handler Parameters

The following parameters allow you to set defaults for the Suggest request handler:

Parameter Description

suggest=true This parameter should always be true, because we always want to run the Suggester for
queries submitted to this handler.

suggest.dictionary The name of the dictionary component configured in the search component. This is a
mandatory parameter. It can be set in the request handler, or sent as a parameter at
query time.

suggest.q The query to use for suggestion lookups.

suggest.count Specifies the number of suggestions for Solr to return.

suggest.cfq A Context Filter Query used to filter suggestions based on the context field, if supported
by the suggester.

suggest.build If true, it will build the suggester index. This is likely useful only for initial requests; you
would probably not want to build the dictionary on every request, particularly in a
production system. If you would like to keep your dictionary up to date, you should use
the or parameter for the search component.buildOnCommit buildOnOptimize

suggest.reload If true, it will reload the suggester index.

suggest.buildAll If true, it will build all suggester indexes.

suggest.reloadAll If true, it will reload all suggester indexes.

These properties can also be overridden at query time, or not set in the request handler at all and always sent at
query time.

Context Filtering
Context filtering () is currently only supported by AnalyzingInfixLookupFactory andsuggest.cfq
BlendedInfixLookupFactory, and only when backed by a Document*Dictionary. All other implementations
will return unfiltered matches as if filtering was not requested.

349Apache Solr Reference Guide 6.1

Example Usages

Get Suggestions with Weights

This is the basic suggestion using a single dictionary and a single Solr core.

Example query:

http://localhost:8983/solr/techproducts/suggest?suggest=true&suggest.build=true&sugg
est.dictionary=mySuggester&wt=json&suggest.q=elec

In this example, we've simply requested the string 'elec' with the suggest.q parameter and requested that the
suggestion dictionary be built with suggest.build (note, however, that you would likely not want to build the index
on every query - instead you should use buildOnCommit or buildOnOptimize if you have regularly changing
documents).

Example response:

{
 "responseHeader": {
 "status": 0,
 "QTime": 35
 },
 "command": "build",
 "suggest": {
 "mySuggester": {
 "elec": {
 "numFound": 3,
 "suggestions": [
 {
 "term": "electronics and computer1",
 "weight": 2199,
 "payload": ""
 },
 {
 "term": "electronics",
 "weight": 649,
 "payload": ""
 },
 {
 "term": "electronics and stuff2",
 "weight": 279,
 "payload": ""
 }
]
 }
 }
 }
}

Multiple Dictionaries

If you have defined multiple dictionaries, you can use them in queries.

Example query:

350Apache Solr Reference Guide 6.1

http://localhost:8983/solr/techproducts/suggest?suggest=true& \

suggest.dictionary=mySuggester&suggest.dictionary=altSuggester&wt=json&suggest.q=ele
c

In this example we have sent the string 'elec' as the suggest.q parameter and named two suggest.dictionary
definitions to be used.

Example response:

{
 "responseHeader": {
 "status": 0,
 "QTime": 3
 },
 "suggest": {
 "mySuggester": {
 "elec": {
 "numFound": 1,
 "suggestions": [
 {
 "term": "electronics and computer1",
 "weight": 100,
 "payload": ""
 }
]
 }
 },
 "altSuggester": {
 "elec": {
 "numFound": 1,
 "suggestions": [
 {
 "term": "electronics and computer1",
 "weight": 10,
 "payload": ""
 }
]
 }
 }
 }
}

Context Filtering

Context filtering lets you filter suggestions by a separate context field, such as category, department or any other
token. The AnalyzingInfixLookupFactory and BlendedInfixLookupFactory currently support this feature, when
backed by DocumentDictionaryFactory.

Add to your suggester configuration. This example will suggest names and allow to filter bycontextField
category:

351Apache Solr Reference Guide 6.1

<searchComponent name="suggest" class="solr.SuggestComponent">
 <lst name="suggester">
 <str name="name">mySuggester</str>
 <str name="lookupImpl">AnalyzingInfixLookupFactory</str>
 <str name="dictionaryImpl">DocumentDictionaryFactory</str>
 <str name="field">name</str>
 <str name="weightField">price</str>
 <str name="contextField">cat</str>
 <str name="suggestAnalyzerFieldType">string</str>
 <str name="buildOnStartup">false</str>
 </lst>
</searchComponent>

Example context filtering suggest query:

http://localhost:8983/solr/techproducts/suggest?suggest=true&suggest.build=true& \
 suggest.dictionary=mySuggester&wt=json&suggest.q=c&suggest.cfq=memory

The suggester will only bring back suggestions for products tagged with cat=memory.

MoreLikeThis
The search component enables users to query for documents similar to a document in theirMoreLikeThis
result list. It does this by using terms from the original document to find similar documents in the index.

There are three ways to use MoreLikeThis. The first, and most common, is to use it as a request handler. In this
case, you would send text to the MoreLikeThis request handler as needed (as in when a user clicked on a
"similar documents" link). The second is to use it as a search component. This is less desirable since it performs
the MoreLikeThis analysis on every document returned. This may slow search results. The final approach is to
use it as a request handler but with externally supplied text. This case, also referred to as the
MoreLikeThisHandler, will supply information about similar documents in the index based on the text of the input
document.

Covered in this section:
How MoreLikeThis Works
Common Parameters for MoreLikeThis
Parameters for the MoreLikeThisComponent
Parameters for the MoreLikeThisHandler
More Like This Query Parser
Related Topics

How MoreLikeThis Works

MoreLikeThis constructs a Lucene query based on terms in a document. It does this by pulling terms from the
defined list of fields (see the parameter, below). For best results, the fields should have stored termmlt.fl
vectors in . For example:schema.xml

<field name="cat" ... termVectors="true" />

solrconfig.xml

352Apache Solr Reference Guide 6.1

If term vectors are not stored, will generate terms from stored fields. A must alsoMoreLikeThis uniqueKey
be stored in order for MoreLikeThis to work properly.

The next phase filters terms from the original document using thresholds defined with the MoreLikeThis
parameters. Finally, a query is run with these terms, and any other query parameters that have been defined
(see the parameter, below) and a new document set is returned.mlt.qf

Common Parameters for MoreLikeThis

The table below summarizes the parameters supported by Lucene/Solr. These parameters canMoreLikeThis
be used with any of the three possible MoreLikeThis approaches.

Parameter Description

mlt.fl Specifies the fields to use for similarity. If possible, these should have stored .termVectors

mlt.mintf Specifies the Minimum Term Frequency, the frequency below which terms will be ignored in the
source document.

mlt.mindf Specifies the Minimum Document Frequency, the frequency at which words will be ignored which
do not occur in at least this many documents.

mlt.maxdf Specifies the Maximum Document Frequency, the frequency at which words will be ignored
which occur in more than this many documents.

mlt.minwl Sets the minimum word length below which words will be ignored.

mlt.maxwl Sets the maximum word length above which words will be ignored.

mlt.maxqt Sets the maximum number of query terms that will be included in any generated query.

mlt.maxntp Sets the maximum number of tokens to parse in each example document field that is not stored
with TermVector support.

mlt.boost Specifies if the query will be boosted by the interesting term relevance. It can be either "true" or
"false".

mlt.qf Query fields and their boosts using the same format as that used by the DisMaxRequestHandler.
These fields must also be specified in .mlt.fl

Parameters for the MoreLikeThisComponent

Using MoreLikeThis as a search component returns similar documents for each document in the response set. In
addition to the common parameters, these additional options are available:

Parameter Description

mlt If set to true, activates the component and enables Solr to return MoreLikeThis MoreLikeThi
 results.s

mlt.count Specifies the number of similar documents to be returned for each result. The default value is 5.

Parameters for the MoreLikeThisHandler

The table below summarizes parameters accessible through the . It supports faceting,MoreLikeThisHandler

353Apache Solr Reference Guide 6.1

paging, and filtering using common query parameters, but does not work well with alternate query parsers.

Parameter Description

mlt.match.include Specifies whether or not the response should include the matched document. If set to
false, the response will look like a normal select response.

mlt.match.offset Specifies an offset into the main query search results to locate the document on which
the query should operate. By default, the query operates on the firstMoreLikeThis
result for the q parameter.

mlt.interestingTerms Controls how the component presents the "interesting" terms (the topMoreLikeThis
TF/IDF terms) for the query. Supports three settings. The setting list lists the terms. The
setting none lists no terms. The setting details lists the terms along with the boost value
used for each term. Unless , all terms will have .mlt.boost=true boost=1.0

More Like This Query Parser

The query parser provides a mechanism to retrieve documents similar to a given document, like the handler.mlt
More information on the usage of the mlt query parser can be found .here

Related Topics

RequestHandlers and SearchComponents in SolrConfig

Pagination of Results

Basic Pagination

In most search application usage, the "top" matching results (sorted by score, or some other criteria) are then
displayed to some human user. In many applications the UI for these sorted results are displayed to the user in
"pages" containing a fixed number of matching results, and users don't typically look at results past the first few
pages worth of results.

In Solr, this basic paginated searching is supported using the and parameters, and performance ofstart rows
this common behaviour can be tuned by utilizing the and adjusting the queryResultCache queryResultWin

 configuration options based on your expected page sizes.dowSize

Basic Pagination Examples

The easiest way to think about simple pagination, is to simply multiply the page number you want (treating the
"first" page number as "0") by the number of rows per page; such as in the following psuedo-code:

function fetch_solr_page($page_number, $rows_per_page) {
 $start = $page_number * $rows_per_page
 $params = [q = $some_query, rows = $rows_per_page, start = $start]
 return fetch_solr($params)
}

https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-queryResultCache
https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-queryResultWindowSize
https://cwiki.apache.org/confluence/display/solr/Query+Settings+in+SolrConfig#QuerySettingsinSolrConfig-queryResultWindowSize

354Apache Solr Reference Guide 6.1

How Basic Pagination is Affected by Index Updates

The param specified in a request to Solr indicates an "offset" in the complete sorted list ofstart absolute
matches that the client wants Solr to use as the beginning of the current "page". If an index modification (such
as adding or removing documents) which affects the sequence of ordered documents matching a query occurs in
between two requests from a client for subsequent pages of results, then it is possible that these modifications
can result in the same document being returned on multiple pages, or documents being "skipped" as the result
set shrinks or grows.

For example: consider an index containing 26 documents like so:

id name

1 A

2 B

...

26 Z

Followed by the following requests & index modifications interleaved:

A client requests q=*:*&rows=5&start=0&sort=name asc
documents with the ids will be returned to the client1-5

Document id is deleted3
The client requests "page #2" using q=*:*&rows=5&start=5&sort=name asc

Documents will be returned7-11
Document has been skipped, since it is now the 5th document in the sorted set of all matching6
results – it would be returned on a new request for "page #1"

3 new documents are now added with the ids , , and ; All three documents have a name of 90 91 92 A
The client requests "page #3" using q=*:*&rows=5&start=10&sort=name asc

Documents will be returned9-13
Documents , , and have now been returned on both page #2 and page #3 since they moved9 10 11
farther back in the list of sorted results

In typical situations these impacts from index changes on paginated searching don't significantly affect user
experience -- either because they happen extremely infrequently in fairly static collections, or because the users
recognize that the collection of data is constantly evolving and expect to see documents shift up and down in the
result sets.

Performance Problems with "Deep Paging"

In some situations, the results of a Solr search are not destined for a simple paginated user interface. When you
wish to fetch a very large number of sorted results from Solr to feed into an external system, using very large
values for the or parameters can be very inefficient. Pagination using and not onlystart rows start rows
require Solr to compute (and sort) in memory all of the matching documents that should be fetched for the
current page, but also all of the documents that would have appeared on previous pages. So while a request for

 may be obviously inefficient because it requires Solr to maintain & sort in memory astart=0&rows=1000000
set of 1 million documents, likewise a request for is equally inefficient for the samestart=999000&rows=1000
reasons. Solr can't compute which matching document is the 999001st result in sorted order, without first
determining what the first 999000 matching sorted results are. If the index is distributed, which is common when
running in SolrCloud mode, then 1 million documents are retrieved from . For a ten shard index, teneach shard
million entries must be retrieved and sorted to figure out the 1000 documents that match those query
parameters.

355Apache Solr Reference Guide 6.1

1.

2.

Fetching A Large Number of Sorted Results: Cursors

As an alternative to increasing the "start" parameter to request subsequent pages of sorted results, Solr supports
using a "Cursor" to scan through results. Cursors in Solr are a logical concept, that doesn't involve caching any
state information on the server. Instead the sort values of the last document returned to the client are used to
compute a "mark" representing a logical point in the ordered space of sort values. That "mark" can be specified
in the parameters of subsequent requests to tell Solr where to continue.

Using Cursors

To use a cursor with Solr, specify a parameter with the value of . You can think of this beingcursorMark " "*
analogous to as a way to tell Solr "start at the beginning of my sorted results" except that it alsostart=0
informs Solr that you want to use a Cursor. So in addition to returning the top N sorted results (where you can
control N using the parameter) the Solr response will also include an encoded String named rows nextCursor

. You then take the String value from the response, and pass it back to Solr as the Mark nextCursorMark cur
 parameter for your next request. You can repeat this process until you've fetched as many docs assorMark

you want, or until the returned matches the you've already specified --nextCursorMark cursorMark
indicating that there are no more results.

Constraints when using Cursors

There are a few important constraints to be aware of when using parameter in a Solr requestcursorMark

cursorMark and are mutually exclusive parametersstart
Your requests must either not include a parameter, or it must be specified with a value of "start 0
".

sort clauses must include the uniqueKey field (either " " or ")asc "desc
If is your uniqueKey field, then sort params like and would bothid id asc name asc, id desc
work fine, but by itself would notname asc

Cursor mark values are computed based on the sort values of each document in the result, which means
multiple documents with identical sort values will produce identical Cursor mark values if one of them is the last
document on a page of results. In that situation, the subsequent request using that would notcursorMark
know which of the documents with the identical mark values should be skipped. Requiring that the uniqueKey
field be used as a clause in the sort criteria guarantees that a deterministic ordering will be returned, and that
every value will identify a unique point in the sequence of documents.cursorMark

Cursor Examples

Fetch All Docs

The psuedo-code shown here shows the basic logic involved in fetching all documents matching a query using a
cursor:

356Apache Solr Reference Guide 6.1

// when fetching all docs, you might as well use a simple id sort
// unless you really need the docs to come back in a specific order
$params = [q => $some_query, sort => 'id asc', rows => $r, cursorMark => '*']
$done = false
while (not $done) {
 $results = fetch_solr($params)
 // do something with $results
 if ($params[cursorMark] == $results[nextCursorMark]) {
 $done = true
 }
 $params[cursorMark] = $results[nextCursorMark]
}

Using SolrJ, this psuedo-code would be:

SolrQuery q = (new SolrQuery(some_query)).setRows(r).setSort(SortClause.asc("id"));
String cursorMark = CursorMarkParams.CURSOR_MARK_START;
boolean done = false;
while (! done) {
 q.set(CursorMarkParams.CURSOR_MARK_PARAM, cursorMark);
 QueryResponse rsp = solrServer.query(q);
 String nextCursorMark = rsp.getNextCursorMark();
 doCustomProcessingOfResults(rsp);
 if (cursorMark.equals(nextCursorMark)) {
 done = true;
 }
 cursorMark = nextCursorMark;
}

If you wanted to do this by hand using curl, the sequence of requests would look something like this:

357Apache Solr Reference Guide 6.1

$ curl '...&rows=10&sort=id+asc&cursorMark=*'
{
 "response":{"numFound":32,"start":0,"docs":[
 // ... 10 docs here ...
]},
 "nextCursorMark":"AoEjR0JQ"}
$ curl '...&rows=10&sort=id+asc&cursorMark=AoEjR0JQ'
{
 "response":{"numFound":32,"start":0,"docs":[
 // ... 10 more docs here ...
]},
 "nextCursorMark":"AoEpVkRCREIxQTE2"}
$ curl '...&rows=10&sort=id+asc&cursorMark=AoEpVkRCREIxQTE2'
{
 "response":{"numFound":32,"start":0,"docs":[
 // ... 10 more docs here ...
]},
 "nextCursorMark":"AoEmbWF4dG9y"}
$ curl '...&rows=10&sort=id+asc&cursorMark=AoEmbWF4dG9y'
{
 "response":{"numFound":32,"start":0,"docs":[
 // ... 2 docs here because we've reached the end.
]},
 "nextCursorMark":"AoEpdmlld3Nvbmlj"}
$ curl '...&rows=10&sort=id+asc&cursorMark=AoEpdmlld3Nvbmlj'
{
 "response":{"numFound":32,"start":0,"docs":[
 // no more docs here, and note that the nextCursorMark
 // matches the cursorMark param we used
]},
 "nextCursorMark":"AoEpdmlld3Nvbmlj"}

Fetch first N docs, Based on Post Processing

Since the cursor is stateless from Solr's perspective, your client code can stop fetching additional results as soon
as you have decided you have enough information:

while (! done) {
 q.set(CursorMarkParams.CURSOR_MARK_PARAM, cursorMark);
 QueryResponse rsp = solrServer.query(q);
 String nextCursorMark = rsp.getNextCursorMark();
 boolean hadEnough = doCustomProcessingOfResults(rsp);
 if (hadEnough || cursorMark.equals(nextCursorMark)) {
 done = true;
 }
 cursorMark = nextCursorMark;
}

How cursors are Affected by Index Updates

Unlike basic pagination, Cursor pagination does not rely on using an absolute "offset" into the completed sorted
list of matching documents. Instead, the specified in a request encapsulates information aboutcursorMark
the position of the last document returned, based on the sort values of that document. Thisrelative absolute
means that the impact of index modifications is much smaller when using a cursor compared to basic pagination.

358Apache Solr Reference Guide 6.1

Consider the same example index described when discussing basic pagination:

id name

1 A

2 B

...

26 Z

A client requests q=*:*&rows=5&start=0&sort=name asc, id asc&cursorMark=*
Documents with the ids will be returned to the client in order1-5

Document id is deleted3
The client requests 5 more documents using the from the previous responsenextCursorMark

Documents will be returned -- the deletion of a document that's already been returned doesn't6-10
affect the relative position of the cursor

3 new documents are now added with the ids , , and ; All three documents have a name of 90 91 92 A
The client requests 5 more documents using the from the previous responsenextCursorMark

Documents will be returned -- the addition of new documents with sort values already past11-15
does not affect the relative position of the cursor

Document id is updated to change it's 'name' to 1 Q
Document id 17 is updated to change it's 'name' to A
The client requests 5 more documents using the from the previous responsenextCursorMark

The resulting documents are in that order16,1,18,19,20
Because the sort value of document changed so that it is the cursor position, the document1 after
is returned to the client twice
Because the sort value of document changed so that it is the cursor position, the17 before
document has been "skipped" and will not be returned to the client as the cursor continues to
progress

In a nutshell: When fetching all results matching a query using , the only way index modificationscursorMark
can result in a document being skipped, or returned twice, is if the sort value of the document changes.

"Tailing" a Cursor

Because Cursor requests are stateless, and the values encapsulate the sort values ofcursorMark absolute
the last document returned from a search, it's possible to "continue" fetching additional results from a cursor that
has already reached its end -- if new documents are added (or existing documents are updated) to the end of the
results. You can think of this as similar to using something like " in Unix.tail -f"

The most common examples of how this can be useful is when you have a "timestamp" field recording when a
document has been added/updated in your index. Client applications can continuously poll a cursor using a sor

 for documents matching a query, and always be notified when a document ist=timestamp asc, id asc
added or updated matching the request criteria. Another common example is when you have uniqueKey values
that always increase as new documents are created, and you can continuously poll a cursor using sort=id

 to be notified about new documents.asc

One way to ensure that a document will never be returned more then once, is to use the uniqueKey field
as the primary (and therefore: only significant) sort criterion.

In this situation, you will be guaranteed that each document is only returned once, no matter how it may
be be modified during the use of the cursor.

359Apache Solr Reference Guide 6.1

The psuedo-code for tailing a cursor is only a slight modification from our early example for processing all docs
matching a query:

while (true) {
 $doneForNow = false
 while (not $doneForNow) {
 $results = fetch_solr($params)
 // do something with $results
 if ($params[cursorMark] == $results[nextCursorMark]) {
 $doneForNow = true
 }
 $params[cursorMark] = $results[nextCursorMark]
 }
 sleep($some_configured_delay)
}

Result Grouping
Result Grouping groups documents with a common field value into groups and returns the top documents for
each group. For example, if you searched for "DVD" on an electronic retailer's e-commerce site, you might be
returned three categories such as "TV and Video," "Movies," and "Computers," with three results per category. In
this case, the query term "DVD" appeared in all three categories, so Solr groups them together in order to
increase relevancy for the user.

Result Grouping is separate from . Though it is conceptually similar, faceting returns all relevant resultsFaceting
and allows the user to refine the results based on the facet category. For example, if you search for "shoes" on a
footwear retailer's e-commerce site, Solr would return all results for that query term, along with selectable facets
such as "size," "color," "brand," and so on.

You can however combine grouping with faceting. Grouped faceting supports and facet.field facet.range
but currently doesn't support date and pivot faceting. The facet counts are computed based on the first group.f

 parameter, and other parameters are ignored.ield group.field

Grouped faceting differs from non grouped facets (sum of all facets) == (total of products with that property) as
shown in the following example:

Object 1

name: Phaser 4620a
ppm: 62
product_range: 6

Object 2

name: Phaser 4620i
ppm: 65
product_range: 6

Object 3

name: ML6512
ppm: 62
product_range: 7

If you ask Solr to group these documents by "product_range", then the total amount of groups is 2, but the facets
for ppm are 2 for 62 and 1 for 65.

Request Parameters

360Apache Solr Reference Guide 6.1

Result Grouping takes the following request parameters. Any number of these request parameters can be
included in a single request:

Parameter Type Description

group Boolean If true, query results will be grouped.

group.field string The name of the field by which to group results. The field must be
single-valued, and either be indexed or a field type that has a value
source and works in a function query, such as ExternalFileField
. It must also be a string-based field, such as or StrField TextFie
ld

group.func query Group based on the unique values of a function query.

NOTE: This option does not work with .distributed searches

group.query query Return a single group of documents that match the given query.

rows integer The number of groups to return. The default value is 10.

start integer Specifies an initial offset for the list of groups.

group.limit integer Specifies the number of results to return for each group. The default
value is 1.

group.offset integer Specifies an initial offset for the document list of each group.

sort sortspec Specifies how Solr sorts the groups relative to each other. For
example, will cause the groups to besort=popularity desc
sorted according to the highest popularity document in each group.
The default value is .score desc

group.sort sortspec Specifies how Solr sorts documents within each group. The default
behavior if is not specified is to use the same effectivegroup.sort
value as the parameter.sort

group.format grouped/simple If this parameter is set to , the grouped documents aresimple
presented in a single flat list, and the and parametersstart rows
affect the numbers of documents instead of groups.

group.main Boolean If true, the result of the first field grouping command is used as the
main result list in the response, using .group.format=simple

group.ngroups Boolean If true, Solr includes the number of groups that have matched the
query in the results. The default value is false.

See below for when using Distributed Result Grouping Caveats
sharded indexes

group.truncate Boolean If true, facet counts are based on the most relevant document of each
group matching the query. The default value is false.

361Apache Solr Reference Guide 6.1

group.facet Boolean Determines whether to compute grouped facets for the field facets
specified in facet.field parameters. Grouped facets are computed
based on the first specified group. As with normal field faceting, fields
shouldn't be tokenized (otherwise counts are computed for each
token). Grouped faceting supports single and multivalued fields.
Default is false.

See below for when using Distributed Result Grouping Caveats
sharded indexes

group.cache.percent integer
between 0 and
100

Setting this parameter to a number greater than 0 enables caching
for result grouping. Result Grouping executes two searches; this
option caches the second search. The default value is 0. Testing has
shown that group caching only improves search time with Boolean,
wildcard, and fuzzy queries. For simple queries like term or "match
all" queries, group caching degrades performance.

Any number of group commands (, ,) may be specified in a singlegroup.field group.func group.query
request.

Examples

All of the following sample queries work with Solr's " " example.bin/solr -e techproducts

Grouping Results by Field

In this example, we will group results based on the field, which specifies the manufacturer of themanu_exact
items in the sample dataset.

http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name&q=so
lr+memory&group=true&group.field=manu_exact

http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact
http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name&q=solr+memory&group=true&group.field=manu_exact

362Apache Solr Reference Guide 6.1

{
...
"grouped":{
 "manu_exact":{
 "matches":6,
 "groups":[{
 "groupValue":"Apache Software Foundation",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server"}]
 }},
 {
 "groupValue":"Corsair Microsystems Inc.",
 "doclist":{"numFound":2,"start":0,"docs":[
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400
(PC 3200) System Memory - Retail"}]
 }},
 {
 "groupValue":"A-DATA Technology Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - OEM"}]
 }},
 {
 "groupValue":"Canon Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer"}]
 }},
 {
 "groupValue":"ASUS Computer Inc.",
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]
 }
 }
]
 }
}

The response indicates that there are six total matches for our query. For each of the five unique values of grou
, Solr returns a for that such that the indicates the total number ofp.field docList groupValue numFound

documents in that group, and the top documents are returned according to the implicit default group.limit=1
and parameters. The resulting groups are then sorted by the score of the topgroup.sort=score desc
document within each group based on the implicit , and the number of groups returned issort=score desc
limited to the implicit .rows=10

We can run the same query with the request parameter . This will format the results as agroup.main=true
single flat document list. This flat format does not include as much information as the normal result grouping
query results – notably the in each group – but it may be easier for existing Solr clients to parse.numFound

363Apache Solr Reference Guide 6.1

http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name,manu
facturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true

{
 "responseHeader":{
 "status":0,
 "QTime":1,
 "params":{
 "fl":"id,name,manufacturer",
 "indent":"true",
 "q":"solr memory",
 "group.field":"manu_exact",
 "group.main":"true",
 "group":"true",
 "wt":"json"}},
 "grouped":{},
 "response":{"numFound":6,"start":0,"docs":[
 {
 "id":"SOLR1000",
 "name":"Solr, the Enterprise Search Server"},
 {
 "id":"VS1GB400C3",
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - Retail"},
 {
 "id":"VDBDB1A16",
 "name":"A-DATA V-Series 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC 3200)
System Memory - OEM"},
 {
 "id":"0579B002",
 "name":"Canon PIXMA MP500 All-In-One Photo Printer"},
 {
 "id":"EN7800GTX/2DHTV/256M",
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)"}]
 }
}

Grouping by Query

In this example, we will use the parameter to find the top three results for "memory" in twogroup.query
different price ranges: 0.00 to 99.99, and over 100.

http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=name,price&q
=memory&group=true&group.query=price:[0+TO+99.99]&group.query=price:[100+TO+*]&gro
up.limit=3

http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true
http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=id,name,manufacturer&q=solr+memory&group=true&group.field=manu_exact&group.main=true
http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:%5B0+TO+99.99%5D&group.query=price:%5B100+TO+*%5D&group.limit=3
http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:%5B0+TO+99.99%5D&group.query=price:%5B100+TO+*%5D&group.limit=3
http://localhost:8983/solr/techproducts/select?wt=json&indent=true&fl=name,price&q=memory&group=true&group.query=price:%5B0+TO+99.99%5D&group.query=price:%5B100+TO+*%5D&group.limit=3

364Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":42,
 "params":{
 "fl":"name,price",
 "indent":"true",
 "q":"memory",
 "group.limit":"3",
 "group.query":["price:[0 TO 99.99]",
 "price:[100 TO *]"],
 "group":"true",
 "wt":"json"}},
 "grouped":{
 "price:[0 TO 99.99]":{
 "matches":5,
 "doclist":{"numFound":1,"start":0,"docs":[
 {
 "name":"CORSAIR ValueSelect 1GB 184-Pin DDR SDRAM Unbuffered DDR 400 (PC
3200) System Memory - Retail",
 "price":74.99}]
 }},
 "price:[100 TO *]":{
 "matches":5,
 "doclist":{"numFound":3,"start":0,"docs":[
 {
 "name":"CORSAIR XMS 2GB (2 x 1GB) 184-Pin DDR SDRAM Unbuffered DDR 400
(PC 3200) Dual Channel Kit System Memory - Retail",
 "price":185.0},
 {
 "name":"Canon PIXMA MP500 All-In-One Photo Printer",
 "price":179.99},
 {
 "name":"ASUS Extreme N7800GTX/2DHTV (256 MB)",
 "price":479.95}]
 }
 }
 }
}

In this case, Solr found five matches for "memory," but only returns four results grouped by price. This is
because one result for "memory" did not have a price assigned to it.

Distributed Result Grouping Caveats

Grouping is supported for , with some caveats:distributed searches

Currently is is not supported in any distributed searchesgroup.func
group.ngroups and require that all documents in each group must be co-located on thegroup.facet
same shard in order for accurate counts to be returned. can be aDocument routing via composite keys
useful solution in many situations.

Collapse and Expand Results

365Apache Solr Reference Guide 6.1

The Collapsing query parser and the Expand component combine to form an approach to grouping documents
for field collapsing in search results. The Collapsing query parser groups documents (collapsing the result set)
according to your parameters, while the Expand component provides access to documents in the collapsed
group for use in results display or other processing by a client application.

Collapsing Query Parser

The is really a that provides more performant field collapsing than Solr'sCollapsingQParser post filter
standard approach when the number of distinct groups in the result set is high. This parser collapses the result
set to a single document per group before it forwards the result set to the rest of the search components. So all
downstream components (faceting, highlighting, etc...) will work with the collapsed result set.

The CollapsingQParser accepts the following local parameters:

Parameter Description Default

field The field that is being collapsed on. The field must be a single valued String, Int or
Float

none

min | max Selects the group head document for each group based on which document has the
min or max value of the specified numeric field or .function query

At most only one of the min, max, or sort (see below) parameters may be specified.

If none are specified, the group head document of each group will be selected based
on the highest scoring document in that group.

none

sort Selects the group head document for each group based on which document comes
first according to the specified .sort string

At most only one of the min, max, (see above) or sort parameters may be specified.

If none are specified, the group head document of each group will be selected based
on the highest scoring document in that group.

none

nullPolicy There are three null policies:

ignore: removes documents with a null value in the collapse field. This is the
default.
expand: treats each document with a null value in the collapse field as a separate
group.
collapse: collapses all documents with a null value into a single group using either
highest score, or minimum/maximum.

ignore

hint Currently there is only one hint available "top_fc", which stands for top level
FieldCache. The top_fc hint is only available when collapsing on String fields. top_fc
provides the best query time speed but takes the longest to warm on startup or
following a commit. top_fc also will result in having the collapsed field cached in
memory twice if the it's used for faceting or sorting.

none

size Sets the initial size of the collapse data structures when collapsing on a numeric field
. The data structures used for collapsing grow dynamically when collapsing ononly

numeric fields. Setting the size above the number of results expected in the result set
will eliminate the resizing cost.

100,000

In order to use these features with SolrCloud, the documents must be located on the same shard. To
ensure document co-location, you can define the parameter as whenrouter.name compositeId
creating the collection. For more information on this option, see the section .Document Routing

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesortParameter
https://cwiki.apache.org/confluence/display/solr/Shards+and+Indexing+Data+in+SolrCloud#ShardsandIndexingDatainSolrCloud-DocumentRouting

366Apache Solr Reference Guide 6.1

Sample Syntax:

Collapse on selecting the document in each group with the highest scoring document:group_field

fq={!collapse field=group_field}

Collapse on selecting the document in each group with the minimum value of :group_field numeric_field

fq={!collapse field=group_field min=numeric_field}

Collapse on selecting the document in each group with the maximum value of :group_field numeric_field

fq={!collapse field=group_field max=numeric_field}

Collapse on selecting the document in each group with the maximum value of a function. Notegroup_field
that the function can be used with the min/max options to use the score of the current document beingcscore()
collapsed.

fq={!collapse field=group_field max=sum(cscore(),numeric_field)}

Collapse on with a null policy so that all docs that do not have a value in the willgroup_field group_field
be treated as a single group. For each group, the selected document will be based first on a ,numeric_field
but ties will be broken by score:

fq={!collapse field=group_field nullPolicy=nullPolicy sort='numeric_field asc, score
desc'}

Collapse on with a hint to use the top level field cache:group_field

fq={!collapse field=group_field hint=top_fc}

The CollapsingQParserPlugin fully supports the QueryElevationComponent.

Expand Component

The ExpandComponent can be used to expand the groups that were collapsed by the .CollapsingQParserPlugin

Example usage with the CollapsingQParserPlugin:

q=foo&fq={!collapse field=ISBN}

In the query above, the CollapsingQParserPlugin will collapse the search results on the field. The mainISBN
search results will contain the highest ranking document from each book.

The ExpandComponent can now be used to expand the results so you can see the documents grouped by ISBN.
For example:

q=foo&fq={!collapse field=ISBN}&expand=true

The “expand=true” parameter turns on the ExpandComponent. The ExpandComponent adds a new section to
the search output labeled “expanded”.

http://heliosearch.org/the-collapsingqparserplugin-solrs-new-high-performance-field-collapsing-postfilter/

367Apache Solr Reference Guide 6.1

Inside the expanded section there is a with each group head pointing to the expanded documents that aremap
within the group. As applications iterate the main collapsed result set, they can access the map toexpanded
retrieve the expanded groups.

The ExpandComponent has the following parameters:

Parameter Description Default

expand.sort Orders the documents within the expanded groups score
desc

expand.rows The number of rows to display in each group 5

expand.q Overrides the main q parameter, determines which documents to include in the
main group.

main q

expand.fq Overrides main fq's, determines which documents to include in the main group. main fq's

Result Clustering
The (or) plugin attempts to automatically discover groups of related search hitsclustering cluster analysis
(documents) and assign human-readable labels to these groups. By default in Solr, the clustering algorithm is
applied to the search result of each single query—this is called an clustering. While Solr contains anon-line
extension for for full-index clustering (clustering) this section will focus on discussing on-line clusteringoff-line
only.

Clusters discovered for a given query can be perceived as . This is beneficial when regulardynamic facets
faceting is difficult (field values are not known in advance) or when the queries are exploratory in nature. Take a
look at the project's demo page to see an example of search results clustering in action (the groups inCarrot2
the visualization have been discovered automatically in search results to the right, there is no external
information involved).

http://search.carrot2.org/stable/search?query=solr&results=100&source=web&view=foamtree

368Apache Solr Reference Guide 6.1

The query issued to the system was . It seems clear that faceting could not yield a similar set of groups,Solr
although the goals of both techniques are similar—to let the user explore the set of search results and either
rephrase the query or narrow the focus to a subset of current documents. Clustering is also similar to Result

 in that it can help to look deeper into search results, beyond the top few hits.Grouping
Topics covered in this section:

Preliminary Concepts
Quick Start Example
Installation
Configuration
Tweaking Algorithm Settings
Performance Considerations
Additional Resources

Preliminary Concepts

Each passed to the clustering component is composed of several logical parts:document

a unique identifier,
origin URL,
the title,
the main content,
a language code of the title and content.

The identifier part is mandatory, everything else is optional but at least one of the text fields (title or content) will
be required to make the clustering process reasonable. It is important to remember that logical document parts
must be mapped to a particular schema and its fields. The content (text) for clustering can be sourced from either
a stored text field or context-filtered using a highlighter, all these options are explained below in the configuration
section.

A is the actual logic (implementation) that discovers relationships among the documents inclustering algorithm
the search result and forms human-readable cluster labels. Depending on the choice of the algorithm the clusters
may (and probably will) vary. Solr comes with several algorithms implemented in the open source projectCarrot2
, commercial alternatives also exist.

Quick Start Example

The " " example included with Solr is pre-configured with all the necessary components for resulttechproducts
clustering - but they are disabled by default.

To enable the clustering component contrib and a dedicated search handler configured to use it, specify the " " -a
option to set a JVM System Property when running the example:

bin/solr start -e techproducts -Dsolr.clustering.enabled=true

http://carrot2.org

369Apache Solr Reference Guide 6.1

You can now try out the clustering handler by opening the following URL in a browser:

http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100

The output XML should include search hits and an array of automatically discovered clusters at the end,
resembling the output shown here:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">299</int>
 </lst>
 <result name="response" numFound="32" start="0" maxScore="1.0">
 <doc>
 <str name="id">GB18030TEST</str>
 <str name="name">Test with some GB18030 encoded characters</str>
 <arr name="features">
 <str>No accents here</str>
 <str></str>
 <str>This is a feature (translated)</str>
 <str></str>
 <str>This document is very shiny (translated)</str>
 </arr>
 <float name="price">0.0</float>
 <str name="price_c">0,USD</str>
 <bool name="inStock">true</bool>
 <long name="_version_">1448955395025403904</long>
 <float name="score">1.0</float>
 </doc>

 <!-- more search hits, omitted -->
 </result>

 <arr name="clusters">
 <lst>
 <arr name="labels">
 <str>DDR</str>
 </arr>
 <double name="score">3.9599865057283354</double>
 <arr name="docs">
 <str>TWINX2048-3200PRO</str>
 <str>VS1GB400C3</str>
 <str>VDBDB1A16</str>
 </arr>
 </lst>
 <lst>
 <arr name="labels">
 <str>iPod</str>
 </arr>
 <double name="score">11.959228467119022</double>
 <arr name="docs">
 <str>F8V7067-APL-KIT</str>
 <str>IW-02</str>
 <str>MA147LL/A</str>
 </arr>
 </lst>

 <!-- More clusters here, omitted. -->

http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100

370Apache Solr Reference Guide 6.1

 <lst>
 <arr name="labels">
 <str>Other Topics</str>
 </arr>
 <double name="score">0.0</double>
 <bool name="other-topics">true</bool>
 <arr name="docs">
 <str>adata</str>
 <str>apple</str>
 <str>asus</str>
 <str>ati</str>
 <!-- other unassigned document IDs here -->
 </arr>
 </lst>

371Apache Solr Reference Guide 6.1

1.

2.

 </arr>
</response>

There were a few clusters discovered for this query (), separating search hits into various categories: DDR,*:*
iPod, Hard Drive, etc. Each cluster has a label and score that indicates the "goodness" of the cluster. The score
is algorithm-specific and is meaningful only in relation to the scores of other clusters in the same set. In other
words, if cluster has a higher score than cluster , cluster should be of better quality (have a better labelA B A
and/or more coherent document set). Each cluster has an array of identifiers of documents belonging to it. These
identifiers correspond to the field declared in the schema.uniqueKey

Depending on the quality of input documents, some clusters may not make much sense. Some documents may
be left out and not be clustered at all; these will be assigned to the synthetic group, marked with theOther Topics

 property set to (see the XML dump above for an example). The score of the other topicsother-topics true
group is zero.

Installation

The clustering contrib extension requires and all JARs under dist/solr-clustering-*.jar contrib/clu
.stering/lib

Configuration

Declaration of the Search Component and Request Handler

Clustering extension is a search component and must be declared in . Such a component cansolrconfig.xml
be then appended to a request handler as the last component in the chain (because it requires search results
which must be previously fetched by the search component).

An example configuration could look as shown below.

Include the required contrib JARs. Note that by default paths are relative to the Solr core so
they may need adjustments to your configuration, or an explicit specification of the $solr.i

.nstall.dir

<lib dir="${solr.install.dir:../../..}/contrib/clustering/lib/"
regex=".*\.jar" />
<lib dir="${solr.install.dir:../../..}/dist/"
regex="solr-clustering-\d.*\.jar" />

Declaration of the search component. Each component can also declare multiple clustering
pipelines ("engines"), which can be selected at runtime by passing clustering.engine=

 URL parameter.(engine name)

372Apache Solr Reference Guide 6.1

2.

3.

<searchComponent name="clustering"
class="solr.clustering.ClusteringComponent">
 <!-- Lingo clustering algorithm -->
 <lst name="engine">
 <str name="name">lingo</str>
 <str
name="carrot.algorithm">org.carrot2.clustering.lingo.LingoClusterin
gAlgorithm</str>
 </lst>

 <!-- An example definition for the STC clustering algorithm. -->
 <lst name="engine">
 <str name="name">stc</str>
 <str
name="carrot.algorithm">org.carrot2.clustering.stc.STCClusteringAlg
orithm</str>
 </lst>
</searchComponent>

A request handler to which we append the clustering component declared above.

<requestHandler name="/clustering"
 class="solr.SearchHandler">
 <lst name="defaults">
 <bool name="clustering">true</bool>
 <bool name="clustering.results">true</bool>

 <!-- Logical field to physical field mapping. -->
 <str name="carrot.url">id</str>
 <str name="carrot.title">doctitle</str>
 <str name="carrot.snippet">content</str>

 <!-- Configure any other request handler parameters. We will
cluster the
 top 100 search results so bump up the 'rows' parameter.
-->
 <str name="rows">100</str>
 <str name="fl">*,score</str>
 </lst>

 <!-- Append clustering at the end of the list of search
components. -->
 <arr name="last-components">
 <str>clustering</str>
 </arr>
</requestHandler>

Configuration Parameters of the Clustering Component

The table below summarizes parameters of each clustering engine or the entire clustering component
(depending where they are declared).

Parameter Description

373Apache Solr Reference Guide 6.1

clustering When , clustering component is enabled.true

clustering.engine Declares which clustering engine to use. If not present, the first declared engine
will become the default one.

clustering.results When , the component will perform clustering of search results (thistrue
should be enabled).

clustering.collection When , the component will perform clustering of the whole documenttrue
index (this section does not cover full-index clustering).

At the engine declaration level, the following parameters are supported.

Parameter Description

carrot.algorithm The algorithm class.

carrot.resourcesDir Algorithm-specific resources and configuration files (stop words, other
lexical resources, default settings). By default points to conf/clustering
/carrot2/

carrot.outputSubClusters If and the algorithm supports hierarchical clustering, sub-clusters willtrue
also be emitted.

carrot.numDescriptions Maximum number of per-cluster labels to return (if the algorithm assigns
more than one label to a cluster).

The parameter should contain a fully qualified class name of an algorithm supported bycarrot.algorithm
the framework. Currently, the following algorithms are available:Carrot2

org.carrot2.clustering.lingo.LingoClusteringAlgorithm (open source)
org.carrot2.clustering.stc.STCClusteringAlgorithm (open source)
org.carrot2.clustering.kmeans.BisectingKMeansClusteringAlgorithm (open source)
com.carrotsearch.lingo3g.Lingo3GClusteringAlgorithm (commercial)

For a comparison of characteristics of these algorithms see the following links:

http://doc.carrot2.org/#section.advanced-topics.fine-tuning.choosing-algorithm
http://project.carrot2.org/algorithms.html
http://carrotsearch.com/lingo3g-comparison.html

The question of which algorithm to choose depends on the amount of traffic (STC is faster than Lingo, but
arguably produces less intuitive clusters, Lingo3G is the fastest algorithm but is not free or open source),
expected result (Lingo3G provides hierarchical clusters, Lingo and STC provide flat clusters), and the input data
(each algorithm will cluster the input slightly differently). There is no one answer which algorithm is "the best".

Contextual and Full Field Clustering

The clustering engine can apply clustering to the full content of (stored) fields or it can run an internal highlighter
pass to extract context-snippets before clustering. Highlighting is recommended when the logical snippet field
contains a lot of content (this would affect clustering performance). Highlighting can also increase the quality of
clustering because the content passed to the algorithm will be more focused around the query (it will be
query-specific context). The following parameters control the internal highlighter.

Parameter Description

http://project.carrot2.org
http://doc.carrot2.org/#section.advanced-topics.fine-tuning.choosing-algorithm
http://project.carrot2.org/algorithms.html
http://carrotsearch.com/lingo3g-comparison.html

374Apache Solr Reference Guide 6.1

carrot.produceSummary When the clustering component will run a highlighter pass on thetrue
content of logical fields pointed to by and .carrot.title carrot.snippet
Otherwise full content of those fields will be clustered.

carrot.fragSize The size, in characters, of the snippets (aka fragments) created by the
highlighter. If not specified, the default highlighting fragsize ()hl.fragsize
will be used.

carrot.summarySnippets The number of summary snippets to generate for clustering. If not specified,
the default highlighting snippet count () will be used.hl.snippets

Logical to Document Field Mapping

As already mentioned in , the clustering component clusters "documents" consisting ofPreliminary Concepts
logical parts that need to be mapped onto physical schema of data stored in Solr. The field mapping attributes
provide a connection between fields and logical document parts. Note that the content of title and snippet fields
must be so that it can be retrieved at search time.stored

Parameter Description

carrot.title The field (alternatively comma- or space-separated list of fields) that should be mapped
to the logical document's title. The clustering algorithms typically give more weight to the
content of the title field compared to the content (snippet). For best results, the field
should contain concise, noise-free content. If there is no clear title in your data, you can
leave this parameter blank.

carrot.snippet The field (alternatively comma- or space-separated list of fields) that should be mapped
to the logical document's main content. If this mapping points to very large content fields
the performance of clustering may drop significantly. An alternative then is to use
query-context snippets for clustering instead of full field content. See the description of
the parameter for details.carrot.produceSummary

carrot.url The field that should be mapped to the logical document's content URL. Leave blank if
not required.

Clustering Multilingual Content

The field mapping specification can include a parameter, which defines the field that stores carrot.lang ISO
 code of the language in which the title and content of the document are written. This information can be639-1

stored in the index based on apriori knowledge of the documents' source or a language detection filter applied at
indexing time. All algorithms inside the Carrot2 framework will accept ISO codes of languages defined in Langua

.geCode enum

The language hint makes it easier for clustering algorithms to separate documents from different languages on
input and to pick the right language resources for clustering. If you do have multi-lingual query results (or query
results in a language different than English), it is strongly advised to map the language field appropriately.

Parameter Description

carrot.lang The field that stores ISO 639-1 code of the language of the document's text fields.

carrot.lcmap A mapping of arbitrary strings into ISO 639 two-letter codes used by . Thecarrot.lang
syntax of this parameter is the same as , for example: langid.map.lcmap langid.map.
lcmap=japanese:ja polish:pl english:en

http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.loc.gov/standards/iso639-2/php/code_list.php
https://github.com/carrot2/carrot2/blob/master/core/carrot2-core/src/org/carrot2/core/LanguageCode.java
https://github.com/carrot2/carrot2/blob/master/core/carrot2-core/src/org/carrot2/core/LanguageCode.java

375Apache Solr Reference Guide 6.1

The default language can also be set using Carrot2-specific algorithm attributes (in this case the MultilingualClust
 attribute).ering.defaultLanguage

Tweaking Algorithm Settings

The algorithms that come with Solr are using their default settings which may be inadequate for all data sets. All
algorithms have lexical resources and resources (stop words, stemmers, parameters) that may require tweaking
to get better clusters (and cluster labels). For Carrot2-based algorithms it is probably best to refer to a dedicated
tuning application called Carrot2 Workbench (screenshot below). From this application one can export a set of
algorithm attributes as an XML file, which can be then placed under the location pointed to by carrot.resourc

.esDir

Providing Defaults

The default attributes for all engines (algorithms) declared in the clustering component are placed under carrot
 and with an expected file name of . So for an engine named .resourcesDir engineName-attributes.xml

 and the default value of , the attributes would be read from a file in lingo carrot.resourcesDir conf/clus
.tering/carrot2/lingo-attributes.xml

An example XML file changing the default language of documents to Polish is shown below.

<attribute-sets default="attributes">
 <attribute-set id="attributes">
 <value-set>
 <label>attributes</label>
 <attribute key="MultilingualClustering.defaultLanguage">
 <value type="org.carrot2.core.LanguageCode" value="POLISH"/>
 </attribute>
 </value-set>
 </attribute-set>
</attribute-sets>

Tweaking at Query-Time

The clustering component and Carrot2 clustering algorithms can accept query-time attribute overrides. Note that
certain things (for example lexical resources) can only be initialized once (at startup, via the XML configuration
files).

An example query that changes the parameterLingoClusteringAlgorithm.desiredClusterCountBase
for the Lingo algorithm: http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100&LingoClusteringAlgor

.ithm.desiredClusterCountBase=20

The clustering engine (the algorithm declared in) can also be changed at runtime by passing solrconfig.xml
 request attribute: clustering.engine=name http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=10

0&clustering.engine=kmeans

Performance Considerations

Dynamic clustering of search results comes with two major performance penalties:

Increased cost of fetching a larger-than-usual number of search results (50, 100 or more documents),
Additional computational cost of the clustering itself.

http://doc.carrot2.org/#section.attribute.lingo.MultilingualClustering.defaultLanguage
http://doc.carrot2.org/#section.attribute.lingo.MultilingualClustering.defaultLanguage
http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100&LingoClusteringAlgorithm.desiredClusterCountBase=20
http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100&LingoClusteringAlgorithm.desiredClusterCountBase=20
http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100&clustering.engine=kmeans
http://localhost:8983/solr/techproducts/clustering?q=*:*&rows=100&clustering.engine=kmeans

376Apache Solr Reference Guide 6.1

For simple queries, the clustering time will usually dominate the fetch time. If the document content is very long
the retrieval of stored content can become a bottleneck. The performance impact of clustering can be lowered in
several ways:

feed less content to the clustering algorithm by enabling attribute,carrot.produceSummary
perform clustering on selected fields (titles only) to make the input smaller,
use a faster algorithm (STC instead of Lingo, Lingo3G instead of STC),
tune the performance attributes related directly to a specific algorithm.

Some of these techniques are described in document, availableApache SOLR and Carrot2 integration strategies
at . The topic of improving performance is also included in thehttp://carrot2.github.io/solr-integration-strategies
Carrot2 manual at .http://doc.carrot2.org/#section.advanced-topics.fine-tuning.performance

Additional Resources

The following resources provide additional information about the clustering component in Solr and its potential
applications.

Apache Solr and Carrot2 integration strategies: http://carrot2.github.io/solr-integration-strategies
Apache Solr Wiki (covers previous Solr versions, may be inaccurate): http://carrot2.github.io/solr-integratio
n-strategies
Clustering and Visualization of Solr search results (video from Berlin BuzzWords conference, 2011): http://
vimeo.com/26616444

Spatial Search
Solr supports location data for use in spatial/geospatial searches. Using spatial search, you can:

Index points or other shapes
Filter search results by a bounding box or circle or by other shapes
Sort or boost scoring by distance between points, or relative area between rectangles
Generate a 2D grid of facet count numbers for heatmap generation or point-plotting.

There are three main field types available for spatial search:

LatLonType and its non-geodetic twin PointType
SpatialRecursivePrefixTreeFieldType (RPT for short), including RptWithGeometrySpatialF

, a derivativeield
BBoxField

RPT offers more features than LatLonType and fast filter performance, although LatLonType is more appropriate
when efficient distance sorting/boosting is desired. They can both be used simultaneously for what each does
best – LatLonType for sorting/boosting, RPT for filtering. If you need to index shapes other than points (e.g. a
circle or polygon) then use RPT.

BBoxField is for indexing bounding boxes, querying by a box, specifying a search predicate
(Intersects,Within,Contains,Disjoint,Equals), and a relevancy sort/boost like overlapRatio or simply the area.

Some details that are not in this guide can be found at . http://wiki.apache.org/solr/SpatialSearch

Indexing and Configuration

For indexing geodetic points (latitude and longitude), supply the pair of numbers as a string with a comma
separating them in latitude then longitude order. For non-geodetic points, the order is x,y for PointType, and for
RPT you must use a space instead of a comma, or use WKT or GeoJSON.

http://carrot2.github.io/solr-integration-strategies
http://doc.carrot2.org/#section.advanced-topics.fine-tuning.performance
http://carrot2.github.io/solr-integration-strategies
http://carrot2.github.io/solr-integration-strategies
http://carrot2.github.io/solr-integration-strategies
http://vimeo.com/26616444
http://vimeo.com/26616444
http://wiki.apache.org/solr/SpatialSearch

377Apache Solr Reference Guide 6.1

See the section below for RPT configuration specifics.SpatialRecursivePrefixTreeFieldType

Spatial Filters

There are 2 types of Spatial filters, which both support the following parameters:

Parameter Description

d the radial distance, usually in kilometers. (RPT & BBoxField can set other units via the setting di
)stanceUnits

pt the center point using the format "lat,lon" if latitude & longitude. Otherwise, "x,y" for PointType or
"x y" for RPT field types.

sfield a spatial indexed field

score (Advanced option; RPT and BBoxField field types only) If the query is used in a scoring context
(e.g. as the main query in), this determines what scores will be produced. Validq local parameter
values are:

none - A fixed score of 1.0. (the default)
kilometers - distance in kilometers between the field value and the specified center point
miles - distance in miles between the field value and the specified center point
degrees - distance in degrees between the field value and the specified center point
distance - distance between the field value and the specified center point in the distance

 configured for this fieldUnits
recipDistance - 1 / the distance

When used with ,additional options are supported:BBoxField

overlapRatio - The relative overlap between the indexed shape & query shape.
area - haversine based area of the overlapping shapes expressed in terms of the distance

 configured for this fieldUnits
area2D - cartesian coordinates based area of the overlapping shapes expressed in terms of
the configured for this fielddistanceUnits

filter (Advanced option; RPT and BBoxField field types only) If you only want the query to score (with
the above local parameter), not filter, then set this local parameter to false.score

geofilt

The filter allows you to retrieve results based on the geospatial distance (AKA the "great circlegeofilt
distance") from a given point. Another way of looking at it is that it creates a circular shape filter. For example, to
find all documents within five kilometers of a given lat/lon point, you could enter &q=*:*&fq={!geofilt

. This filter returns all results within a circle of the given radiussfield=store}&pt=45.15,-93.85&d=5
around the initial point:

Don't use this for indexed non-point shapes (e.g. polygons). The results will be
erroneous. And with RPT, it's only recommended for multi-valued point data, as the
implementation doesn't scale very well and for single-valued fields, you should instead
use a separate LatLonType field purely for distance sorting.

378Apache Solr Reference Guide 6.1

bbox

The filter is very similar to except it uses the of the calculated circle. See the bluebbox geofilt bounding box
box in the diagram below. It takes the same parameters as geofilt. Here's a sample query: &q=*:*&fq={!bbox

. The rectangular shape is faster to compute and so it's sometimessfield=store}&pt=45.15,-93.85&d=5
used as an alternative to geofilt when it's acceptable to return points outside of the radius. However, if the ideal
goal is a circle but you want it to run faster, then instead consider using the RPT field and try a large "distErrPct"
value like (10% radius). This will return results outside the radius but it will do so somewhat uniformly around0.1
the shape.

Filtering by an arbitrary rectangle

Sometimes the spatial search requirement calls for finding everything in a rectangular area, such as the area
covered by a map the user is looking at. For this case, geofilt and bbox won't cut it. This is somewhat of a trick,
but you can use Solr's range query syntax for this by supplying the lower-left corner as the start of the range and
the upper-right corner as the end of the range. Here's an example: &q=*:*&fq=store:[45,-94 TO 46,-9

. LatLonType does support rectangles that cross the dateline, but RPT does. If you are using RPT with3] not
non-geospatial coordinates () then you must quote the points due to the space, e.g. .geo="false" "x y"

Optimization: Solr Post Filtering

Most likely, the fastest spatial filters will be to simply use the RPT field type. However, sometimes it may be
faster to use LatLonType with in circumstances when both the spatial query isn't worth cachingSolr post filtering
and there aren't many matching documents that match the non-spatial filters (e.g. keyword queries and other
filters). To use with LatLonType, use the or query parsers in a filter query butSolr post filtering bbox geofilt
specify and (or greater) as local parameters. Here's a short example:cache=false cost=100

&q=...mykeywords...&fq=...someotherfilters...&fq={!geofilt cache=false
cost=100}&sfield=store&pt=45.15,-93.85&d=5

Distance Function Queries

When a bounding box includes a pole, the bounding box ends up being a "bounding bowl" (a spherical
) that includes all values north of the lowest latitude of the circle if it touches the north pole (or southcap

of the highest latitude if it touches the south pole).

379Apache Solr Reference Guide 6.1

There are four distance function queries: , see below, usually the most appropriate; , to calculategeodist dist
the p-norm distance between multi-dimensional vectors; , to calculate the distance between two points on hsin
a sphere; and , to calculate the squared Euclidean distance between two points. For more information sqedist
about these function queries, see the section on .Function Queries

geodist

geodist is a distance function that takes three optional parameters: . You(sfield,latitude,longitude)
can use the function to sort results by distance or score return results.geodist

For example, to sort your results by ascending distance, enter ...&q=*:*&fq={!geofilt}&sfield=store&
.pt=45.15,-93.85&d=50&sort=geodist() asc

To return the distance as the document score, enter ...&q={!func}geodist()&sfield=store&pt=45.15
.,-93.85&sort=score+asc

More Examples

Here are a few more useful examples of what you can do with spatial search in Solr.

Use as a Sub-Query to Expand Search Results

Here we will query for results in Jacksonville, Florida, or within 50 kilometers of 45.15,-93.85 (near Buffalo,
Minnesota):

&q=*:*&fq=(state:"FL" AND city:"Jacksonville") OR
{!geofilt}&sfield=store&pt=45.15,-93.85&d=50&sort=geodist()+asc

Facet by Distance

To facet by distance, you can use the Frange query parser:

&q=*:*&sfield=store&pt=45.15,-93.85&facet.query={!frange l=0
u=5}geodist()&facet.query={!frange l=5.001 u=3000}geodist()

There are other ways to do it too, like using a {!geofilt} in each facet.query.

Boost Nearest Results

Using the or , you can combine spatial search with the boost function to boost theDisMax Extended DisMax
nearest results:

&q.alt=*:*&fq={!geofilt}&sfield=store&pt=45.15,-93.85&d=50&bf=recip(geodist(),2,20
0,20)&sort=score desc

RPT

RPT refers to either (aka simply RPT) and an extended version: SpatialRecursivePrefixTreeFieldType
 (aka RPT with Geometry). RPT offers several functional improvementsRptWithGeometrySpatialField

over LatLonType:

Query by polygons and other complex shapes, in addition to circles & rectangles
Multi-valued indexed fields
Ability to index non-point shapes (e.g. polygons) as well as points

http://wiki.apache.org/solr/FunctionQuery#dist
http://wiki.apache.org/solr/FunctionQuery#hsin.2C_ghhsin_-_Haversine_Formula
https://wiki.apache.org/solr/FunctionQuery#sqedist_-_Squared_Euclidean_Distance

380Apache Solr Reference Guide 6.1

Rectangles with user-specified corners that can cross the dateline
Multi-value distance sort and score boosting (warning: non-optimized)
Well-Known-Text (WKT) shape syntax (required for specifying polygons & other complex shapes), and
GeoJSON too. In addition to indexing and searching, this works with the (GeoJSON Solrwt=geojson
response-writer) and (geo Solr document-transformer).[geo f=myfield]
Heatmap grid faceting capability

RPT incorporates the basic features of LatLonType and PointType, such as lat-lon bounding boxes and circles,
in addition to supporting geofilt, bbox, geodist, and a range-queries. RPT with Geometry is defined further
below.

Schema configuration

To use RPT, the field type must be registered and configured in . There are many options for thisschema.xml
field type.

Setting Description

name The name of the field type.

class This should be . But be awaresolr.SpatialRecursivePrefixTreeFieldType
that the Lucene spatial module includes some other so-called "spatial strategies" other
than RPT, notably TermQueryPT*, BBox, PointVector*, and SerializedDV. Solr
requires a field type to parallel these in order to use them. The asterisked ones have
them.

spatialContextFactory Solr supports polygons via , which does not come with Solr. It's aJTS Topology Suite
JAR file that you need to put on Solr's classpath (but not via the standard
solrconfig.xml mechanisms). If you intend to use those shapes, set this attribute to or

. g.locationtech.spatial4j.context.jts.JtsSpatialContextFactory (
.note: prior to Solr 6, the "org.locationtech.spatial4j" part was "com.spatial4j.core")

Furthermore, the context factory has its own options which are directly configurable on
the Solr field type here; follow the link to the Javadocs, and remember to look at the
superclass's options in as well. One option in particular youSpatialContextFactory
should most likely enable is (i.e. use PreparedGeometry) as it's beenautoIndex
shown to be a major performance boost for non-trivial polygons. Further details about
specifying polygons to index or query are at Solr's Wiki linked below.

geo If , the default, latitude and longitude coordinates will be used and thetrue
mathematical model will generally be a sphere. If false, the coordinates will be generic
X & Y on a 2D plane using Euclidean/Cartesian geometry.

format Defines the shape syntax/format to be used. Defaults to but is anotherWKT GeoJSON
popular format. Spatial4j governs this feature and supports . If a givenother formats
shape is parseable as "lat,lon" or "x y" then that is always supported.

http://sourceforge.net/projects/jts-topo-suite/
https://locationtech.github.io/spatial4j/apidocs/org/locationtech/spatial4j/context/jts/JtsSpatialContextFactory.html
https://locationtech.github.io/spatial4j/apidocs/org/locationtech/spatial4j/context/jts/JtsSpatialContextFactory.html
https://locationtech.github.io/spatial4j/apidocs/org/locationtech/spatial4j/context/SpatialContextFactory.html
https://locationtech.github.io/spatial4j/apidocs/org/locationtech/spatial4j/io/package-frame.html

381Apache Solr Reference Guide 6.1

distanceUnits This is used to specify the units for distance measurements used throughout the use
of this field. This can be , or . It is applied to nearly alldegrees kilometers miles
distance measurements involving the field: , , , andmaxDistErr distErr d geodist
the when score is , , or . However, it doesn't affectscore distance area area2d
distances embedded in WKT strings, (eg: " "), whichBUFFER(POINT(200 10),0.2)
are still in degrees.

distanceUnits defaults to either " " if is " ", or " " if kilometers geo true degress g
 is " ".eo false

distanceUnits replaces the attribute; which is now deprecated and mutuallyunits
exclusive with this attribute.

distErrPct Defines the default precision of non-point shapes (both index & query), as a fraction
between 0.0 (fully precise) to 0.5. The closer this number is to zero, the more accurate
the shape will be. However, more precise indexed shapes use more disk space and
take longer to index. Bigger distErrPct values will make queries faster but less
accurate. At query time this can be overridden in the query syntax, such as to 0.0 so
as to not approximate the search shape. The default for the RPT field is 0.025. Note:
For RPTWithGeometrySpatialField (see below), there's always complete accuracy
with the serialized geometry and so this doesn't control accuracy so much as it
controls the trade-off of how big the index should be. distErrPct defaults to 0.15 for
that field.

maxDistErr Defines the highest level of detail required for indexed data. If left blank, the default is
one meter – just a bit less than 0.000009 degrees. This setting is used internally to
compute an appropriate maxLevels (see below).

worldBounds Defines the valid numerical ranges for x and y, in the format of ENVELOPE(minX,
. If , the standard lat-lon world boundaries aremaxX, maxY, minY) geo="true"

assumed. If , you should define your boundaries.geo=false

distCalculator Defines the distance calculation algorithm. If , "haversine" is the default. If geo=true
, "cartesian" will be the default. Other possible values are "lawOfCosines",geo=false

"vincentySphere" and "cartesian^2".

prefixTree Defines the spatial grid implementation. Since a PrefixTree (such as
RecursivePrefixTree) maps the world as a grid, each grid cell is decomposed to
another set of grid cells at the next level. If then the default prefix tree is "geo=true g

", otherwise it's " ". Geohash has 32 children at each level, quad has 4.eohash quad
Geohash can only be used for as it's strictly geospatial. A third choice is "geo=true p

", which is generally more efficient than plain "quad", provided there areackedQuad
many levels -- perhaps 20 or more.

maxLevels Sets the maximum grid depth for indexed data. Instead, it's usually more intuitive to
compute an appropriate maxLevels by specifying .maxDistErr

And there are others: , , , normWrapLongitude , datelineRule validationRule autoIndex allowMult
, . For further info, see the note about spatialContextFactory implementationsiOverlap precisionModel

referenced above, especially the link to the JTS based one.

382Apache Solr Reference Guide 6.1

<fieldType name="location_rpt" class="solr.SpatialRecursivePrefixTreeFieldType"

spatialContextFactory="org.locationtech.spatial4j.context.jts.JtsSpatialContextFacto
ry"
 autoIndex="true"
 validationRule="repairBuffer0"
 distErrPct="0.025"
 maxDistErr="0.001"
 distanceUnits="kilometers" />

Once the field type has been defined, define a field that uses it.

Here's an example polygon query for a field "geo" that is either solr.SpatialRecursivePrefixTreeFieldType
or RptWithGeometrySpatialField:

&q=*:*&fq={!field f=geo}Intersects(POLYGON((-10 30, -40 40, -10 -20, 40 20, 0 0,
-10 30)))

Inside the parenthesis following the search predicate is the shape definition. The format of that shape is
governed by the attribute on the field type, defaulting to WKT. If you prefer GeoJSON, you can specifyformat
that instead.

Beyond this reference guide and Spatila4j's docs, there are some details that remain at the Solr Wiki at ht
tp://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4

RptWithGeometrySpatialField

The field type is a derivative of RptWithGeometrySpatialField SpatialRecursivePrefixTreeFieldT
 that also stores the original geometry in Lucene DocValues, which it uses to achieve accurate search. It canype

also be used for indexed point fields. The Intersects predicate (the default) is particularly fast, since many
search results can be returned as an accurate hit without requiring a geometry check. This field type is
configured just like RPT is.

An optional in-memory cache can be defined in solrconfig.xml, which should be done when the data tends to
have shapes with many vertices. Assuming you name your field "geom", you can configure an optional cache in
solrconfig.xml by adding the following – notice the suffix of the cache name:

<cache name="perSegSpatialFieldCache_geom"
 class="solr.LRUCache"
 size="256"
 initialSize="0"
 autowarmCount="100%"
 regenerator="solr.NoOpRegenerator"/>

Heatmap Faceting

The RPT field supports generating a 2D grid of facet counts for documents having spatial data in each grid cell.
 For high-detail grids, this can be used to plot points, and for lesser detail it can be used for heatmap generation.
 The grid cells are determined at index-time based on RPT's configuration. At facet counting time, the indexed
cells in the region of interest are traversed and a grid of counters corresponding to each cell are incremented.
 Solr can return the data in a straight-forward 2D array of integers or in a PNG which compresses better for
larger data sets but must be decoded.

The heatmap feature is accessed from Solr's faceting feature. As a part of faceting, it supports the localkey
parameter as well as excluding tagged filter queries, just like other types of faceting do. This allows multiple

http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4
http://wiki.apache.org/solr/SolrAdaptersForLuceneSpatial4

383Apache Solr Reference Guide 6.1

heatmaps to be returned on the same field with different filters.

Parameter Description

facet Set to to enable facetingtrue

facet.heatmap The field name of type RPT

facet.heatmap.geom The region to compute the heatmap on, specified using the rectangle-range syntax
or WKT. It defaults to the world. ex: ["-180 -90" TO "180 90"]

facet.heatmap.gridLevel A specific grid level, which determines how big each grid cell is. Defaults to being
computed via distErrPct (or distErr)

facet.heatmap.distErrPct A fraction of the size of geom used to compute gridLevel. Defaults to 0.15. It's
computed the same as a similarly named parameter for RPT.

facet.heatmap.distErr A cell error distance used to pick the grid level indirectly. It's computed the same as
a similarly named parameter for RPT.

facet.heatmap.format The format, either (default) or .ints2D png

Here's some sample output in JSON (with some inserted for brevity):

{gridLevel=6,columns=64,rows=64,minX=-180.0,maxX=180.0,minY=-90.0,maxY=90.0,
counts_ints2D=[[0, 0, 2, 1,],[1, 1, 3, 2, ...],...]}

The output shows the gridLevel which is interesting since it's often computed from other parameters. If an
interface being developed allows an explicit resolution increase/decrease feature then subsequent requests can
specify the gridLevel explicitly.

The , , , reports the region where the counts are. This is the minimally enclosing boundingminX maxX minY maxY
rectangle of the input at the target grid level. This may wrap the dateline. The and valuesgeom columns rows
are how many columns and rows that the output rectangle is to be divided by evenly. Note: Don't divide an
on-screen projected map rectangle evenly to plot these rectangles/points since the cell data is in the coordinate
space of decimal degrees if geo=true or whatever units were given if geo=false. This could be arranged to be
the same as an on-screen map but won't necessarily be.

The key has a 2D array of integers. The initial outer level is in row order (top-down), then thecounts_ints2D
inner arrays are the columns (left-right). If any array would be all zeros, a null is returned instead for efficiency
reasons. The entire value is null if there is no matching spatial data.

If then the output key is . It's a base-64 encoded string of a 4-byte PNG. The PNGformat=png counts_png
logically holds exactly the same data that the ints2D format does. Note that the alpha channel byte is flipped to
make it easier to view the PNG for diagnostic purposes, since otherwise counts would have to exceed 2^24
before it becomes non-opague. Thus counts greater than this value will become opaque.

BBoxField

Tip
You'll experiment with different distErrPct values (probably 0.10 - 0.20) with various input geometries till
the default size is what you're looking for. The specific details of how it's computed isn't important. For
high-detail grids used in point-plotting (loosely one cell per pixel), set distErr to be the number of
decimal-degrees of several pixels or so of the map being displayed. Also, you probably don't want to use
a geohash based grid because the cell orientation between grid levels flip-flops between being square
and rectangle. Quad is consistent and has more levels, albeit at the expense of a larger index.

384Apache Solr Reference Guide 6.1

The field type indexes a single rectangle (bounding box) per document field and supports searchingBBoxField
via a bounding box. It supports most spatial search predicates, it has enhanced relevancy modes based on the
overlap or area between the search rectangle and the indexed rectangle. It's particularly useful for its relevancy
modes. To configure it in the schema, use a configuration like this:

<field name="bbox" type="bbox" />
<fieldType name="bbox" class="solr.BBoxField"
 geo="true" units="kilometers" numberType="_bbox_coord"
storeSubFields="false"/>
<fieldType name="_bbox_coord" class="solr.TrieDoubleField" precisionStep="8"
docValues="true" stored="false"/>

BBoxField is actually based off of 4 instances of another field type referred to by numberType. It also uses a
boolean to flag a dateline cross. Assuming you want to use the relevancy feature, docValues is required. Some
of the attributes are in common with the RPT field like geo, units, worldBounds, and spatialContextFactory
because they share some of the same spatial infrastructure.

To index a box, add a field value to a bbox field that's a string in the WKT/CQL ENVELOPE syntax. Example: EN
 which is minX, maxX, maxY, minY order. The parameter ordering is unintuitiveVELOPE(-10, 20, 15, 10)

but that's what the spec calls for. Alternatively, you could provide a rectangular polygon in WKT (or GeoJSON if
you set set).format="GeoJSON"

To search, you can use the query parser, or the range syntax e.g. , or the{!bbox} [10,-10 TO 15,20]
ENVELOPE syntax wrapped in parenthesis with a leading search predicate. The latter is the only way to choose
a predicate other than Intersects. For example:

&q={!field f=bbox}Contains(ENVELOPE(-10, 20, 15, 10))

Now to sort the results by one of the relevancy modes, use it like this:

&q={!field f=bbox score=overlapRatio}Intersects(ENVELOPE(-10, 20, 15, 10))

The local parameter can be one of , , and . scores by the documentscore overlapRatio area area2D area
area using surface-of-a-sphere (assuming) math, while uses simple width * height. geo=true area2D overla

 computes a [0-1] ranged score based on how much overlap exists relative to the document's area andpRatio
the query area. The javadocs of have more info on the formula. There is anBBoxOverlapRatioValueSource
additional parameter that allows you to weight the query side of the formula to thequeryTargetProportion
index (target) side of the formula. You can also use to see useful score computation info.&debug=results

The Terms Component
The Terms Component provides access to the indexed terms in a field and the number of documents that match
each term. This can be useful for building an auto-suggest feature or any other feature that operates at the term
level instead of the search or document level. Retrieving terms in index order is very fast since the
implementation directly uses Lucene's TermEnum to iterate over the term dictionary.

In a sense, this search component provides fast field-faceting over the whole index, not restricted by the base
query or any filters. The document frequencies returned are the number of documents that match the term,
including any documents that have been marked for deletion but not yet removed from the index.

Configuring the Terms Component

By default, the Terms Component is already configured in for each collection.solrconfig.xml

http://lucene.apache.org/core/6_1_0/spatial-extras/org/apache/lucene/spatial/bbox/BBoxOverlapRatioValueSource.html

385Apache Solr Reference Guide 6.1

Defining the Terms Component

Defining the Terms search component is straightforward: simply give it a name and use the class solr.TermsC
.omponent

<searchComponent name="terms" class="solr.TermsComponent"/>

This makes the component available for use, but by itself will not be useable until included with a request
handler.

Using the Terms Component in a Request Handler

The request handler is also defined in by default./terms solrConfig.xml

<requestHandler name="/terms" class="solr.SearchHandler" startup="lazy">
 <lst name="defaults">
 <bool name="terms">true</bool>
 <bool name="distrib">false</bool>
 </lst>
 <arr name="components">
 <str>terms</str>
 </arr>
</requestHandler>

Note that the defaults for the this request handler set the parameter "terms" to true, which allows terms to be
returned on request. The parameter "distrib" is set to false, which allows this handler to be used only on a single
Solr core. To finish out the configuration, he Terms Component is included as an available component to this
request handler.

You could add this component to another handler if you wanted to, and pass "terms=true" in the HTTP request in
order to get terms back. If it is only defined in a separate handler, you must use that handler when querying in
order to get terms and not regular documents as results.

Terms Component Parameters

The parameters below allow you to control what terms are returned. You can also any of these to the request
handler if you'd like to set them permanently. Or, you can add them to the query request. These parameters are:

Parameter Required Default Description

terms No false If set to true, enables the Terms Component. By default, the Terms
Component is off.

Example: terms=true

terms.fl Yes null Specifies the field from which to retrieve terms.

Example: terms.fl=title

terms.limit No 10 Specifies the maximum number of terms to return. The default is 10.
If the limit is set to a number less than 0, then no maximum limit is
enforced. Although this is not required, either this parameter or term

 must be defined.s.upper

Example: terms.limit=20

386Apache Solr Reference Guide 6.1

terms.lower No empty
string

Specifies the term at which to start. If not specified, the empty string
is used, causing Solr to start at the beginning of the field.

Example: terms.lower=orange

terms.lower.incl No true If set to true, includes the lower-bound term (specified with terms.l
 in the result set.ower

Example: terms.lower.incl=false

terms.mincount No null Specifies the minimum document frequency to return in order for a
term to be included in a query response. Results are inclusive of the
mincount (that is, >= mincount).

Example: terms.mincount=5

terms.maxcount No null Specifies the maximum document frequency a term must have in
order to be included in a query response. The default setting is -1,
which sets no upper bound. Results are inclusive of the maxcount
(that is, <= maxcount).

Example: terms.maxcount=25

terms.prefix No null Restricts matches to terms that begin with the specified string.

Example: terms.prefix=inter

terms.raw No false If set to true, returns the raw characters of the indexed term,
regardless of whether it is human-readable. For instance, the indexed
form of numeric numbers is not human-readable.

Example: terms.raw=true

terms.regex No null Restricts matches to terms that match the regular expression.

Example: terms.regex=*pedist

terms.regex.flag No null Defines a Java regex flag to use when evaluating the regular
expression defined with . See terms.regex http://docs.oracle.com/ja

 for details of each flag. Validvase/tutorial/essential/regex/pattern.html
options are:

case_insensitive
comments
multiline
literal
dotall
unicode_case
canon_eq
unix_lines

Example: terms.regex.flag=case_insensitive

terms.sort No count Defines how to sort the terms returned. Valid options are ,count
which sorts by the term frequency, with the highest term frequency
first, or , which sorts in index order.index

Example: terms.sort=index

http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html
http://docs.oracle.com/javase/tutorial/essential/regex/pattern.html

387Apache Solr Reference Guide 6.1

terms.upper No null Specifies the term to stop at. Although this parameter is not required,
either this parameter or must be defined.terms.limit

Example: terms.upper=plum

terms.upper.incl No false If set to true, the upper bound term is included in the result set. The
default is false.

Example: terms.upper.incl=true

The output is a list of the terms and their document frequency values. See below for examples.

Examples

All of the following sample queries work with Solr's " " example.bin/solr -e techproducts

Get Top 10 Terms

This query requests the first ten terms in the name field: http://localhost:8983/solr/techproducts/t
erms?terms.fl=name

Results:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2</int>
 </lst>
 <lst name="terms">
 <lst name="name">
 <int name="one">5</int>
 <int name="184">3</int>
 <int name="1gb">3</int>
 <int name="3200">3</int>
 <int name="400">3</int>
 <int name="ddr">3</int>
 <int name="gb">3</int>
 <int name="ipod">3</int>
 <int name="memory">3</int>
 <int name="pc">3</int>
 </lst>
 </lst>
</response>

Get First 10 Terms Starting with Letter 'a'

This query requests the first ten terms in the name field, in index order (instead of the top 10 results by document
count): http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.lower=a&ter
ms.sort=index

Results:

http://localhost:8983/solr/techproducts/terms?terms.fl=name
http://localhost:8983/solr/techproducts/terms?terms.fl=name
http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.lower=a&terms.sort=index
http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.lower=a&terms.sort=index

388Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <lst name="terms">
 <lst name="name">
 <int name="a">1</int>
 <int name="all">1</int>
 <int name="apple">1</int>
 <int name="asus">1</int>
 <int name="ata">1</int>
 <int name="ati">1</int>
 <int name="belkin">1</int>
 <int name="black">1</int>
 <int name="british">1</int>
 <int name="cable">1</int>
 </lst>
 </lst>
</response>

Using the Terms Component for an Auto-Suggest Feature

If the doesn't suit your needs, you can use the Terms component in Solr to build a similar feature forSuggester
your own search application. Simply submit a query specifying whatever characters the user has typed so far as
a prefix. For example, if the user has typed "at", the search engine's interface would submit the following query:

http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.prefix=at

Result:

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <lst name="terms">
 <lst name="name">
 <int name="ata">1</int>
 <int name="ati">1</int>
 </lst>
 </lst>
</response>

You can use the parameter to omit the response header from the query response, like inomitHeader=true
this example, which also returns the response in JSON format: http://localhost:8983/solr/techprodu
cts/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

Result:

http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.prefix=at
http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true
http://localhost:8983/solr/techproducts/terms?terms.fl=name&terms.prefix=at&indent=true&wt=json&omitHeader=true

389Apache Solr Reference Guide 6.1

{
 "terms": {
 "name": [
 "ata",
 1,
 "ati",
 1
]
 }
}

Distributed Search Support

The TermsComponent also supports distributed indexes. For the request handler, you must provide the/terms
following two parameters:

Parameter Description

shards Specifies the shards in your distributed indexing configuration. For more information about
distributed indexing, see .Distributed Search with Index Sharding

shards.qt Specifies the request handler Solr uses for requests to shards.

More Resources

TermsComponent wiki page
TermsComponent javadoc

The Term Vector Component
The TermVectorComponent is a search component designed to return additional information about documents
matching your search.

For each document in the response, the TermVectorCcomponent can return the term vector, the term frequency,
inverse document frequency, position, and offset information.

Configuration

The TermVectorComponent is not enabled implicitly in Solr - it must be explicitly configured in your solrconfig
 file. The examples on this page show how it is configured in Solr's " " example:.xml techproducts

bin/solr -e techproducts

To enable the this component, you need to configure it using a element:searchComponent

<searchComponent name="tvComponent"
class="org.apache.solr.handler.component.TermVectorComponent"/>

A request handler must then be configured to use this component name. In the example, thetechproducts
component is associated with a special request handler named , that enables term vectors by default/tvrh

https://wiki.apache.org/solr/TermsComponent
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/handler/component/TermsComponent.html

390Apache Solr Reference Guide 6.1

using the parameter; but you can associate it with any request handler:tv=true

<requestHandler name="/tvrh"
class="org.apache.solr.handler.component.SearchHandler">
 <lst name="defaults">
 <bool name="tv">true</bool>
 </lst>
 <arr name="last-components">
 <str>tvComponent</str>
 </arr>
</requestHandler>

Once your handler is defined, you may use in conjunction with any schema (that has a touniqueKeyField)
fetch term vectors for fields configured with the attribute, such as in the fortermVector techproducts
example:

<field name="includes"
 type="text_general"
 indexed="true"
 stored="true"
 multiValued="true"
 termVectors="true"
 termPositions="true"
 termOffsets="true" />

Invoking the Term Vector Component

The example below shows an invocation of this component using the above configuration:

http://localhost:8983/solr/techproducts/tvrh?q=*%3A*&start=0&rows=10&fl=id,includes

391Apache Solr Reference Guide 6.1

...
<lst name="termVectors">
 <lst name="GB18030TEST">
 <str name="uniqueKey">GB18030TEST</str>
 </lst>
 <lst name="EN7800GTX/2DHTV/256M">
 <str name="uniqueKey">EN7800GTX/2DHTV/256M</str>
 </lst>
 <lst name="100-435805">
 <str name="uniqueKey">100-435805</str>
 </lst>
 <lst name="3007WFP">
 <str name="uniqueKey">3007WFP</str>
 <lst name="includes">
 <lst name="cable"/>
 <lst name="usb"/>
 </lst>
 </lst>
 <lst name="SOLR1000">
 <str name="uniqueKey">SOLR1000</str>
 </lst>
 <lst name="0579B002">
 <str name="uniqueKey">0579B002</str>
 </lst>
 <lst name="UTF8TEST">
 <str name="uniqueKey">UTF8TEST</str>
 </lst>
 <lst name="9885A004">
 <str name="uniqueKey">9885A004</str>
 <lst name="includes">
 <lst name="32mb"/>
 <lst name="av"/>
 <lst name="battery"/>
 <lst name="cable"/>
 <lst name="card"/>
 <lst name="sd"/>
 <lst name="usb"/>
 </lst>
 </lst>
 <lst name="adata">
 <str name="uniqueKey">adata</str>
 </lst>
 <lst name="apple">
 <str name="uniqueKey">apple</str>
 </lst>
</lst>

Request Parameters

The example below shows the available request parameters for this component:

http://localhost:8983/solr/techproducts/tvrh?q=includes:[* TO
*]&rows=10&indent=true&tv=true&tv.tf=true&tv.df=true&tv.positions=true&tv.offsets=
true&tv.payloads=true&tv.fl=includes

392Apache Solr Reference Guide 6.1

Boolean
Parameters

Description Type

tv Should the component run or not boolean

tv.docIds Returns term vectors for the specified list of Lucene document IDs (not the Solr
Unique Key).

comma
seperated
integers

tv.fl Returns term vectors for the specified list of fields. If not specified, the paramfl
eter is used.

comma
seperated
list of field
names

tv.all A shortcut that invokes all the boolean parameters listed below. boolean

tv.df Returns the Document Frequency (DF) of the term in the collection. This can be
computationally expensive.

boolean

tv.offsets Returns offset information for each term in the document. boolean

tv.positions Returns position information. boolean

tv.payloads Returns payload information. boolean

tv.tf Returns document term frequency info per term in the document. boolean

tv.tf_idf Calculates TF / DF (ie: TF * IDF) for each term. Please note that this is a literal
calculation of "Term Frequency multiplied by Inverse Document Frequency"
and a classical TF-IDF similarity measure.not

Requires the parameters and to be "true". This can betv.tf tv.df
computationally expensive. (The results are not shown in example output)

boolean

To learn more about TermVector component output, see the Wiki page: http://wiki.apache.org/solr/TermVectorC
omponentExampleOptions

For schema requirements, see the Wiki page: http://wiki.apache.org/solr/FieldOptionsByUseCase

SolrJ and the Term Vector Component

Neither the SolrQuery class nor the QueryResponse class offer specific method calls to set Term Vector
Component parameters or get the "termVectors" output. However, there is a patch for it: .SOLR-949

The Stats Component
The Stats component returns simple statistics for numeric, string, and date fields within the document set.

The sample queries in this section assume you are running the " " example included with Solr:techproducts

bin/solr -e techproducts

http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/TermVectorComponentExampleOptions
http://wiki.apache.org/solr/FieldOptionsByUseCase
https://issues.apache.org/jira/browse/SOLR-949

393Apache Solr Reference Guide 6.1

Stats Component Parameters

The Stats Component accepts the following parameters:

Parameter Description

stats If , then invokes the Stats component.true

stats.field Specifies a field for which statistics should be generated. This parameter may be invoked
multiple times in a query in order to request statistics on multiple fields.

Local Parameters may be used to indicate which subset of the supported statistics should
be computed, and/or that statistics should be computed over the results of an arbitrary
numeric function (or query) instead of a simple field name. See the examples below.

stats.facet Returns sub-results for values within the specified facet.

This legacy parameter is not recommended for new users - instead please consider combin
ing with stats.field facet.pivot

stats.calcdistinct If , the "countDistinct" and "distinctValues" statistics will be computed and included thetrue
response. These calculations can be very expensive for fields that do not have a tiny
cardinality, so they are disabled by default.

This parameter can be specified using per-filed override (ie: f.<field>.stats.calcdis
) but users are encouraged to instead the statistics desired tinct=true as Local

 - As a top level request parameter, this option is deprecated.Parameter

Example

The query below demonstrates computing stats against two different fields numeric fields, as well as stats over
the results of a a 'termfreq()' function call using the 'text' field:

http://localhost:8983/solr/techproducts/select?q=*:*&stats=true&stats.field={!func
}termfreq('text','memory')&stats.field=price&stats.field=popularity&rows=0&indent=
true

394Apache Solr Reference Guide 6.1

<lst name="stats">
 <lst name="stats_fields">
 <lst name="termfreq(text,memory)">
 <double name="min">0.0</double>
 <double name="max">3.0</double>
 <long name="count">32</long>
 <long name="missing">0</long>
 <double name="sum">10.0</double>
 <double name="sumOfSquares">22.0</double>
 <double name="mean">0.3125</double>
 <double name="stddev">0.7803018439949604</double>
 <lst name="facets"/>
 </lst>
 <lst name="price">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <long name="count">16</long>
 <long name="missing">16</long>
 <double name="sum">5251.270030975342</double>
 <double name="sumOfSquares">6038619.175900028</double>
 <double name="mean">328.20437693595886</double>
 <double name="stddev">536.3536996709846</double>
 <lst name="facets"/>
 </lst>
 <lst name="popularity">
 <double name="min">0.0</double>
 <double name="max">10.0</double>
 <long name="count">15</long>
 <long name="missing">17</long>
 <double name="sum">85.0</double>
 <double name="sumOfSquares">603.0</double>
 <double name="mean">5.666666666666667</double>
 <double name="stddev">2.943920288775949</double>
 <lst name="facets"/>
 </lst>
 </lst>
</lst>

Statistics Supported

The table below explains the statistics supported by the Stats component. Not all statistics are supported for all
field types, and not all statistics are computed by default (See below for details)Local Parameters

Local Param Sample
Input

Description Supported

Types

Computed

by Default

min true The minimum value of the field/function in all
documents in the set.

All Yes

max true The maximum value of the field/function in all
documents in the set.

All Yes

sum true The sum of all values of the field/function in all
documents in the set.

Numeric &
Date

Yes

395Apache Solr Reference Guide 6.1

count true The number of values found in all documents in the
set for this field/function.

All Yes

missing true The number of documents in the set which do not
have a value for this field/function.

All Yes

sumOfSquares true Sum of all values squared (a by product of
computing stddev)

Numeric &
Date

Yes

mean true The average (v1 + v2 + vN)/N Numeric &
Date

Yes

stddev true Standard deviation, measuring how widely spread
the values in the data set are.

Numeric &
Date

Yes

percentiles "1,99,99.9" A list of percentile values based on cut-off points
specified by the param value. These values are an
approximation, using the .t-digest algorithm

Numeric No

distinctValues true The set of all distinct values for the field/function in
all of the documents in the set. This calculation can
be very expensive for fields that do not have a tiny
cardinality.

All No

countDistinct true The exact number of distinct values in the
field/function in all of the documents in the set. This
calculation can be very expensive for fields that do
not have a tiny cardinality.

All No

cardinality "true" or
"0.3"

A statistical approximation (currently using the Hyper
 algorithm) of the number of distinct values inLogLog

the field/function in all of the documents in the set.
This calculation is much more efficient then using
the 'countDistinct' option, but may not be 100%
accurate. Input for this option can be floating point
number between 0.0 and 1.0 indicating how
aggressively the algorithm should try to be accurate:
0.0 means use as little memory as possible; 1.0
means use as much memory as needed to be as
accurate as possible. 'true' is supported as an alias
for "0.3"

All No

Local Parameters

Similar to the , the parameter supports local parameters for:Facet Component stats.field

Tagging & Excluding Filters: stats.field={!ex=filterA}price
Changing the Output Key: stats.field={!key=my_price_stats}price
Tagging stats for : use with facet.pivot stats.field={!tag=my_pivot_stats}price

Local parameters can also be used to specify individual statistics by name, overriding the set of statistics
computed by default, eg: stats.field={!min=true max=true
percentiles='99,99.9,99.99'}price

If any supported statistics are specified via local parameters, then the entire set of default statistics is
overridden and only the requested statistics are computed.

https://github.com/tdunning/t-digest/blob/master/docs/t-digest-paper/histo.pdf
https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/HyperLogLog

396Apache Solr Reference Guide 6.1

Additional "Expert" local params are supported in some cases for affecting the behavior of some statistics:

percentiles
tdigestCompression - a positive numeric value defaulting to controlling the compression100.0
factor of the T-Digest. Larger values means more accuracy, but also uses more memory.

cardinality
hllPreHashed - a boolean option indicating that the statistics are being computed over a "long"
field that has already been hashed at index time – allowing the HLL computation to skip this step.
hllLog2m - an integer value specifying an explicit "log2m" value to use, overriding the heuristic
value determined by the cardinality local param and the field type – see the documentationjava-hll
for more details
hllRegwidth - an integer value specifying an explicit "regwidth" value to use, overriding the
heuristic value determined by the cardinality local param and the field type – see the documjava-hll
entation for more details

calcDistinct - for backwards compatibility, may be specified as an alias forcalcDistinct=true
both countDistinct=true distinctValues=true

Examples

Here we compute some statistics for the price field. The min, max, mean, 90th, and 99th percentile price values
are computed against all products that are in stock (and), and independently all ofq=*:* fq=inStock:true
the default statistics are computed against all products regardless of whether they are in stock or not (by
excluding that filter).

http://localhost:8983/solr/techproducts/select?q=*:*&fq={!tag=stock_check}inStock:
true&stats=true&stats.field={!ex=stock_check+key=instock_prices+min=true+max=true+
mean=true+percentiles='90,99'}price&stats.field={!key=all_prices}price&rows=0&inde
nt=true

<lst name="stats">
 <lst name="stats_fields">
 <lst name="instock_prices">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <double name="mean">328.20437693595886</double>
 <lst name="percentiles">
 <double name="90.0">564.9700012207031</double>
 <double name="99.0">1966.6484985351556</double>
 </lst>
 </lst>
 <lst name="all_prices">
 <double name="min">0.0</double>
 <double name="max">2199.0</double>
 <long name="count">12</long>
 <long name="missing">5</long>
 <double name="sum">4089.880027770996</double>
 <double name="sumOfSquares">5385249.921747174</double>
 <double name="mean">340.823335647583</double>
 <double name="stddev">602.3683083752779</double>
 </lst>
 </lst>
</lst>

The Stats Component and Faceting

https://github.com/aggregateknowledge/java-hll/
https://github.com/aggregateknowledge/java-hll/

397Apache Solr Reference Guide 6.1

Although the parameter is no longer recommended, sets of parameters can bestats.facet stats.field
referenced by ' ' when using Pivot Faceting to compute multiple statistics at every level (i.e.: field) in the treetag
of pivot constraints.

For more information and a detailed example, please see .Combining Stats Component With Pivots

The Query Elevation Component
The lets you configure the top results for a given query regardless of the normalQuery Elevation Component
Lucene scoring. This is sometimes called "sponsored search," "editorial boosting," or "best bets." This
component matches the user query text to a configured map of top results. The text can be any string or
non-string IDs, as long as it's indexed. Although this component will work with any QueryParser, it makes the
most sense to use with or .DisMax eDisMax

The is supported by distributed searching.Query Elevation Component

All of the sample configuration and queries used in this section assume you are running Solr's " "techproducts
example:

bin/solr -e techproducts

Configuring the Query Elevation Component

You can configure the Query Elevation Component in the file.solrconfig.xml

<searchComponent name="elevator" class="solr.QueryElevationComponent" >
 <!-- pick a fieldType to analyze queries -->
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

<requestHandler name="/elevate" class="solr.SearchHandler" startup="lazy">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 </lst>
 <arr name="last-components">
 <str>elevator</str>
 </arr>
</requestHandler>

Optionally, in the Query Elevation Component configuration you can also specify the following to distinguish
editorial results from "normal" results:

<str name="editorialMarkerFieldName">foo</str>

The Query Elevation Search Component takes the following arguments:

Argument Description

queryFieldType Specifies which fieldType should be used to analyze the incoming text. For example, it
may be appropriate to use a fieldType with a LowerCaseFilter.

https://cwiki.apache.org/confluence/display/solr/Faceting#Faceting-CombiningStatsComponentWithPivots
https://wiki.apache.org/solr/QueryElevationComponent
https://wiki.apache.org/solr/QueryElevationComponent

398Apache Solr Reference Guide 6.1

config-file Path to the file that defines query elevation. This file must exist in <instanceDir>/con
 or . f/<config-file> <dataDir>/<config-file>

If the file exists in the /conf/ directory it will be loaded once at startup. If it exists in the
data directory, it will be reloaded for each IndexReader.

forceElevation By default, this component respects the requested parameter: if the request askssort
to sort by date, it will order the results by date. If (the default),forceElevation=true
results will first return the boosted docs, then order by date.

elevate.xml

Elevated query results are configured in an external XML file specified in the argument. An config-file elev
 file might look like this:ate.xml

<elevate>
 <query text="foo bar">
 <doc id="1" />
 <doc id="2" />
 <doc id="3" />
 </query>

 <query text="ipod">
 <doc id="MA147LL/A" /> <!-- put the actual ipod at the top -->
 <doc id="IW-02" exclude="true" /> <!-- exclude this cable -->
 </query>
</elevate>

In this example, the query "foo bar" would first return documents 1, 2 and 3, then whatever normally appears for
the same query. For the query "ipod", it would first return "MA147LL/A", and would make sure that "IW-02" is not
in the result set.

Using the Query Elevation Component

The ParameterenableElevation

For debugging it may be useful to see results with and without the elevated docs. To hide results, use enableEl
:evation=false

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&ena
bleElevation=true

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&ena
bleElevation=false

The ParameterforceElevation

You can force elevation during runtime by adding to the query URL:forceElevation=true

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&ena
bleElevation=true&forceElevation=true

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=true
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=true
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=false
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=false
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=true&forceElevation=true
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&enableElevation=true&forceElevation=true

399Apache Solr Reference Guide 6.1

The Parameterexclusive

You can force Solr to return only the results specified in the elevation file by adding to theexclusive=true
URL:

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&exc
lusive=true

Document Transformers and the ParametermarkExcludes

The can be used to annotate each document with information about[elevated] Document Transformer
whether or not it was elevated:

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&fl=id,[elevated]

Likewise, it can be helpful when troubleshooting to see all matching documents – including documents that the
elevation configuration would normally exclude. This is possible by using the parameter,markExcludes=true
and then using the transformer:[excluded]

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&markExcludes=true&f
l=id,[elevated],[excluded]

The and ParameterselevateIds excludeIds

When the elevation component is in use, the pre-configured list of elevations for a query can be overridden at
request time to use the unique keys specified in these request parameters.

For example, in the request below documents 3007WFP and 9885A004 will be elevated, and document IW-02
will be excluded -- regardless of what elevations or exclusions are configured for the query "cable" in elevate.xml:

http://localhost:8983/solr/techproducts/elevate?q=cable&df=text&excludeIds=IW-02&e
levateIds=3007WFP,9885A004

If either one of these parameters is specified at request time, the the entire elevation configuration for the query
is ignored.

For example, in the request below documents IW-02 and F8V7067-APL-KIT will be elevated, and no documents
will be excluded – regardless of what elevations or exclusions are configured for the query "ipod" in elevate.xml:

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&elevateIds=IW-02,F8
V7067-APL-KIT

The Parameterfq

Query elevation respects the standard filter query () parameter. That is, if the query contains the parameterfq fq
, all results will be within that filter even if adds other documents to the result set.elevate.xml

Response Writers
A Response Writer generates the formatted response of a search. Solr supports a variety of Response Writers to
ensure that query responses can be parsed by the appropriate language or application.

The parameter selects the Response Writer to be used. The table below lists the most common settings forwt
the parameter.wt

wt Parameter Setting Response Writer Selected

http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&exclusive=true
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&debugQuery=true&exclusive=true
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&fl=id,%5Belevated%5D
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&markExcludes=true&fl=id,%5Belevated%5D,%5Bexcluded%5D
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&markExcludes=true&fl=id,%5Belevated%5D,%5Bexcluded%5D
http://localhost:8983/solr/techproducts/elevate?q=cable&df=text&excludeIds=IW-02&elevateIds=3007WFP,9885A004
http://localhost:8983/solr/techproducts/elevate?q=cable&df=text&excludeIds=IW-02&elevateIds=3007WFP,9885A004
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&elevateIds=IW-02,F8V7067-APL-KIT
http://localhost:8983/solr/techproducts/elevate?q=ipod&df=text&elevateIds=IW-02,F8V7067-APL-KIT

400Apache Solr Reference Guide 6.1

csv CSVResponseWriter

json JSONResponseWriter

php PHPResponseWriter

phps PHPSerializedResponseWriter

python PythonResponseWriter

ruby RubyResponseWriter

smile SmileResponseWriter

velocity VelocityResponseWriter

xml XMLResponseWriter

xslt XSLTResponseWriter

The Standard XML Response Writer

The XML Response Writer is the most general purpose and reusable Response Writer currently included with
Solr. It is the format used in most discussions and documentation about the response of Solr queries.

Note that the XSLT Response Writer can be used to convert the XML produced by this writer to other
vocabularies or text-based formats.

The behavior of the XML Response Writer can be driven by the following query parameters.

The Parameterversion

The parameter determines the XML protocol used in the response. Clients are strongly encouraged to version
 specify the protocol version, so as to ensure that the format of the response they receive does notalways

change unexpectedly if the Solr server is upgraded and a new default format is introduced.

Currently supported version values are:

XML
Version

Notes

2.2 The format of the responseHeader changed to use the same structure as the rest of the<lst>
response.

The default value is the latest supported.

The Parameterstylesheet

The parameter can be used to direct Solr to include a stylesheet <?xml-stylesheet type="text/xsl"
 declaration in the XML response it returns.href="..."?>

The default behavior is not to return any stylesheet declaration at all.

Use of the parameter is discouraged, as there is currently no way to specify externalstylesheet
stylesheets, and no stylesheets are provided in the Solr distributions. This is a legacy parameter, which
may be developed further in a future release.

401Apache Solr Reference Guide 6.1

The Parameterindent

If the parameter is used, and has a non-blank value, then Solr will make some attempts at indenting itsindent
XML response to make it more readable by humans.

The default behavior is not to indent.

The XSLT Response Writer

The XSLT Response Writer applies an XML stylesheet to output. It can be used for tasks such as formatting
results for an RSS feed.

tr Parameter

The XSLT Response Writer accepts one parameter: the parameter, which identifies the XML transformationtr
to use. The transformation must be found in the Solr directory.conf/xslt

The Content-Type of the response is set according to the statement in the XSLT transform, for<xsl:output>
example: <xsl:output media-type="text/html"/>

Configuration

The example below, from the in the Solr distribution, shows howsample_techproducts_configs config set
the XSLT Response Writer is configured.

<!--
 Changes to XSLT transforms are taken into account
 every xsltCacheLifetimeSeconds at most.
-->
<queryResponseWriter name="xslt"
 class="org.apache.solr.request.XSLTResponseWriter">
 <int name="xsltCacheLifetimeSeconds">5</int>
</queryResponseWriter>

A value of 5 for is good for development, to see XSLT changes quickly. ForxsltCacheLifetimeSeconds
production you probably want a much higher value.

JSON Response Writer

A very commonly used Response Writer is the , which formats output in JavaScriptJsonResponseWriter
Object Notation (JSON), a lightweight data interchange format specified in specified in RFC 4627. Setting the wt
parameter to invokes this Response Writer.json

The default mime type for the JSON writer is , however this can be overridden in the application/json solr
 - such as in this example from the " " configuration:config.xml techproducts

402Apache Solr Reference Guide 6.1

<queryResponseWriter name="json" class="solr.JSONResponseWriter">
 <!-- For the purposes of the tutorial, JSON response are written as
 plain text so that it's easy to read in *any* browser.
 If you are building applications that consume JSON, just remove
 this override to get the default "application/json" mime type.
 -->
 <str name="content-type">text/plain</str>
</queryResponseWriter>

Python Response Writer

Solr has an optional Python response format that extends its JSON output in the following ways to allow the
response to be safely evaluated by the python interpreter:

true and false changed to True and False
Python unicode strings are used where needed
ASCII output (with unicode escapes) is used for less error-prone interoperability
newlines are escaped
null changed to None

PHP Response Writer and PHP Serialized Response Writer

Solr has a PHP response format that outputs an array (as PHP code) which can be evaluated. Setting the parwt
ameter to invokes the PHP Response Writer.php

Example usage:

$code =
file_get_contents('http://localhost:8983/solr/techproducts/select?q=iPod&wt=php');
eval("$result = " . $code . ";");
print_r($result);

Solr also includes a PHP Serialized Response Writer that formats output in a serialized array. Setting the parwt
ameter to invokes the PHP Serialized Response Writer.phps

Example usage:

$serializedResult =
file_get_contents('http://localhost:8983/solr/techproducts/select?q=iPod&wt=phps');
$result = unserialize($serializedResult);
print_r($result);

Ruby Response Writer

Solr has an optional Ruby response format that extends its JSON output in the following ways to allow the
response to be safely evaluated by Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits.
\ and ' are the only two characters escaped.
Unicode escapes are not used. Data is written as raw UTF-8.
nil used for null.
=> is used as the key/value separator in maps.

403Apache Solr Reference Guide 6.1

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'
h = Net::HTTP.new('localhost', 8983)
hresp, data = h.get('/solr/techproducts/select?q=iPod&wt=ruby', nil)
rsp = eval(data)
puts 'number of matches = ' + rsp['response']['numFound'].to_s
#print out the name field for each returned document
rsp['response']['docs'].each { |doc| puts 'name field = ' + doc['name'\] }

CSV Response Writer

The CSV response writer returns a list of documents in comma-separated values (CSV) format. Other
information that would normally be included in a response, such as facet information, is excluded.

The CSV response writer supports multi-valued fields, as well as , and the output of this CSV psuedo-fields
format is compatible with Solr's .CSV update format

CSV Parameters

These parameters specify the CSV format that will be returned. You can accept the default values or specify your
own.

Parameter Default Value

csv.encapsulator "

csv.escape None

csv.separator ,

csv.header Defaults to true. If false, Solr does not print the column headers

csv.newline \n

csv.null Defaults to a zero length string. Use this parameter when a document has no value for a
particular field.

Multi-Valued Field CSV Parameters

These parameters specify how multi-valued fields are encoded. Per-field overrides for these values can be done
using .f.<fieldname>.csv.separator=|

Parameter Default Value

csv.mv.encapsulator None

csv.mv.escape \

csv.mv.separator Defaults to the valuecsv.separator

Example

https://wiki.apache.org/solr/UpdateCSV

404Apache Solr Reference Guide 6.1

http://localhost:8983/solr/techproducts/select?q=ipod&fl=id,cat,name,popularity,pr
 ice,score&wt=csv returns:

id,cat,name,popularity,price,score
IW-02,"electronics,connector",iPod & iPod Mini USB 2.0 Cable,1,11.5,0.98867977
F8V7067-APL-KIT,"electronics,connector",Belkin Mobile Power Cord for iPod w/
Dock,1,19.95,0.6523595
MA147LL/A,"electronics,music",Apple 60 GB iPod with Video Playback
Black,10,399.0,0.2446348

Velocity Response Writer

The processes the Solr response and request context through Apache VelocityVelocityResponseWriter
templating.

See section for details.Velocity Response Writer

Binary Response Writer

Solr also includes a Response Writer that outputs binary format for use with a Java client. See forClient APIs
more details.

Smile Response Writer

The Smile format is a JSON-compatible binary format, described in detail here: http://wiki.fasterxml.com/SmileFo
.rmat

Velocity Response Writer

The VelocityResponseWriter is an optional plugin available in the directory. It powers thecontrib/velocity
/browse user interfaces when using configurations such as "basic_configs", "techproducts", and "example/files".

Its JAR and dependencies must be added (via <lib> or solr/home lib inclusion), and must be registered in solrc
 like this:onfig.xml

<queryResponseWriter name="velocity" class="solr.VelocityResponseWriter">
 <str name="template.base.dir">${velocity.template.base.dir:}</str>

<!--
 <str name="init.properties.file">velocity-init.properties</str>
 <bool name="params.resource.loader.enabled">true</bool>
 <bool name="solr.resource.loader.enabled">false</bool>
 <lst name="tools">
 <str name="mytool">com.example.MyCustomTool</str>
 </lst>
-->
</queryResponseWriter>

The above example shows the optional initialization and custom tool parameters used by
VelocityResponseWriter; these are detailed in the following table. These initialization parameters are only

http://wiki.fasterxml.com/SmileFormat
http://wiki.fasterxml.com/SmileFormat

405Apache Solr Reference Guide 6.1

specified in the writer registration in solrconfig.xml, not as request-time parameters. See further below for
request-time parameters.

VelocityResponseWriter initialization parameters

Parameter Description Default
value

template.base.dir If specified and exists as a file system directory, a file resource
loader will be added for this directory. Templates in this directory
will override "solr" resource loader templates.

init.properties.file Specifies a properties file name which must exist in the Solr conf/
directory (under a velocity/ subdirectory) or root of a JAR filenot
in a <lib>.

params.resource.loader.enabled The "params" resource loader allows templates to be specified in
Solr request parameters. For example: http://localhost:

 8983/ solr/ gettingstarted/ select? q=*:*& wt=velo
 city& v.template=custom& v.template.custom=CUSTOM

 where v.template=custom says to%3A%20%23core_name
render a template called "custom" and v.template.custom's value
is the actual custom template. This is disabled by default; it'd be
a niche, unusual use case to need this enabled.

false

solr.resource.loader.enabled The "solr" resource loader is the only template loader registered
by default. Templates are served from resources visible to the
SolrResourceLoader under a subdirectory. Thevelocity/
VelocityResponseWriter itself has some built-in templates (in its
JAR file, under velocity/) that are available automatically through
this loader. These built-in templates can be overridden when the
same template name is in conf/velocity/ or by using the templat

 option.e.base.dir

true

tools External "tools" can be specified as list of string name/value (tool
name / class name) pairs. Tools, in the Velocity context, are
simply Java objects. Tool classes are constructed using a no-arg
constructor (or a single-SolrCore-arg constructor if it exists) and
added to the Velocity context with the specified name. A custom
registered tool can override the built-in context objects with the
same name, except for $request, $response, $page, and $debug
(these tools are designed to not be overridden).

VelocityResponseWriter request parameters

Parameter Description Default value

v.template Specifies the name of the template to render.

v.layout Specifies a template name to use as the
layout around the main, ,v.template
specified template.

The main template is rendered into a string
value included into the layout rendering as $c

.ontent

http://localhost:8983/
http://localhost:8983/

406Apache Solr Reference Guide 6.1

v.layout.enabled Determines if the main template should have
a layout wrapped around it. True by default,
but requires to specified as well.v.layout

true

v.contentType Specifies the content type used in the HTTP
response. If not specified, the default will
depend on whether is specified orv.json
not.

without json.wrf:
text/html;charset=UTF-8

with json.wrf:
application/json;charset=UTF-8

v.json Specifies a function name to wrap around the
response rendered as JSON. If specified, the
content type used in the response will be
"application/json;charset=UTF-8", unless
overridden by . v.contentType

Output will be in this format (with v.json=wrf):

wrf("result":"<Velocity
generated response string,
with quotes and backslashes
escaped>")

v.locale Locale to use with the tool and$resource
other LocaleConfig implementing tools. The
default locale is Locale.ROOT. Localized
resources are loaded from standard Java
resource bundles named resources[_loca

. Resource bundlesle-code].properties
can be added by providing a JAR file visible
by the SolrResourceLoader with resource
bundles under a velocity sub-directory.
Resource bundles are not loadable under
conf/, as only the class loader aspect of
SolrResourceLoader can be used here.

v.template.<template_name> When the "params" resource loader is
enabled, templates can be specified as part
of the Solr request.

VelocityResponseWriter context objects

Context
reference

Description

request SolrQueryRequest javadocs

response QueryResponse most of the time, but in some cases where doesn't like theQueryResponse
request handlers output (, for example, causes a ClassCastExceptionAnalysisRequestHandler
parsing "response"), the response will be a object.SolrResponseBase

esc A Velocity instanceEscapeTool

date A Velocity instanceComparisonDateTool

list A Velocity instanceListTool

math A Velocity instanceMathTool

http://lucene.apache.org/solr/api/org/apache/solr/request/SolrQueryRequest.html
http://lucene.apache.org/solr/api/org/apache/solr/client/solrj/response/QueryResponse.html
https://wiki.apache.org/solr/QueryResponse
https://wiki.apache.org/solr/AnalysisRequestHandler
https://wiki.apache.org/solr/SolrResponseBase
http://velocity.apache.org/tools/releases/1.4/generic/EscapeTool.html
http://velocity.apache.org/tools/releases/1.4/javadoc/org/apache/velocity/tools/generic/ComparisonDateTool.html
http://velocity.apache.org/tools/releases/1.4/javadoc/org/apache/velocity/tools/generic/ListTool.html
http://velocity.apache.org/tools/releases/1.4/generic/MathTool.html

407Apache Solr Reference Guide 6.1

number A Velocity instanceNumberTool

sort A Velocity instanceSortTool

display A Velocity instanceDisplayTool

resource A Velocity instanceResourceTool

engine The current VelocityEngine instance

page An instance of Solr's PageTool (only included if the response is a QueryResponse where paging
makes sense)

debug A shortcut to the debug part of the response, or null if debug is not on. This is handy for having
debug-only sections in a template using #if($debug)...#end

content The rendered output of the main template, when rendering the layout (v.layout.enabled=true and
v.layout=<template>).

[custom
tool(s)]

Tools provided by the optional "tools" list of the VelocityResponseWriter registration are available
by their specified name.

Near Real Time Searching
Near Real Time (NRT) search means that documents are available for search almost immediately after being
indexed: additions and updates to documents are seen in 'near' real time. Solr does not block updates while a
commit is in progress. Nor does it wait for background merges to complete before opening a new search of
indexes and returning.

With NRT, you can modify a command to be a , which avoids parts of a standard commitcommit soft commit
that can be costly. You will still want to do standard commits to ensure that documents are in stable storage, but

 let you see a very near real time view of the index in the meantime. However, pay specialsoft commits
attention to cache and autowarm settings as they can have a significant impact on NRT performance.

Commits and Optimizing

A commit operation makes index changes visible to new search requests. A uses the transactionhard commit
log to get the id of the latest document changes, and also calls on the index files to ensure they havefsync
been flushed to stable storage and no data loss will result from a power failure.

A is much faster since it only makes index changes visible and does not index files or writesoft commit fsync
a new index descriptor. If the JVM crashes or there is a loss of power, changes that occurred after the last hard

 will be lost. Search collections that have NRT requirements (that want index changes to be quicklycommit
visible to searches) will want to soft commit often but hard commit less frequently. A softCommit may be "less
expensive" in terms of time, but not free, since it can slow throughput.

An is like a except that it forces all of the index segments to be merged into a singleoptimize hard commit
segment first. Depending on the use, this operation should be performed infrequently (e.g., nightly), if at all, since
it involves reading and re-writing the entire index. Segments are normally merged over time anyway (as
determined by the merge policy), and optimize just forces these merges to occur immediately.

Soft commit takes uses two parameters: and .maxDocs maxTime

Parameter Description

http://velocity.apache.org/tools/releases/1.4/javadoc/org/apache/velocity/tools/generic/NumberTool.html
http://velocity.apache.org/tools/releases/1.4/javadoc/org/apache/velocity/tools/generic/SortTool.html
https://velocity.apache.org/tools/releases/2.0/javadoc/org/apache/velocity/tools/generic/DisplayTool.html
https://velocity.apache.org/tools/releases/2.0/javadoc/org/apache/velocity/tools/generic/ResourceTool.html

408Apache Solr Reference Guide 6.1

maxDocs Integer. Defines the number of documents to queue before pushing them to the index. It works in
conjunction with the parameter in that ifupdate_handler_autosoftcommit_max_time
either limit is reached, the documents will be pushed to the index.

maxTime The number of milliseconds to wait before pushing documents to the index. It works in
conjunction with the parameter in that ifupdate_handler_autosoftcommit_max_docs
either limit is reached, the documents will be pushed to the index.

Use and judiciously to fine-tune your commit strategies.maxDocs maxTime

AutoCommits

An autocommit also uses the parameters and . However it's useful in many strategies to usemaxDocs maxTime
both a hard and to achieve more flexible commits.autocommit autosoftcommit

A common configuration is to do a hard every 1-10 minutes and a everyautocommit autosoftcommit
second. With this configuration, new documents will show up within about a second of being added, and if the
power goes out, soft commits are lost unless a hard commit has been done.

For example:

<autoSoftCommit>
 <maxTime>1000</maxTime>
</autoSoftCommit>

It's better to use rather than to modify an , especially when indexing amaxTime maxDocs autoSoftCommit
large number of documents through the commit operation. It's also better to turn off for bulkautoSoftCommit
indexing.

Optional Attributes for and commit optimize

Parameter Valid
Attributes

Description

waitSearcher true, false Block until a new searcher is opened and registered as the main query
searcher, making the changes visible. Default is true.

softCommit true, false Perform a soft commit. This will refresh the view of the index faster, but
without guarantees that the document is stably stored. Default is false.

expungeDeletes true, false Valid for only. This parameter purges deleted data from segments.commit
The default is false.

maxSegments integer Valid for only. Optimize down to at most this number ofoptimize
segments. The default is 1.

Example of and with optional attributes:commit optimize

<commit waitSearcher="false"/>
<commit waitSearcher="false" expungeDeletes="true"/>
<optimize waitSearcher="false"/>

Passing and parameters as part of the URLcommit commitWithin

409Apache Solr Reference Guide 6.1

Update handlers can also get -related parameters as part of the update URL. This example adds a smallcommit
test document and causes an explicit commit to happen immediately afterwards:

http://localhost:8983/solr/my_collection/update?stream.body=<add><doc>
 <field name="id">testdoc</field></doc></add>&commit=true

Alternately, you may want to use this:

http://localhost:8983/solr/my_collection/update?stream.body=<optimize/>

This example causes the index to be optimized down to at most 10 segments, but won't wait around until it's
done ():waitFlush=false

curl
'http://localhost:8983/solr/my_collection/update?optimize=true&maxSegments=10&waitFl
ush=false'

This example adds a small test document with a instruction that tells Solr to make sure thecommitWithin
document is committed no later than 10 seconds later (this method is generally preferred over explicit commits):

curl http://localhost:8983/solr/my_collection/update?commitWithin=10000
 -H "Content-Type: text/xml" --data-binary
 '<add><doc><field name="id">testdoc</field></doc></add>'

Changing default BehaviorcommitWithin

The settings allow forcing document commits to happen in a defined time period. This is usedcommitWithin
most frequently with , and for that reason the default is to perform a soft commit. ThisNear Real Time Searching
does not, however, replicate new documents to slave servers in a master/slave environment. If that's a
requirement for your implementation, you can force a hard commit by adding a parameter, as in this example:

<commitWithin>
 <softCommit>false</softCommit>
</commitWithin>

With this configuration, when you call as part of your update message, it will automaticallycommitWithin
perform a hard commit every time.

RealTime Get
For index updates to be visible (searchable), some kind of commit must reopen a searcher to a new point-in-time
view of the index. The feature allows retrieval (by) of the latest version of anyrealtime get unique-key
documents without the associated cost of reopening a searcher. This is primarily useful when using Solr as a
NoSQL data store and not just a search index.

Real Time Get relies on the update log feature, which is enabled by default and can be configured in solrconf
:ig.xml

410Apache Solr Reference Guide 6.1

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

Real Time Get requests can be performed using the handler which exists implicitly in Solr - it's equivalent/get
to the following configuration:

<requestHandler name="/get" class="solr.RealTimeGetHandler">
 <lst name="defaults">
 <str name="omitHeader">true</str>
 <str name="wt">json</str>
 <str name="indent">true</str>
 </lst>
</requestHandler>

For example, if you started Solr using the example command, you could thenbin/solr -e techproducts
index a new document (with out committing it) like so:

curl 'http://localhost:8983/solr/techproducts/update/json?commitWithin=10000000'
 -H 'Content-type:application/json' -d '[{"id":"mydoc","name":"realtime-get
test!"}]'

If you do a normal search, this document should not be found yet:

http://localhost:8983/solr/techproducts/query?q=id:mydoc
...
"response":
{"numFound":0,"start":0,"docs":[]}

However if you use the Real Time Get handler exposed at , you can still retrieve that document:/get

http://localhost:8983/solr/techproducts/get?id=mydoc
...
{"doc":{"id":"mydoc","name":"realtime-get test!", "_version_":1487137811571146752}}

You can also specify multiple documents at once via the parameter and a comma separated list of ids, or byids
using multiple parameters. If you specify multiple ids, or use the parameter, the response will mimic aid ids
normal query response to make it easier for existing clients to parse.

For example:

411Apache Solr Reference Guide 6.1

http://localhost:8983/solr/techproducts/get?ids=mydoc,IW-02
http://localhost:8983/solr/techproducts/get?id=mydoc&id=IW-02
...
{"response":
 {"numFound":2,"start":0,"docs":
 [{ "id":"mydoc",
 "name":"realtime-get test!",
 "_version_":1487137811571146752},
 {
 "id":"IW-02",
 "name":"iPod & iPod Mini USB 2.0 Cable",
 ...
]
 }
}

Real Time Get requests can also be combined with filter queries, specified with an , just like search parameterfq
requests:

http://localhost:8983/solr/techproducts/get?id=mydoc&id=IW-02&fq=name:realtime-get
...
{"response":
 {"numFound":1,"start":0,"docs":
 [{ "id":"mydoc",
 "name":"realtime-get test!",
 "_version_":1487137811571146752}
]
 }
}

Exporting Result Sets
It's possible to export fully sorted result sets using a special and specificallyrank query parser response writer
designed to work together to handle scenarios that involve sorting and exporting millions of records. This uses a
stream sorting technique that begins to send records within milliseconds and continues to stream results until the
entire result set has been sorted and exported.

The cases where this functionality may be useful include: session analysis, distributed merge joins, time series
roll-ups, aggregations on high cardinality fields, fully distributed field collapsing, and sort based stats.

Field Requirements

All the fields being sorted and exported must have docValues set to true. For more information, see the section
on .DocValues

Defining the /export Request Handler

Do disable the realtime get handler at if you are using SolrCloud otherwise any leaderNOT /get
election will cause a full sync in replicas for the shard in question. Similarly, a replica recovery willALL
also always fetch the complete index from the leader because a partial sync will not be possible in the
absence of this handler.

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefq(FilterQuery)Parameter

412Apache Solr Reference Guide 6.1

To export the full sorted result set you'll want to use a request handler explicitly configured to only run the "query"
component, using the the export "rq" and "wt" params.

An " " request handler with the appropriate configuration is included in the example /export techproducts so
. If however, you would like to add it to an existing , you can add a section likelrconfig.xml solrconfig.xml

this:

<requestHandler name="/export" class="solr.SearchHandler">
 <lst name="invariants">
 <str name="rq">{!xport}</str>
 <str name="wt">xsort</str>
 <str name="distrib">false</str>
 </lst>
 <arr name="components">
 <str>query</str>
 </arr>
</requestHandler>

Note that this request handler's properties are defined as "invariants", which means they cannot be overridden by
other properties passed at another time (such as at query time).

Requesting Results Export

Once the request handler is defined, you can use it to make requests to export the result set of a/export
query.

All queries must include and parameters, or the query will return an error. Filter queries are alsosort fl
supported. Results are always returned in JSON format.

Here is an example of what an export request of some indexed log data might look like:

http://localhost:8983/solr/core_name/export?q=my-query&sort=severity+desc,timestamp+
desc&fl=severity,timestamp,msg

Specifying the Sort Criteria

The property defines how documents will be sorted in the exported result set. Results can be sorted by anysort
field that has a field type of int,long, float, double, string. The sort fields must be single valued fields.

Up to four sort fields can be specified per request, with the 'asc' or 'desc' properties.

Specifying the Field List

The property defines the fields that will be exported with the result set. Any of the field types that can befl
sorted (i.e., int, long, float, double, string) can be used in the field list. The fields can be single or multi-valued.
However, returning scores and wildcards are not supported at this time.

Distributed Support

See the section for distributed support.Streaming Expressions

413Apache Solr Reference Guide 6.1

Streaming Expressions
Streaming Expressions provide a simple yet powerful stream processing language for SolrCloud. They are a
suite of functions that can be combined to perform many different parallel computing tasks. These functions are
the basis for the .Parallel SQL Interface

There are several available functions, including those that implement:

continuous push streaming
continuous pull streaming
request/response streaming
MapReduce shuffling aggregation
pushdown faceted aggregation
parallel relational algebra (distributed joins, intersections, unions, complements)
publish/subscribe messaging
distributed graph traversal (Solr 6.1)

Streams from outside systems can be joined with streams originating from Solr and users can add their own
stream functions by following Solr's .Java streaming API

Stream Language Basics
Streaming Requests and Responses
Data Requirements

Stream Sources
search
jdbc
facet
gatherNodes
random
shortestPath
stats
topic

Stream Decorators
complement
daemon
leftOuterJoin
hashJoin
innerJoin
intersect
merge
outerHashJoin
parallel
reduce
rollup
select
sort
top
unique
update

Stream Language Basics

Both streaming expressions and the streaming API are considered experimental, and the APIs are
subject to change.

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/io/stream/package-summary.html

414Apache Solr Reference Guide 6.1

Streaming Expressions are comprised of streaming functions which work with a Solr collection. They emit a
stream of tuples (key/value Maps).

Many of the provided streaming functions are designed to work with entire result sets rather then the top N
results like normal search. This is supported by the . /export handler

Some streaming functions act as stream sources to originate the stream flow. Other streaming functions act as
stream decorators to wrap other stream functions and perform operations on the stream of tuples. Many streams
functions can be parallelized across a worker collection. This can be particularly powerful for relational algebra
functions.

Streaming Requests and Responses

Solr has a request handler that takes streaming expression requests and returns the tuples as a JSON/stream
stream. This request handler is implicitly defined, meaning there is nothing that has to be defined in solrconfi

.g.xml

The request handler takes one parameter, , which is used to specify the streaming/stream expr
expression. For example, this curl command encodes and POSTs a simple expression to the search() /strea

 handler:m

curl --data-urlencode 'expr=search(enron_emails,
 q="from:1800flowers*",
 fl="from, to",
 sort="from asc",
 qt="/export")'
http://localhost:8983/solr/enron_emails/stream

Details of the parameters for each function are included below.

For the above example the handler responded with the following JSON response:/stream

{"result-set":{"docs":[
 {"from":"1800flowers.133139412@s2u2.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers.93690065@s2u2.com","to":"jtholt@ect.enron.com"},
 {"from":"1800flowers.96749439@s2u2.com","to":"alewis@enron.com"},
 {"from":"1800flowers@1800flowers.flonetwork.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@1800flowers.flonetwork.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@1800flowers.flonetwork.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@1800flowers.flonetwork.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@1800flowers.flonetwork.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"ebass@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"lcampbel@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"ebass@enron.com"},
 {"from":"1800flowers@shop2u.com","to":"ebass@enron.com"},
 {"EOF":true,"RESPONSE_TIME":33}]}
}

Note the last tuple in the above example stream is . The indicates{"EOF":true,"RESPONSE_TIME":33} EOF
the end of the stream. To process the JSON response, you'll need to use a streaming JSON implementation
becausestreaming expressions are designed to return the entire result set which may have millions of records. In
your JSON client you'll need to iterate each doc (tuple) and check for the EOF tuple to determine the end of
stream.

The package provides Java classes that compile streaming org.apache.solr.client.solrj.io

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/io/package-summary.html

415Apache Solr Reference Guide 6.1

expressions into streaming API objects. These classes can be used to execute streaming expressions from
inside a Java application. For example:

StreamFactory streamFactory = new
StreamFactory().withCollectionZkHost("collection1", zkServer.getZkAddress())
 .withStreamFunction("search", CloudSolrStream.class)
 .withStreamFunction("unique", UniqueStream.class)
 .withStreamFunction("top", RankStream.class)
 .withStreamFunction("group", ReducerStream.class)
 .withStreamFunction("parallel", ParallelStream.class);

ParallelStream pstream =
(ParallelStream)streamFactory.constructStream("parallel(collection1,
group(search(collection1, q=\"*:*\", fl=\"id,a_s,a_i,a_f\", sort=\"a_s asc,a_f
asc\", partitionKeys=\"a_s\"), by=\"a_s asc\"), workers=\"2\",
zkHost=\""+zkHost+"\", sort=\"a_s asc\")");

Data Requirements

Because streaming expressions relies on the handler, many of the field and field type requirements to/export
use are also requirements for , particularly for and parameters. Please see the/export /stream sort fl
section for details.Exporting Result Sets

Stream Sources

Stream sources originate streams. There are several stream sources available: , , , search jdbc facet gatherNod
, , , , and .es random stats topic shortestPath

search

The function searches a SolrCloud collection and emits a stream of tuples that match the query. This issearch
very similar to a standard Solr query, and uses many of the same parameters.

This expression allows you to specify a request hander using the parameter. By default, the handlerqt /select
is used. The handler can be used for simple rapid prototyping of expressions. For production, however,/select
you will most likely want to use the handler which is designed to and entire result sets./export sort export
The handler is not used by default because it has stricter requirements then the handler so/export /select
it's not as easy to get started working with. To read more about the handler requirements review the/export
section .Exporting Result Sets

Parameters

collection: (Mandatory) the collection being searched.
q: (Mandatory) The query to perform on the Solr index.
fl: (Mandatory) The list of fields to return.
sort: (Mandatory) The sort criteria.
zkHost: Only needs to be defined if the collection being searched is found in a different zkHost than the
local stream handler.
qt: Specifies the query type, or request handler, to use. Set this to to work with large result/export
sets. The default is ./select
rows: (Mandatory with the handler) The rows parameter specifies how many rows to return./select
This parameter is only needed with the handler (which is the default) since the handle/select /export
r always returns all rows.

416Apache Solr Reference Guide 6.1

Syntax

expr=search(collection1,
 zkHost="localhost:9983",
 qt="/export",
 q="*:*",
 fl="id,a_s,a_i,a_f",
 sort="a_f asc, a_i asc")

jdbc
The function searches a JDBC datasource and emits a stream of tuples representing the JDBC result set.jdbc
Each row in the result set is translated into a tuple and each tuple contains all the cell values for that row.

Parameters

connection: (Mandatory) JDBC formatted connection string to whatever driver you are using.
sql: (Mandatory) query to pass off to the JDBC endpoint
sort: (Mandatory) The sort criteria indicating how the data coming out of the JDBC stream is sorted
driver: The name of the JDBC driver used for the connection. If provided then the driver class will
attempt to be loaded into the JVM. If not provided then it is assumed that the driver is already loaded into
the JVM. Some drivers require explicit loading so this option is provided.
[driverProperty]: One or more properties to pass to the JDBC driver during connection. The format is

. You can provide as many of these properties as you'd like andpropertyName="propertyValue"
they will all be passed to the connection.

Connections and Drivers

Because some JDBC drivers require explicit loading the parameter can be used to provide the driverdriver
class name. If provided, then during stream construction the driver will be loaded. If the driver cannot be loaded
because the class is not found on the classpath, then stream construction will fail.

When the JDBC stream is opened it will validate that a driver can be found for the provided connection string. If a
driver cannot be found (because it hasn't been loaded) then the open will fail.

Datatypes

Due to the inherent differences in datatypes across JDBC sources the following datatypes are supported. The
table indicates what Java type will be used for a given JDBC type. Types marked as requiring conversion will go
through a conversion for each value of that type. For performance reasons the cell data types are only
considered when the stream is opened as this is when the converters are created.

JDBC Type Java Type Requires Conversion

String String No

Short Long Yes

Integer Long Yes

Long Long No

Float Double Yes

Double Double No

417Apache Solr Reference Guide 6.1

Boolean Boolean No

Syntax

A basic expression:jdbc

jdbc(
 connection="jdbc:hsqldb:mem:.",
 sql="select NAME, ADDRESS, EMAIL, AGE from PEOPLE where AGE > 25 order by AGE, NAME
DESC",
 sort="AGE asc, NAME desc",
 driver="org.hsqldb.jdbcDriver"
)

A expression that passes a property to the driver:jdbc

// get_column_name is a property to pass to the hsqldb driver
jdbc(
 connection="jdbc:hsqldb:mem:.",
 sql="select NAME as FIRST_NAME, ADDRESS, EMAIL, AGE from PEOPLE where AGE > 25
order by AGE, NAME DESC",
 sort="AGE asc, NAME desc",
 driver="org.hsqldb.jdbcDriver",
 get_column_name="false"
)

facet
The function provides aggregations that are rolled up over buckets. Under the covers the facet functionfacet
pushes down the aggregation into the search engine using Solr's JSON Facet API. This provides sub-second
performance for many use cases. The facet function is appropriate for use with a low to moderate number of
distinct values in the bucket fields. To support high cardinality aggregations see the rollup function.

Parameters

collection: (Mandatory) Collection the facets will be aggregated from.
q: (Mandatory) The query to build the aggregations from.
buckets: (Mandatory) Comma separated list of fields to rollup over. The comma separated list represents
the dimensions in a multi-dimensional rollup.
bucketSorts: Comma separated list of sorts to apply to each dimension in the buckets parameters.
Sorts can be on the computed metrics or on the bucket values.
bucketSizeLimit: The number of buckets to include. This value is applied to each dimension.
metrics: List of metrics to compute for the buckets. Currently supported metrics are , sum(col) avg(co

, , , .l) min(col) max(col) count(*)

Syntax

Example 1:

418Apache Solr Reference Guide 6.1

facet(collection1,
 q="*:*",
 buckets="a_s",
 bucketSorts="sum(a_i) desc",
 bucketSizeLimit=100,
 sum(a_i),
 sum(a_f),
 min(a_i),
 min(a_f),
 max(a_i),
 max(a_f),
 avg(a_i),
 avg(a_f),
 count(*))

The example above shows a facet function with rollups over a single bucket, where the buckets are returned in
descending order by the calculated value of the metric.sum(a_i)

Example 2:

facet(collection1,
 q="*:*",
 buckets="year_i, month_i, day_i",
 bucketSorts="year_i desc, month_i desc, day_i desc",
 bucketSizeLimit=100,
 sum(a_i),
 sum(a_f),
 min(a_i),
 min(a_f),
 max(a_i),
 max(a_f),
 avg(a_i),
 avg(a_f),
 count(*))

The example above shows a facet function with rollups over three buckets, where the buckets are returned in
descending order by bucket value.

gatherNodes

The function provides breadth-first graph traversal. For details, see the section .gatherNodes Graph Traversal

random

The function searches a SolrCloud collection and emits a pseudo-random set of results that match therandom
query. Each invocation of random will return a different pseudo-random result set.

Parameters

collection: (Mandatory) Collection the stats will be aggregated from.
q: (Mandatory) The query to build the aggregations from.
rows: (Mandatory) The number of pseudo-random results to return.
fl: (Mandatory) The field list to return.
fq: (Optional) Filter query

419Apache Solr Reference Guide 6.1

Syntax

random(baskets,
 q="productID:productX",
 rows="100",
 fl="basketID")

In the example above the function is searching the baskets collections for all rows whererandom
"productID:productX". It will return 100 pseudo-random results. The field list returned is the basketID.

shortestPath

The function is an implementation of a shortest path graph traversal. The functishortestPath shortestPath
on performs an iterative breadth-first search through an unweighted graph to find the shortest paths between two
nodes in a graph. The function emits a tuple for each path found. Each tuple emitted will containshortestPath
a key which points to a of nodeIDs comprising the path.path List

Parameters

collection: (Mandatory) The collection that the topic query will be run on.
from: (Mandatory) The nodeID to start the search from
to: (Mandatory) The nodeID to end the search at
edge: (Mandatory) Syntax: . The defines which field to searchfrom_field=to_field from_field
from. The defines which field to search to. See example below for a detailed explanation.to_field
threads: (Optional : Default 6) The number of threads used to perform the partitioned join in the
traversal.
partitionSize: (Optional : Default 250) The number of nodes in each partition of the join.
fq: (Optional) Filter query
maxDepth: (Mandatory) Limits to the search to a maximum depth in the graph.

Syntax

shortestPath(collection,
 from="john@company.com",
 to="jane@company.com",
 edge="from_address=to_address",
 threads="6",
 partitionSize="300",
 fq="limiting query",
 maxDepth="4")

The expression above performs a breadth-first search to find the shortest paths in an unweighted, directed
graph.

The search starts from the nodeID "john@company.com" in the field and searches for thefrom_address
nodeID "jane@company.com" in the field. This search is performed iteratively until the to_address maxDepth
has been reached. Each level in the traversal is implemented as a parallel partitioned nested loop join across the
entire collection. The parameter controls the number of threads performing the join at each level, whilethreads
the parameter controls the of number of nodes in each join partition. The parametepartitionSize maxDepth
r controls the number of levels to traverse. is a limiting query applied to each level in the traversal.fq

stats

The function gathers simple aggregations for a search result set. The stats function does not supportstats

420Apache Solr Reference Guide 6.1

rollups over buckets, so the stats stream always returns a single tuple with the rolled up stats. Under the covers
the stats function pushes down the generation of the stats into the search engine using the StatsComponent.
The stats function currently supports the following metrics: , , , , and .count(*) sum() avg() min() max()

Parameters

collection: (Mandatory) Collection the stats will be aggregated from.
q: (Mandatory) The query to build the aggregations from.
metrics: (Mandatory) The metrics to include in the result tuple. Current supported metrics are sum(col

, , , and) avg(col) min(col) max(col) count(*)

Syntax

stats(collection1,
 q=*:*,
 sum(a_i),
 sum(a_f),
 min(a_i),
 min(a_f),
 max(a_i),
 max(a_f),
 avg(a_i),
 avg(a_f),
 count(*))

topic

The function provides publish/subscribe messaging capabilities built on top of SolrCloud. The topictopic
function allows users to subscribe to a query. The function then provides one-time delivery of new or updated
documents that match the topic query. The initial call to the topic function establishes the checkpoints for the
specific topic ID. Subsequent calls to the same topic ID will return new or updated documents that match the
topic query.

Parameters

checkpointCollection: (Mandatory) The collection where the topic checkpoints are stored.
collection: (Mandatory) The collection that the topic query will be run on.
id: (Mandatory) The unique ID for the topic. The checkpoints will be saved under this id.
q: (Mandatory) The topic query.
fl: (Mandatory) The field list returned by the topic function.

Syntax

topic(checkpointCollection,
 collection,
 id="uniqueId",
 q="topic query",
 fl="id, name, country")

The topic function should be considered in beta until is committed and released.SOLR-8709

https://issues.apache.org/jira/browse/SOLR-8709

421Apache Solr Reference Guide 6.1

Stream Decorators

Stream decorators wrap other stream functions or perform operations on the stream. The are currently many
stream decorators available: , , , , , , , complement daemon innerJoin intersect hashJoin merge leftOuterJoin ou

, , , , , , , and terHashJoin parallel reduce rollup select top unique update.

complement

The function wraps two streams (A and B) and emits tuples from A which do not exist in B. Thecomplement
tuples are emitted in the order in which they appear in stream A. Both streams must be sorted by the fields being
used to determine equality (using the parameter).on

Parameters

StreamExpression for StreamA
StreamExpression for StreamB
on: Fields to be used for checking equality of tuples between A and B. Can be of the format on="fieldN

, , or ame" on="fieldNameInLeft=fieldNameInRight" on="fieldName,
.otherFieldName=rightOtherFieldName"

Syntax

complement(
 search(collection1, q=a_s:(setA || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 search(collection1, q=a_s:(setB || setAB), fl="id,a_s,a_i", sort="a_i asc"),
 on="a_i"
)

complement(
 search(collection1, q=a_s:(setA || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 search(collection1, q=a_s:(setB || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 on="a_i,a_s"
)

daemon

The function wraps another function and runs it at intervals using an internal thread. The daemondaemon
function can be used to provide both continuous push and pull streaming.

Continuous push streaming

With continuous push streaming the daemon function wraps another function and is then sent to the ha/stream
ndler for execution. The handler recognizes the daemon function and keeps it resident in memory, so it/stream
can run it's internal function at intervals.

In order to facilitate the pushing of tuples, the daemon function must wrap another stream decorator that pushes
the tuples somewhere. One example of this is the function, which wraps a stream and sends the tuplesupdate
to another SolrCloud collection for indexing.

Example:

422Apache Solr Reference Guide 6.1

daemon(id="uniqueId",
 runInterval="1000",
 update(destinationCollection,
 batchSize=100,
 topic(checkpointCollection,
 topicCollection,
 q="topic query",
 fl="id, title, abstract, text",
 id="topicId")
)
)

The sample code above shows a function wrapping an function, which is wrapping a fudaemon update topic
nction. When this expression is sent to the handler, the hander sees the daemon function/stream /stream
and keeps it in memory where it will run at intervals. In this particular example, the daemon function will run the u

 function every second. The function is wrapping a function, which returns all newpdate update topic
documents for a specific query. The update function will send the new documents to another collection to be
indexed.

The effect of this is to continuously push new documents that match a specific query into another collection.
Custom push functions can be plugged in that push documents out of Solr and into other systems, such as Kafka
or an email system.

Push streaming can also be used for continuous background aggregation scenarios where aggregates are rolled
up in the background at intervals and pushed to other Solr collections. Another use case is continuous
background machine learning model optimization, where the optimized model is pushed to another Solr
collection where they can be integrated into queries.

The handler supports a small set commands for listing and controlling daemon functions:/stream

http://localhost:8983/collection/stream?action=list

This command will provide a listing of the current daemon's running on the specific node along with there current
state.

http://localhost:8983/collection/stream?action=stop&id=daemonId

This command will stop a specific daemon function but leave it resident in memory

http://localhost:8983/collection/stream?action=start&id=daemonId

This command will start a specific daemon function that has been stopped.

http://localhost:8983/collection/stream?action=kill&id=daemonId

This command will stop a specific daemon function and remove it from memory.

Continous Pull Streaming

The DaemonStream java class (part of the Solrj libraries) can also be embedded in a java application to provide
continuous pull streaming. Sample code:

StreamContext context = new StreamContext()
SolrClientCache cache = new SolrClientCache();

423Apache Solr Reference Guide 6.1

context.setSolrClientCache(cache);

Map topicQueryParams = new HashMap();
topicQueryParams.put("q","hello"); // The query for the topic
topicQueryparams.put("rows", "500"); // How many rows to fetch during each run
topicQueryparams.put("fl", "id, "title"); // The field list to return with the
documents

TopicStream topicStream = new TopicStream(zkHost, // Host address for the
zookeeper service housing the collections
 "checkpoints", // The collection to store
the topic checkpoints
 "topicData", // The collection to query
for the topic records
 "topicId", // The id of the topic
 -1, // checkpoint every X
tuples, if set -1 it will checkpoint after each run.
 topicQueryParams); // The query parameters
for the TopicStream

DaemonStream daemonStream = new DaemonStream(topicStream, // The
underlying stream to run.
 "daemonId", // The id of
the daemon
 1000, // The
interval at which to run the internal stream
 500); // The
internal queue size for the daemon stream. Tuples will be placed in the queue
 // as they are
read by the internal internal thread.
 // Calling read()
on the daemon stream reads records from the internal queue.

daemonStream.setStreamContext(context);

daemonStream.open();

//Read until it's time to shutdown the DaemonStream. You can define the shutdown
criteria.
while(!shutdown()) {
 Tuple tuple = daemonStream.read() // This will block until tuples become
available from the underlying stream (TopicStream)
 // The EOF tuple (signaling the end of the
stream) will never occur until the DaemonStream has been shutdown.
 //Do something with the tuples
}

// Shutdown the DaemonStream.
daemonStream.shutdown();

//Read the DaemonStream until the EOF Tuple is found.
//This allows the underlying stream to perform an orderly shutdown.

while(true) {
 Tuple tuple = daemonStream.read();
 if(tuple.EOF) {
 break;
 } else {
 //Do something with the tuples.

424Apache Solr Reference Guide 6.1

 }

425Apache Solr Reference Guide 6.1

}
//Finally close the stream
daemonStream.close();

leftOuterJoin

The function wraps two streams, Left and Right, and emits tuples from Left. If there is a tupleleftOuterJoin
in Right equal (as defined by) then the values in that tuple will be included in the emitted tuple. An equal tupleon
in Right exist for the Left tuple to be emitted. This supports one-to-one, one-to-many, many-to-one, andneed not
many-to-many left outer join scenarios. The tuples are emitted in the order in which they appear in the Left
stream. Both streams must be sorted by the fields being used to determine equality (using the parameter). Ifon
both tuples contain a field of the same name then the value from the Right stream will be used in the emitted
tuple.

You can wrap the incoming streams with a function to be specific about which field values are includedselect
in the emitted tuple.

Parameters

StreamExpression for StreamLeft
StreamExpression for StreamRight
on: Fields to be used for checking equality of tuples between Left and Right. Can be of the format on="fi

, , or eldName" on="fieldNameInLeft=fieldNameInRight" on="fieldName,
.otherFieldName=rightOtherFieldName"

Syntax

leftOuterJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 search(pets, q=type:cat, fl="personId,petName", sort="personId asc"),
 on="personId"
)

leftOuterJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 search(pets, q=type:cat, fl="ownerId,petName", sort="ownerId asc"),
 on="personId=ownerId"
)

leftOuterJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 select(
 search(pets, q=type:cat, fl="ownerId,name", sort="ownerId asc"),
 ownerId,
 name as petName
),
 on="personId=ownerId"
)

hashJoin

The function wraps two streams, Left and Right, and for every tuple in Left which exists in Right willhashJoin
emit a tuple containing the fields of both tuples. This supports one-to-one, one-to-many, many-to-one, and
many-to-many inner join scenarios. The tuples are emitted in the order in which they appear in the Left stream.

426Apache Solr Reference Guide 6.1

The order of the streams does not matter. If both tuples contain a field of the same name then the value from the
Right stream will be used in the emitted tuple.

You can wrap the incoming streams with a function to be specific about which field values are includedselect
in the emitted tuple.

The hashJoin function can be used when the tuples of Left and Right cannot be put in the same order. Because
the tuples are out of order this stream functions by reading all values from the Right stream during the open
operation and will store all tuples in memory. The result of this is a memory footprint equal to the size of the Right
stream.

Parameters

StreamExpression for StreamLeft
hashed=StreamExpression for StreamRight
on: Fields to be used for checking equality of tuples between Left and Right. Can be of the format on="fi

, , or eldName" on="fieldNameInLeft=fieldNameInRight" on="fieldName,
.otherFieldName=rightOtherFieldName"

Syntax

hashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=search(pets, q=type:cat, fl="personId,petName", sort="personId asc"),
 on="personId"
)

hashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=search(pets, q=type:cat, fl="ownerId,petName", sort="ownerId asc"),
 on="personId=ownerId"
)

hashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=select(
 search(pets, q=type:cat, fl="ownerId,name", sort="ownerId asc"),
 ownerId,
 name as petName
),
 on="personId=ownerId"
)

innerJoin

Wraps two streams Left and Right and for every tuple in Left which exists in Right will emit a tuple containing the
fields of both tuples. This supports one-one, one-many, many-one, and many-many inner join scenarios. The
tuples are emitted in the order in which they appear in the Left stream. Both streams must be sorted by the fields
being used to determine equality (the 'on' parameter). If both tuples contain a field of the same name then the
value from the Right stream will be used in the emitted tuple. You can wrap the incoming streams with a
select(...) to be specific about which field values are included in the emitted tuple.

Parameters

StreamExpression for StreamLeft
StreamExpression for StreamRight

427Apache Solr Reference Guide 6.1

on: Fields to be used for checking equality of tuples between Left and Right. Can be of the format on="fi
, , or eldName" on="fieldNameInLeft=fieldNameInRight" on="fieldName,

.otherFieldName=rightOtherFieldName"

Syntax

innerJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 search(pets, q=type:cat, fl="personId,petName", sort="personId asc"),
 on="personId"
)

innerJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 search(pets, q=type:cat, fl="ownerId,petName", sort="ownerId asc"),
 on="personId=ownerId"
)

innerJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 select(
 search(pets, q=type:cat, fl="ownerId,name", sort="ownerId asc"),
 ownerId,
 name as petName
),
 on="personId=ownerId"
)

intersect

The function wraps two streams, A and B, and emits tuples from A which exist in B. The tuplesintersect DO
are emitted in the order in which they appear in stream A. Both streams must be sorted by the fields being used
to determine equality (the parameter). Only tuples from A are emitted.on

Parameters

StreamExpression for StreamA
StreamExpression for StreamB
on: Fields to be used for checking equality of tuples between A and B. Can be of the format on="fieldN

, , or ame" on="fieldNameInLeft=fieldNameInRight" on="fieldName,
.otherFieldName=rightOtherFieldName"

Syntax

428Apache Solr Reference Guide 6.1

intersect(
 search(collection1, q=a_s:(setA || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 search(collection1, q=a_s:(setB || setAB), fl="id,a_s,a_i", sort="a_i asc"),
 on="a_i"
)

intersect(
 search(collection1, q=a_s:(setA || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 search(collection1, q=a_s:(setB || setAB), fl="id,a_s,a_i", sort="a_i asc, a_s
asc"),
 on="a_i,a_s"
)

merge

The function merges two or more streaming expressions and maintains the ordering of the underlyingmerge
streams. Because the order is maintained, the sorts of the underlying streams must line up with the on parameter
provided to the merge function.

Parameters

StreamExpression A
StreamExpression B
Optional StreamExpression C,D,....Z
on: Sort criteria for performing the merge. Of the form where order is or .fieldName order asc desc
Multiple fields can be provided in the form .fieldA order, fieldB order

Syntax

Merging two stream expressions together
merge(
 search(collection1,
 q="id:(0 3 4)",
 fl="id,a_s,a_i,a_f",
 sort="a_f asc"),
 search(collection1,
 q="id:(1)",
 fl="id,a_s,a_i,a_f",
 sort="a_f asc"),
 on="a_f asc")

429Apache Solr Reference Guide 6.1

Merging four stream expressions together. Notice that while the sorts of each
stream are not identical they are
comparable. That is to say the first N fields in each stream's sort matches the N
fields in the merge's on clause.
merge(
 search(collection1,
 q="id:(0 3 4)",
 fl="id,fieldA,fieldB,fieldC",
 sort="fieldA asc, fieldB desc"),
 search(collection1,
 q="id:(1)",
 fl="id,fieldA",
 sort="fieldA asc"),
 search(collection2,
 q="id:(10 11 13)",
 fl="id,fieldA,fieldC",
 sort="fieldA asc"),
 search(collection3,
 q="id:(987)",
 fl="id,fieldA,fieldC",
 sort="fieldA asc"),
 on="fieldA asc")

outerHashJoin

The function wraps two streams, Left and Right, and emits tuples from Left. If there is a tupleouterHashJoin
in Right equal (as defined by the parameter) then the values in that tuple will be included in the emitted tuple.on
An equal tuple in Right exist for the Left tuple to be emitted. This supports one-to-one, one-to-many,need not
many-to-one, and many-to-many left outer join scenarios. The tuples are emitted in the order in which they
appear in the Left stream. The order of the streams does not matter. If both tuples contain a field of the same
name then the value from the Right stream will be used in the emitted tuple.

You can wrap the incoming streams with a function to be specific about which field values are includedselect
in the emitted tuple.

The outerHashJoin stream can be used when the tuples of Left and Right cannot be put in the same order.
Because the tuples are out of order, this stream functions by reading all values from the Right stream during the
open operation and will store all tuples in memory. The result of this is a memory footprint equal to the size of the
Right stream.

Parameters

StreamExpression for StreamLeft
hashed=StreamExpression for StreamRight
on: Fields to be used for checking equality of tuples between Left and Right. Can be of the format on="fi

, , or eldName" on="fieldNameInLeft=fieldNameInRight" on="fieldName,
.otherFieldName=rightOtherFieldName"

Syntax

430Apache Solr Reference Guide 6.1

outerHashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=search(pets, q=type:cat, fl="personId,petName", sort="personId asc"),
 on="personId"
)

outerHashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=search(pets, q=type:cat, fl="ownerId,petName", sort="ownerId asc"),
 on="personId=ownerId"
)

outerHashJoin(
 search(people, q=*:*, fl="personId,name", sort="personId asc"),
 hashed=select(
 search(pets, q=type:cat, fl="ownerId,name", sort="ownerId asc"),
 ownerId,
 name as petName
),
 on="personId=ownerId"
)

parallel

The function wraps a streaming expression and sends it to N worker nodes to be processed inparallel
parallel.

The parallel function requires that the parameter be provided to the underlying searches. The partitionKeys
 parameter will partition the search results (tuples) across the worker nodes. Tuples with thepartitionKeys

same values in the partitionKeys field will be shuffled to the same worker nodes.

The parallel function maintains the sort order of the tuples returned by the worker nodes, so the sort criteria of
the parallel function must match up with the sort order of the tuples returned by the workers.

Parameters

collection: Name of the worker collection to send the StreamExpression to.
StreamExpression: Expression to send to the worker collection.
workers: Number of workers in the worker collection to send the expression to.
zkHost: (Optional) The ZooKeeper connect string where the worker collection resides.
sort: The sort criteria for ordering tuples returned by the worker nodes.

Syntax

Worker Collections
The worker nodes can be from the same collection as the data, or they can be a different collection
entirely, even one that only exists for parallel streaming expressions. A worker collection can be any
SolrCloud collection that has the handler configured. Unlike normal SolrCloud collections,/stream
worker collections don't have to hold any data. Worker collections can be empty collections that exist
only to execute streaming expressions.

431Apache Solr Reference Guide 6.1

parallel(workerCollection,
 reduce(
 search(collection1, q=*:*, fl="id,a_s,a_i,a_f", sort="a_s desc",
partitionKeys="a_s"),
 by="a_s",
 group(sort="a_f desc", n="4"))
 workers="20",
 zkHost="localhost:9983",
 sort="a_s desc")

The expression above shows a parallel function wrapping a reduce function. This will cause the reduce function
to be run in parallel across 20 worker nodes.

reduce

The function wraps an internal stream and groups tuples by common fields.reduce

Each tuple group is operated on as a single block by a pluggable reduce operation. The group operation
provided with Solr implements distributed grouping functionality. The group operation also serves as an example
reduce operation that can be referred to when building custom reduce operations.

Parameters

StreamExpression: (Mandatory)
by: (Mandatory) A comma separated list of fields to group by.
Reduce Operation: (Mandatory)

Syntax

reduce(
 search(collection1, q=*:*, fl="id,a_s,a_i,a_f", sort="a_s asc, a_f asc"),
 by="a_s",
 group(sort="a_f desc", n="4")
)

rollup

The function wraps another stream function and rolls up aggregates over bucket fields. The rolluprollup
function relies on the sort order of the underlying stream to rollup aggregates one grouping at a time.
Accordingly, the sort order of the underlying stream must match the fields in the parameter of the rollupover
function.

The rollup function also needs to process entire result sets in order to perform it's aggregations. When the
underlying stream is the function, the handler can be used to provide full sorted result sets tosearch /export
the rollup function. This sorted approach allows the rollup function to perform aggregations over very high
cardinality fields. The disadvantage of this approach is that the tuples must be sorted and streamed across the
network to a worker node to be aggregated. For faster aggregation over low to moderate cardinality fields, the fa

 function can be used.cet

The reduce function relies on the sort order of the underlying stream. Accordingly the sort order of the
underlying stream must be aligned with the group by field.

432Apache Solr Reference Guide 6.1

Parameters

StreamExpression (Mandatory)
over: (Mandatory) A list of fields to group by.
metrics: (Mandatory) The list of metrics to compute. Currently supported metrics are , sum(col) avg(c

, , , .ol) min(col) max(col) count(*)

Syntax

rollup(
 search(
 collection1, q=*:*, fl="a_s,a_i,a_f", qt="/export", sort="a_s asc"),
 over="a_s",
 sum(a_i),
 sum(a_f),
 min(a_i),
 min(a_f),
 max(a_i),
 max(a_f),
 avg(a_i),
 avg(a_f),
 count(*)
)

The example about shows the rollup function wrapping the search function. Notice that search function is using
the handler to provide the entire result set to the rollup stream. Also notice that the search function's /export s

 matches up with the rollup's parameter. This allows the rollup function to rollup the over the ort param over a_s
field, one group at a time.

select

The function wraps a streaming expression and outputs tuples containing a subset or modified set ofselect
fields from the incoming tuples. The list of fields included in the output tuple can contain aliases to effectively
rename fields. One can provide a list of operations to perform on any fields, such as to replace thereplace
value of a field with some other value or the value of another field in the tuple.

Parameters

StreamExpression
fieldName: name of field to include in the output tuple (can include multiple of
these) outputTuple[fieldName] = inputTuple[fieldName]
fieldName as aliasFieldName: aliased field name to include in the output tuple (can include multiple
of these) outputTuple[aliasFieldName] = incomingTuple[fieldName]
replace(fieldName, value, withValue=replacementValue): if incomingTuple[fieldName] ==
value then outgoingTuple[fieldName] will be set to replacementValue. value can be the string "null" to
replace a null value with some other value
replace(fieldName, value, withField=otherFieldName): if incomingTuple[fieldName] ==
value then outgoingTuple[fieldName] will be set to the value of incomingTuple[otherFieldName]. value can
be the string "null" to replace a null value with some other value

Syntax

433Apache Solr Reference Guide 6.1

// output tuples with fields teamName, wins, and losses where a null value for wins
or losses is translated to the value of 0
select(
 search(collection1, fl="id,teamName_s,wins,losses", q="*:*", sort="id asc"),
 teamName_s as teamName,
 wins,
 losses,
 replace(wins,null,withValue=0),
 replace(losses,null,withValue=0)
)

sort

The function wraps a streaming expression and re-orders the tuples. The sort function emits all incomingsort
tuples in the new sort order. The sort function reads all tuples from the incoming stream, re-orders them using an
algorithm with performance characteristics, where n is the total number of tuples in the incomingO(nlog(n))
stream, and then outputs the tuples in the new sort order. Because all tuples are read into memory, the memory
consumption of this function grows linearly with the number of tuples in the incoming stream.

Parameters

StreamExpression
by: Sort criteria for re-ordering the tuples

Syntax

The expression below finds dog owners and orders the results by owner and pet name. Notice that it uses an
efficient innerJoin by first ordering by the person/owner id and then re-orders the final output by the owner and
pet names.

sort(
 innerJoin(
 search(people, q=*:*, fl="id,name", sort="id asc"),
 search(pets, q=type:dog, fl="owner,petName", sort="owner asc"),
 on="id=owner"
),
 by="name asc, petName asc"
)

top

The function wraps a streaming expression and re-orders the tuples. The top function emits only the top Ntop
tuples in the new sort order. The top function re-orders the underlying stream so the sort criteria havedoes not
to match up with the underlying stream.

Parameters

n: Number of top tuples to return.
StreamExpression
sort: Sort criteria for selecting the top N tuples.

Syntax

434Apache Solr Reference Guide 6.1

The expression below finds the top 3 results of the underlying search. Notice that it reverses the sort order. The
top function re-orders the results of the underlying stream.

top(n=3,
 search(collection1,
 q="*:*",
 qt="/export",
 fl="id,a_s,a_i,a_f",
 sort="a_f desc, a_i desc"),
 sort="a_f asc, a_i asc")

unique

The function wraps a streaming expression and emits a unique stream of tuples based on the parunique over
ameter. The unique function relies on the sort order of the underlying stream. The parameter must matchover
up with the sort order of the underlying stream.

The unique function implements a non-co-located unique algorithm. This means that records with the same
unique field do not need to be co-located on the same shard. When executed in the parallel, the over partiti

 parameter must be the same as the unique field so that records with the same keys will beonKeys over
shuffled to the same worker.

Parameters

StreamExpression
over: The unique criteria.

Syntax

unique(
 search(collection1,
 q="*:*",
 qt="/export",
 fl="id,a_s,a_i,a_f",
 sort="a_f asc, a_i asc"),
 over="a_f")

update

The function wraps another functions and sends the tuples to a SolrCloud collection for indexing.update

Parameters

destinationCollection: (Mandatory) The collection where the tuples will indexed.
batchSize: (Mandatory) The indexing batch size.
StreamExpression: (Mandatory)

Syntax

435Apache Solr Reference Guide 6.1

 update(destinationCollection,
 batchSize=500,
 search(collection1,
 q=*:*,
 fl="id,a_s,a_i,a_f,s_multi,i_multi",
 sort="a_f asc, a_i asc"))

The example above sends the tuples returned by the function to the to besearch destinationCollection
indexed.

Graph Traversal

Graph traversal with streaming expressions uses the function for breadth-first graph traversal.gatherNodes

Basic Syntax
Aggregations
Nesting gatherNodes functions
Cycle Detection
Filtering the Traversal
Root Streams
Skipping High Frequency Nodes
Tracking the Traversal
Cross-Collection Traversals
Combining gatherNodes With Other Streaming Expressions
Sample Use Cases

Calculate Market Basket Co-occurance
Calculate Session Co-occurrance
Recommend Content Based on Collaborative Filter
Protein Pathway Traversal

Exporting GraphML to Support Graph Visualization
Sample Request
Sample GraphML Output

gatherNodes traversals are distributed within a SolrCloud collection and can span collections. The gatherNod
 function can be combined with other streaming expressions to perform complex operations on the gatheredes

node sets.

gatherNodes is designed for use cases that involve zooming into a neighborhood in the graph and performing
precise traversals to gather node sets and aggregations. In these types of use cases will oftengatherNodes
provide sub-second performance. Some sample use cases are provided later in the document.

Basic Syntax

We'll start with the most basic syntax and slowly build up more complexity. The most basic syntax for gatherNo
 is:des

This document assumes a basic understanding of graph terminology and streaming expressions. You
can begin exploring graph traversal concepts with this . More details about streamingWikipedia article
expressions are available in this Guide, in the section .Streaming Expressions

https://en.wikipedia.org/wiki/Graph_traversal

436Apache Solr Reference Guide 6.1

gatherNodes(emails,
 walk="johndoe@apache.org->from",
 gather="to")

Let's break down this simple expression.

The first parameter, , is the collection being traversed. The second parameter, , maps a hard-codedemails walk
node ID ("johndoe@apache.org") to a field in the index (). This will return all the in the index thatfrom edges
have in the field.johndoe@apache.org from

The parameter tells the function to gather the values in the field. The values that are gathered are thegather to
node IDs emitted by the function.

In the example above the nodes emitted will be all of the people that "johndoe@apache.org" has emailed.

The walk parameter also accepts a list of root node IDs:

gatherNodes(emails,
 walk="johndoe@apache.org, janesmith@apache.org->from",
 gather="to")

The function above finds all the edges with "johndoe@apache.org" or "janesmith@apache.org" ingatherNodes
the field and gathers the field.from to

Like all , you can execute a expression by sending it to the hanStreaming Expressions gatherNodes /stream
dler. For example:

curl --data-urlencode 'expr=gatherNodes(emails,
 walk="johndoe@apache.org,
janesmith@apache.org->from",
 gather="to")'
http://localhost:8983/solr/emails/stream

The output of this expression would look like this:

437Apache Solr Reference Guide 6.1

{
 "result-set": {
 "docs": [
 {
 "node": "slist@campbell.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "node": "catherine.pernot@enron.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "node": "airam.arteaga@enron.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "EOF": true,
 "RESPONSE_TIME": 44
 }
]
 }
}

All of the tuples returned have the field. The field contains the node IDs gathered by the function.node node
The , , and of the traversal are also included in the output.collection field level

Notice that the level is "1" for each tuple in the example. The root nodes are level 0 (in the example above, the
root nodes are "johndoe@apache.org, janesmith@apache.org") By default the function emitsgatherNodes
only the of the traversal, which is the outer-most node set. To emit the root nodes you can specify the leaf nodes

 parameter:scatter

gatherNodes(emails,
 walk="johndoe@apache.org->from",
 gather="to",
 scatter="branches, leaves")

The parameter controls whether to emit the with the . The root nodes are consideredscatter branches leaves
"branches" because they are not the outer-most level of the traversal.

When scattering both branches and leaves the output would like this:

438Apache Solr Reference Guide 6.1

{
 "result-set": {
 "docs": [
 {
 "node": "johndoe@apache.org",
 "collection": "emails",
 "field": "node",
 "level": 0
 },
 {
 "node": "slist@campbell.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "node": "catherine.pernot@enron.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "node": "airam.arteaga@enron.com",
 "collection": "emails",
 "field": "to",
 "level": 1
 },
 {
 "EOF": true,
 "RESPONSE_TIME": 44
 }
]
 }
}

Now the level 0 root node is included in the output.

Aggregations

gatherNodes also supports aggregations. For example:

gatherNodes(emails,
 walk="johndoe@apache.org, janesmith@apache.org->from",
 gather="to",
 count(*))

The expression above finds the edges with or " in the field"johndoe@apache.org" janesmith@apache.org" from
and gathers the values from the field It also aggregates the count for each node ID gathered.to .

A gathered node could have a count of 2 if both "johndoe@apache.org" and "janesmith@apache.org" have
emailed the same person. Node sets contain a unique set of nodes, so the same person won't appear twice in
the node set, but the count will reflect that it appeared twice during the traversal.

Edges are uniqued as part of the traversal so the count will reflect the number ofnot
times "johndoe@apache.org" emailed the same person. For example, personA might have emailed personB 100
times. These edges would get uniqued and only be counted once. But if person personC also emailed personB

439Apache Solr Reference Guide 6.1

this would increment the count for personB.

The aggregation functions supported are , , , , and count(*) sum(field) min(field) max(field) avg(fie
. The fields being aggregated should be present in the edges collected during the traversal. Later examplesld)

(below) will show aggregations can be a powerful tool for providing recommendations and limiting the scope of
traversals.

Nesting gatherNodes functions

The function can be nested to traverse deeper into the graph. For example:gatherNodes

gatherNodes(emails,
 gatherNodes(emails,
 walk="johndoe@apache.org->from",
 gather="to"),
 walk="node->from",
 gather="to")

In the example above the outer function operates on the node set collected from the inner gatherNodes gathe
 function.rNodes

Notice that the inner function behaves exactly as the examples already discussed. But the gatherNodes walk
parameter of the outer function behaves differently.gatherNodes

In the outer function the parameter works with tuples coming from an internal streaminggatherNodes walk
expression. In this scenario the parameter maps the field to the field. Remember that the nodewalk node from
IDs collected from the inner expression are placed in the field.gatherNodes node

Put more simply, the inner expression gathers all the people that "johndoe@apache.org" has emailed. We can
call this group the "friends of johndoe@apache.org". The outer expression gathers all the people that the "friends
of johndoe@apache.org" have emailed. This is a basic friends-of-friends traversal.

This construct of nesting functions is the basic technique for doing a controlled traversal throughgatherNodes
the graph.

Cycle Detection

The function performs cycle detection across the entire traversal. This ensures that nodes thatgatherNodes
have already been visited are not traversed again. Cycle detection is important for both limiting the size of
traversals and gathering accurate aggregations. Without cycle detection the size of the traversal could grow
exponentially with each hop in the traversal. With cycle detection only new nodes encountered are traversed.

Cycle detection cross collection boundaries. This is because internally the collection name is part ofdoes not
the node ID. For example the node ID "johndoe@apache.org", is really . Whenemails/johndoe@apache.org
traversing to another collection "johndoe@apache.org" will be traversed.

Filtering the Traversal

Each level in the traversal can be filtered with a filter query. For example:

gatherNodes(emails,
 walk="johndoe@apache.org->from",
 fq="body:(solr rocks)",
 gather="to")

440Apache Solr Reference Guide 6.1

1.
2.
3.

1.

2.

In the example above only emails that match the filter query will be included in the traversal. Any Solr query can
be included here. So you can do fun things like , apply any of the available , orgeospatial queries query parsers
even write custom query parsers to limit the traversal.

Root Streams

Any streaming expression can be used to provide the root nodes for a traversal. For example:

gatherNodes(emails,
 search(emails, q="body:(solr rocks)", fl="to", sort="score desc",
rows="20")
 walk="to->from",
 gather="to")

The example above provides the root nodes through a search expression. You can also provide arbitrarily
complex, nested streaming expressions with joins, etc., to specify the root nodes.

Notice that the parameter maps a field from the tuples generated by the inner stream. In this case it mapswalk
the field from the inner stream to the field.to from

Skipping High Frequency Nodes

It's often desirable to skip traversing high frequency nodes in the graph. This is similar in nature to a search term
stop list. The best way to describe this is through an example use case.

Let's say that you want to recommend content for a user based on a collaborative filter. Below is one approach
for a simple collaborative filter:

Find all content userA has read.
Find users whose reading list is closest to userA. These are users with similar tastes as userA.
Recommend content based on what the users in step 2 have read, that userA has not yet read.

Look closely at step 2. In large graphs, step 2 can lead to a very large traversal. This is because userA may have
viewed content that has been viewed by millions of other people. We may want to skip these high frequency
nodes for two reasons:

A large traversal that visit millions of unique nodes is slow and takes a lot of memory because cycle
detection is tracked in memory.
High frequency nodes are also not useful in determining users with similar tastes. The content that fewer
people have viewed provides a more precise recommendation.

The function has the param to allow for filtering out high frequency nodes. ThegatherNodes maxDocFreq
sample code below shows steps 1 and 2 of the recommendation:

gatherNodes(logs,
 search(logs, q="userID:user1", fl="articleID", sort="articleID asc",
fq="action:view", qt="/export"),
 walk="articleID->articleID",
 gather="userID",
 fq="action:view",
 maxDocFreq="10000",
 count(*)))

In the example above, the inner search expression searches the collection and returning all the articleslogs
viewed by "user1". The outer expression takes all the articles emitted from the inner searchgatherNodes
expression and finds all the records in the logs collection for those articles. It then gathers and aggregates the
users that have read the articles. The parameter limits the articles returned to those that appear inmaxDocFreq

441Apache Solr Reference Guide 6.1

no more then 10,000 log records (per shard). This guards against returning articles that have been viewed by
millions of users.

Tracking the Traversal

By default the function only tracks enough information to do cycle detection. This providesgatherNodes
enough information to output the nodes and aggregations in the graph.

For some use cases, such as graph visualization, we also need to output the edges. Setting trackTraversal=
 tells to track the connections between nodes, so the edges can be constructed. When "true" gatherNodes t

 is enabled a new property will appear with each node. The propertyrackTraversal ancestors ancestors
contains a list of node IDs that pointed to the node.

Below is a sample expression with set to true:gatherNodes trackTraversal

gatherNodes(emails,
 gatherNodes(emails,
 walk="johndoe@apache.org->from",
 gather="to",
 trackTraversal="true"),
 walk="node->from",
 trackTraversal="true",
 gather="to")

Cross-Collection Traversals

Nested functions can operate on different SolrCloud collections. This allow traversals to "walk"gatherNodes
from one collection to another to gather nodes. Cycle detection does not cross collection boundaries, so nodes
collected in one collection will be traversed in a different collection. This was done deliberately to support
cross-collection traversals. Note that the output from a cross-collection traversal will likely contain duplicate
nodes with different collection attributes.

Below is a sample expression that traverses from the "emails" collection to the "logs" collection:gatherNodes

gatherNodes(logs,
 gatherNodes(emails,
 search(emails, q="body:(solr rocks)", fl="from", sort="score desc",
rows="20")
 walk="from->from",
 gather="to",
 scatter="leaves, branches"),
 walk="node->user",
 fq="action:edit",
 gather="contentID")

The example above finds all people who sent emails with a body that contains "solr rocks". It then finds all the
people these people have emailed. Then it traverses to the logs collection and gathers all the content IDs that
these people have edited.

Combining gatherNodes With Other Streaming Expressions

The function can act as both a stream source and a stream decorator. The connection with thegatherNodes
wider stream expression library provides tremendous power and flexibility when performing graph traversals.
Here is an example of using the streaming expression library to intersect two friend networks:

442Apache Solr Reference Guide 6.1

1.

2.

3.

 intersect(on="node",
 sort(by="node asc",
 gatherNodes(emails,
 gatherNodes(emails,
 walk="johndoe@apache.org->from",
 gather="to"),
 walk="node->from",
 gather="to",
 scatter="branches,leaves")),
 sort(by="node asc",
 gatherNodes(emails,
 gatherNodes(emails,
 walk="janedoe@apache.org->from",

 gather="to"),
 walk="node->from",
 gather="to",
 scatter="branches,leaves")))

The example above gathers two separate friend networks, one rooted with "johndoe@apache.org" and another
rooted with "janedoe@apache.org". The friend networks are then sorted by the field, and intersected. Thenode
resulting node set will be the intersection of the two friend networks.

Sample Use Cases

Calculate Market Basket Co-occurance

It is often useful to know which products are most frequently purchased with a particular product. This example
uses a simple market basket table (indexed in Solr) to store past shopping baskets. The schema for the table is
very simple with each row containing a and a . This can be seen as a graph with eachbasketID productID
row in the table representing an edge. And it can be traversed very quickly to calculate basket co-occurance,
even when the graph contains billions of edges.

Here is the sample syntax:

top(n="5",
 sort="count(*) desc",
 gatherNodes(baskets,
 random(baskets, q="productID:ABC", fl="basketID", rows="500")
 walk="basketID->basketID",
 fq="-productID:ABC",
 gather="productID",
 count(*)))

Let's break down exactly what this traversal is doing.

The first expression evaluated is the inner expression which returns 500 random basketIDs, fromrandom ,
the collection, that have the "ABC". The expression is very useful forbaskets productID random
recommendations because it limits the traversal to a fixed set of baskets, and because it adds the element
of surprise into the recommendation. Using the function you can provide fast sample sets fromrandom
very large graphs.
The outer expression finds all the records in the collection for the basketIDsgatherNodes baskets
generated in step 1. It also filters out "ABC" so it doesn't show up in the results. It thenproductID
gathers and counts the productID's across these baskets.
The outer expression ranks the productIDs emitted in step 2 by the count and selects the top 5. top

443Apache Solr Reference Guide 6.1

1.

2.

3.

In a nutshell this expression finds the products that most frequently co-occur with product "ABC" in past shopping
baskets.

Calculate Session Co-occurrance

It is often useful to know what articles are most frequently viewed with a particular article. This use case requires
logs (loaded into Solr) that include a sessionID. In these logs, each time a is viewed a log record iscontentID
created that includes the sessionID. Each of these log records can be seen as edges in a graph that can be
traversed in real time to calculate session co-occurance.

Here is the sample syntax:

top(n="5",
 sort="count(*) desc",
 gatherNodes(logs,
 random(logs, q="contentID:ABC", fl="sessionID", rows="500")
 walk="sessionID->sessionID",
 fq="-contentID:ABC",
 gather="contentID",
 count(*)))

This is very similar to the previous example, so let's break down exactly what this traversal is doing.

The first expression evaluated is the inner expression which returns 500 random sessionIDs,random ,
from the collection, that have the "ABC". logs contentID
The outer expression finds all records in the collection for the sessionIDs generatedgatherNodes logs
in step 1. It also filters out "ABC" so it doesn't show up in the result. It then gathers andcontentID
counts the contentIDs across these sessions.
The outer expression ranks the contentIDs emitted in step 2 by the count and selects the top 5.top

In a nutshell, this expression finds the contentIDs that most frequently co-occur with contentID "ABC" in past
sessions.

Recommend Content Based on Collaborative Filter

In this example we'll recommend content for a user based on a collaborative filter. This recommendation is made
using log records that contain the and and the action performed. In this scenario each loguserID articleID
record can be viewed as an edge in a graph. The userID and articleID are the nodes and the action is an edge
property used to filter the traversal.

Here is the sample syntax:

444Apache Solr Reference Guide 6.1

1.

2.

3.

4.

5.

top(n="5",
 sort="count(*) desc",
 gatherNodes(logs,
 top(n="30",
 sort="count(*) desc",
 gatherNodes(logs,
 search(logs, q="userID:user1", fl="articleID",
sort="articleID asc", fq="action:read", qt="/export"),
 walk="articleID->articleID",
 gather="userID",
 fq="action:read",
 maxDocFreq="10000",
 count(*))),
 walk="node->userID",
 gather="articleID",
 fq="action:read",
 count(*)))

Let's break down the expression above step-by-step.

The first expression evaluated is the inner expression. This expression searches the collectsearch logs
ion for all records matching "user1". This is the user we are making the recommendation for. There is a
filter applied to pull back only records where the "action:read". It returns the for each recordarticleID
found. In other words, this expression returns all the articles "user1" has read.
The inner expression operates over the articleIDs returned from step 1. It takes each gatherNodes arti

 found and searches them against the field. Note that it skips high frequency nodescleID articleID
using the param to filter out articles that appear over 10,000 times in the logs. It gathersmaxDocFreq
userIDs and aggregates the counts for each user. This step finds the users that have read the same
articles that "user1" has read and counts how many of the same articles they have read.
The inner expression ranks the users emitted from step 2. It will emit the top 30 users who have thetop
most overlap with user1's reading list.
The outer expression gathers the reading list for the users emitted from step 3. It countsgatherNodes
the articleIDs that are gathered. Any article selected in step 1 (user1 reading list), will not appear in this
step due to cycle detection. So this step returns the articles read by the users with the most similar
readings habits to "user1" that "user1" has not read yet It also counts the number of times each article.
has been read across this user group.
The outer expression takes the top articles emitted from step 4. This is the recommendation.top

Protein Pathway Traversal

In recent years, scientists have become increasingly able to rationally design drugs that target the mutated
proteins, called oncogenes, responsible for some cancers. Proteins typically act through long chains of chemical
interactions between multiple proteins, called pathways, and, while the oncogene in the pathway may not have a
corresponding drug, another protein in the pathway may. Graph traversal on a protein collection that records
protein interactions and drugs may yield possible candidates. (Thanks to Lewis Geer of the NCBI, for providing
this example).

The example below illustrates a protein pathway traversal:

gatherNodes(proteins,
 gatherNodes(proteins,
 walk="NRAS->name",
 gather="interacts"),
 walk="node->name",
 gather="drug")

445Apache Solr Reference Guide 6.1

1.

2.

3.

1.

2.

3.

Let's break down exactly what this traversal is doing.

The inner expression traverses in the collection. It finds all the edges in thegatherNodes proteins
graph where the name of the protein is "NRAS". Then it gathers the proteins in the field. Thisinteracts
gathers all the proteins that "NRAS" interactions with.
The outer expression also works with the collection. It gathers all the drugs thatgatherNodes proteins
correspond to proteins emitted from step 1.
Using this stepwise approach you can gather the drugs along the pathway of interactions any number of
steps away from the root protein.

Exporting GraphML to Support Graph Visualization

In the examples above, the expression was sent to Solr's handler like any othergatherNodes /stream
streaming expression. This approach outputs the nodes in the same JSON tuple format as other streaming
expressions so that it can be treated like any other streaming expression. You can use the handler/stream
when you need to operate directly on the tuples, such as in the recommendation use cases above.

There are other graph traversal use cases that involve graph visualization. Solr supports these use cases with
the introduction of the request handler, which takes a expression and outputs the results/graph gatherNodes
in GraphML.

GraphML is an XML format supported by graph visualization tools such as , which is a sophisticated openGephi
source tool for statistically analyzing and visualizing graphs. Using a expression, parts of a largergatherNodes
graph can be exported in GraphML and then imported into tools like Gephi.

There are a few things to keep mind when exporting a graph in GraphML

The handler can export both the nodes and edges in the graph. By default, it only exports the/graph
nodes. To export the edges you must set in the expression.trackTraversal="true" gatherNodes
The handler currently accepts an arbitrarily complex streaming expression which includes a /graph gath

 expression. If the streaming expression doesn't include a expression, the erNodes gatherNodes /grap
 handler will not properly output GraphML.h

The handler currently accepts a single arbitrarily complex, nested expression per/graph gatherNodes
request. This means you cannot send in a streaming expression that joins or intersects the node sets from
multiple expressions. The handler does support any level of nesting within agatherNodes /graph
single expression. The handler does support joining and intersecting node sets,gatherNodes /stream
but the handler currently does not./graph

Sample Request

curl --data-urlencode 'expr=gatherNodes(enron_emails,
 gatherNodes(enron_emails,

walk="kayne.coulter@enron.com->from",
 trackTraversal="true",
 gather="to"),
 walk="node->from",
 scatter="leaves,branches",
 trackTraversal="true",
 gather="to")'
http://localhost:8983/solr/enron_emails/graph

Sample GraphML Output

http://graphml.graphdrawing.org/
https://gephi.org/

446Apache Solr Reference Guide 6.1

<graphml xmlns="http://graphml.graphdrawing.org/xmlns"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns
http://graphml.graphdrawing.org/xmlns/1.0/graphml.xsd">
<graph id="G" edgedefault="directed">
 <node id="kayne.coulter@enron.com">
 <data key="field">node</data>
 <data key="level">0</data>
 <data key="count(*)">0.0</data>
 </node>
 <node id="don.baughman@enron.com">
 <data key="field">to</data>
 <data key="level">1</data>
 <data key="count(*)">1.0</data>
 </node>
 <edge id="1" source="kayne.coulter@enron.com"
target="don.baughman@enron.com"/>
 <node id="john.kinser@enron.com">
 <data key="field">to</data>
 <data key="level">1</data>
 <data key="count(*)">1.0</data>
 </node>
 <edge id="2" source="kayne.coulter@enron.com" target="john.kinser@enron.com"/>
 <node id="jay.wills@enron.com">
 <data key="field">to</data>
 <data key="level">1</data>
 <data key="count(*)">1.0</data>
 </node>
 <edge id="3" source="kayne.coulter@enron.com" target="jay.wills@enron.com"/>
</graph></graphml>

Parallel SQL Interface
Solr's Parallel SQL Interface brings the power of SQL to SolrCloud. The SQL interface seamlessly combines
SQL with Solr's full-text search capabilities. Two implementations for aggregations allow using either
MapReduce-like shuffling or the JSON Facet API, depending on performance needs. These features allow Solr's
SQL interface to be used for a wide variety of use cases.

SQL Architecture
Solr Collections and DB Tables
Aggregation Modes

Configuration
/sql Request Handler
/stream and /export Request Handlers
Fields

Sending Queries
JDBC Driver
HTTP Interface

Solr SQL Syntax
SELECT Statements

Basic SELECT statement with LIMIT
WHERE Clause and Boolean Predicates
ORDER BY Clause

447Apache Solr Reference Guide 6.1

LIMIT Clause
SELECT DISTINCT Queries

Statistics
GROUP BY Aggregations

Basic GROUP BY with Aggregates
The Column Identifiers and Aliases
GROUP BY Clause
HAVING Clause
ORDER BY Clause

Best Practices
Separate Collections

Parallel SQL Queries
Parallelized Queries

SQL Tier
Worker Tier
Data Table Tier

SQL Clients and Database Visualization Tools
Generic
DbVisualizer
SQuirreL SQL
Apache Zeppelin (incubating)

SQL Architecture

The SQL interface allows sending a SQL query to Solr and getting documents streamed back in response. Under
the covers, Solr's SQL interface is powered by the , which translates SQL queries onPresto Project's SQL Parser
the fly to .Streaming Expressions

Solr Collections and DB Tables

In a standard statement such as " ", the table namesSELECT SELECT <expressions> FROM <table>
correspond to Solr collection names. Table names are case insensitive.

Column names in the SQL query map directly to fields in the Solr index for the collection being queried. These
identifiers are case sensitive. Aliases are supported, and can be referenced in the clause.ORDER BY

The * syntax to indicate all fields is not supported in either limited or unlimited queries. The field can bescore
used only with queries that contain a clause.LIMIT

For example, we could index Solr's sample documents and then construct an SQL query like this:

SELECT manu as mfr, price as retail FROM techproducts

The collection in Solr we are using is "techproducts", and we've asked for the "manu" and "price" fields to be
returned and aliased with new names. While this example does not use those aliases, we could build on this to
ORDER BY one or more of those fields.

More information about how to structure SQL queries for Solr is included in the section .Solr SQL Syntax

Aggregation Modes

The SQL feature of Solr can work with aggregations (grouping of results) in two ways:

map_reduce: This implementation shuffles tuples to worker nodes and performs the aggregation on the
worker nodes. It involves sorting and partitioning the entire result set and sending it to worker nodes. In
this approach the tuples arrive at the worker nodes sorted by the GROUP BY fields. The worker nodes

https://prestodb.io/
https://github.com/prestodb/presto/tree/master/presto-parser

448Apache Solr Reference Guide 6.1

can then rollup the aggregates one group at a time. This allows for unlimited cardinality aggregation, but
you pay the price of sending the entire result set across the network to worker nodes.
facet: This uses the JSON Facet API or StatsComponent for aggregations. In this scenario the
aggregations logic is pushed down into the search engine and only the aggregates are sent across the
network. This is Solr's normal mode of operation. This is fast when the cardinality of GROUP BY fields is
low to moderate. But it breaks down when you have high cardinality fields in the GROUP BY field.

These modes are defined with the property when sending the request to Solr.aggregationMode

As noted, the choice between aggregation modes depends on the cardinality of the fields you are working with. If
you have low-to-moderate cardinality in the fields you are grouping by, the 'facet' aggregation mode will give you
a higher performance because only the final groups are returned, very similar to how facets work today. If,
however, you have high cardinality in the fields, the "map_reduce" aggregation mode with worker nodes provide
a much more performant option.

More detail on the architecture of the "map_reduce" query is in the section .Parallel Query Architecture

Configuration

The request handlers used for the SQL interface are configured to load implicitly, meaning there is little to do to
start using this feature.

/sql Request Handler

The handler is the front end of the Parallel SQL interface. All SQL queries are sent to the handler to/sql /sql
be processed. The handler also coordinates the distributed MapReduce jobs when running and GROUP BY SELE

 queries in mode. By default the handler will choose worker nodes from it'sCT DISTINCT map_reduce /sql
own collection to handle the distributed operations. In this default scenario the collection where the handler/sql
resides acts as the default worker collection for MapReduce queries.

By default, the request handler is configured as an implicit handler, meaning that it is always enabled in/sql
every Solr installation and no further configuration is required.

/stream and /export Request Handlers

The Streaming API is an extensible parallel computing framework for SolrCloud. provideStreaming Expressions
a query language and a serialization format for the Streaming API. The Streaming API provides support for fast
MapReduce allowing it to perform parallel relational algebra on extremely large data sets. Under the covers the
SQL interface parses SQL queries using the Presto SQL Parser. It then translates the queries to the parallel
query plan. The parallel query plan is expressed using the Streaming API and Streaming Expressions.

Like the request handler, the and request handlers are configured as implicit handlers,/sql /stream /export
and no further configuration is required.

Fields

In some cases, fields used in SQL queries must be configured as DocValue fields. If queries are unlimited, all
fields must be DocValue fields. If queries are limited (with the clause) then fields do not have to be havelimit
DocValues enabled.

As described below in the section , you may want to set up a separate collection forBest Practices
parallelized SQL queries. If you have high cardinality fields and a large amount of data, please be sure to
review that section and

449Apache Solr Reference Guide 6.1

Sending Queries

The SQL Interface provides a basic JDBC driver and an HTTP interface to perform queries.

JDBC Driver

The JDBC Driver ships with SolrJ. Below is sample code for creating a connection and executing a query with
the JDBC driver:

Connection con = null;
try {
 con = DriverManager.getConnection("jdbc:solr://" + zkHost +
"?collection=collection1&aggregationMode=map_reduce&numWorkers=2");
 stmt = con.createStatement();
 rs = stmt.executeQuery("SELECT a_s, sum(a_f) as sum FROM collection1 GROUP BY a_s
ORDER BY sum desc");

 while(rs.next()) {
 String a_s = rs.getString("a_s");
 double s = rs.getDouble("sum");
 }
} finally {
 rs.close();
 stmt.close();
 con.close();
}

The connection URL must contain the and the parameters. The collection must be a validzkHost collection
SolrCloud collection at the specified ZooKeeper host. The collection must also be configured with the handl/sql
er. The and parameters are optional. aggregationMode numWorkers

HTTP Interface

Solr accepts parallel SQL queries through the handler. /sql

Below is a sample curl command performing a SQL aggregate query in facet mode:

curl --data-urlencode 'stmt=SELECT to, count(*) FROM collection4 GROUP BY to ORDER
BY count(*) desc LIMIT 10'
 http://localhost:8983/solr/collection4/sql?aggregationMode=facet

Below is sample result set:

450Apache Solr Reference Guide 6.1

{"result-set":{"docs":[
 {"count(*)":9158,"to":"pete.davis@enron.com"},
 {"count(*)":6244,"to":"tana.jones@enron.com"},
 {"count(*)":5874,"to":"jeff.dasovich@enron.com"},
 {"count(*)":5867,"to":"sara.shackleton@enron.com"},
 {"count(*)":5595,"to":"steven.kean@enron.com"},
 {"count(*)":4904,"to":"vkaminski@aol.com"},
 {"count(*)":4622,"to":"mark.taylor@enron.com"},
 {"count(*)":3819,"to":"kay.mann@enron.com"},
 {"count(*)":3678,"to":"richard.shapiro@enron.com"},
 {"count(*)":3653,"to":"kate.symes@enron.com"},
 {"EOF":"true","RESPONSE_TIME":10}]}
}

Notice that the result set is an array of tuples with key/value pairs that match the SQL column list. The final tuple
contains the EOF flag which signals the end of the stream.

Solr SQL Syntax

Solr supports a broad range of SQL syntax.

SELECT Statements

Solr supports limited and unlimited select queries. The syntax between the two types of queries are identical
except for the clause in the SQL statement. However, they have very different execution plans andLIMIT
different requirements for how the data is stored. The sections below explores both types of queries.

Basic SELECT statement with LIMIT

A limited select query follows this basic syntax:

SELECT fieldA as fa, fieldB as fb, fieldC as fc FROM tableA WHERE fieldC = 'term1
term2' ORDER BY fa desc LIMIT 100

We've covered many syntax options with this example, so let's walk through what's possible below.

WHERE Clause and Boolean Predicates

The clause allows Solr's search syntax to be injected into the SQL query. In the example:WHERE

WHERE fieldC = 'term1 term2'

The predicate above will execute a full text search for the phrase 'term1 term2' in fieldC.

To execute a non-phrase query, simply add parens inside of the single quotes. For example:

WHERE fieldC = '(term1 term2)'

SQL Parser is Case Insensitive
The SQL parser being used by Solr to translate the SQL statements is case insensitive. However, for
ease of reading, all examples on this page use capitalized keywords.

451Apache Solr Reference Guide 6.1

The predicate above searches for OR in .term1 term2 fieldC

The Solr range query syntax can be used as follows:

WHERE fieldC = '[0 TO 100]'

Complex boolean queries can be specified as follows:

WHERE ((fieldC = 'term1' AND fieldA = 'term2') OR (fieldB = 'term3'))

To specify NOT queries, you use the syntax as follows:AND NOT

WHERE (fieldA = 'term1') AND NOT (fieldB = 'term2')

ORDER BY Clause

The clause maps directly to Solr fields. Multiple fields and directions are supported.ORDER BY ORDER BY

The field is accepted in the clause in queries where a limit is specified.score ORDER BY

Order by fields are case sensitive.

LIMIT Clause

Limits the result set to the specified size. In the example above the clause will limit the result set toLIMIT 100
100 records.

There are a few differences to note between limited and unlimited queries:

Limited queries support in the field list and . Unlimited queries do not.score ORDER BY
Limited queries allow any stored field in the field list. Unlimited queries require the fields to be stored as a
DocValues field.
Limited queries allow any indexed field in the list. Unlimited queries require the fields to beORDER BY
stored as a DocValues field.

SELECT DISTINCT Queries

The SQL interface supports both MapReduce and Facet implementations for queries.SELECT DISTINCT

The MapReduce implementation shuffles tuples to worker nodes where the Distinct operation is performed.
This implementation can perform the Distinct operation over extremely high cardinality fields.

The Facet implementation pushes down the Distinct operation into the search engine using the JSON Facet API.
This implementation is designed for high performance, high QPS scenarios on low-to-moderate cardinality fields.

The parameter is available in the both the JDBC driver and HTTP interface to choose theaggregationMode
underlying implementation (or). The SQL syntax is identical for both implementations:map_reduce facet

SELECT distinct fieldA as fa, fieldB as fb FROM tableA ORDER BY fa desc, fb desc

Statistics

The SQL interface supports simple statistics calculated on numeric fields. The supported functions are count(*
, , , , and .) min max sum avg

Because these functions never require data to be shuffled, the aggregations are pushed down into the search

452Apache Solr Reference Guide 6.1

engine and are generated by the .StatsComponent

SELECT count(fieldA) as count, sum(fieldB) as sum FROM tableA WHERE fieldC = 'Hello'

GROUP BY Aggregations

The SQL interface also supports aggregate queries.GROUP BY

As with queries, the SQL interface supports both a MapReduce implementation and a FacetSELECT DISTINCT
implementation. The MapReduce implementation can build aggregations over extremely high cardinality fields.
The Facet implementations provides high performance aggregation over fields with moderate levels of
cardinality.

Basic with AggregatesGROUP BY

Here is a basic example of a GROUP BY query that requests aggregations:

SELECT fieldA as fa, fieldB as fb, count(*) as count, sum(fieldC) as sum,
avg(fieldY) as avg FROM tableA WHERE fieldC = 'term1 term2'
GROUP BY fa, fb HAVING sum > 1000 ORDER BY sum asc LIMIT 100

Let's break this down into pieces:

The Column Identifiers and Aliases

The Column Identifiers can contain both fields in the Solr index and aggregate functions. The supported
aggregate functions are:

count(*): Counts the number of records over a set of buckets.
sum(field): Sums a numeric field over over a set of buckets.
avg(field): Averages a numeric field over a set of buckets.
min(field): Returns the min value of a numeric field over a set of buckets.
max:(field): Returns the max value of a numerics over a set of buckets.

The non-function fields in the field list determine the fields to calculate the aggregations over.

Column aliases are supported for both fields and functions and can be referenced in the GROUP BY, HAVING
and ORDER BY clauses.

GROUP BY Clause

The clause can contain up to 4 fields in the Solr index. These fields should correspond with theGROUP BY
non-function fields in the field list.

HAVING Clause

The clause may contain any function listed in the field list. Complex clauses such as this areHAVING HAVING
supported:

453Apache Solr Reference Guide 6.1

SELECT fieldA, fieldB, count(*), sum(fieldC), avg(fieldY)
FROM tableA
WHERE fieldC = 'term1 term2'
GROUP BY fieldA, fieldB
HAVING ((sum(fieldC) > 1000) AND (avg(fieldY) <= 10))
ORDER BY sum(fieldC) asc
LIMIT 100

ORDER BY Clause

The clause contains any field or function in the field list.ORDER BY

If the clause contains the exact fields in the clause, then there is no-limit placed on theORDER BY GROUP BY
returned results. If the clause contains different fields than the clause, a limit of 100 isORDER BY GROUP BY
automatically applied. To increase this limit you must specify a value in the clause.LIMIT

Best Practices

Separate Collections

It makes sense to create a separate SolrCloud collection just for the handler. This collection can be/sql
created using SolrCloud's standard collection API. Since this collection only exists to handle requests and/sql
provide a pool of worker nodes, this collection does not need to hold any data. Worker nodes are selected
randomly from the entire pool of available nodes in the handler's collection. So to grow this collection/sql
dynamically replicas can be added to existing shards. New replicas will automatically be put to work after they've
been added.

Parallel SQL Queries

An earlier section describes how the SQL interface translates the SQL statement to a streaming expression. One
of the parameters of the request is the , which defines if the query should use aaggregationMode
MapReduce-like shuffling technique or push the operation down into the search engine.

Parallelized Queries

The Parallel SQL architecture consists of three logical tiers: a tier, a tier, and a tier. BySQL Worker Data Table
default the SQL and Worker tiers are collapsed into the same physical SolrCloud collection.

SQL Tier

The SQL tier is where the handler resides. The handler takes the SQL query and translates it to a/sql /sql
parallel query plan. It then selects worker nodes to execute the plan and sends the query plan to each worker
node to be run in parallel.

Once the query plan has been executed by the worker nodes, the handler then performs the final merge of/sql
the tuples returned by the worker nodes.

Worker Tier

The workers in the worker tier receive the query plan from the handler and execute the parallel query plan./sql
The parallel execution plan includes the queries that need to be made on the Data Table tier and the relational
algebra needed to satisfy the query. Each worker node assigned to the query is shuffled 1/N of the tuples from

454Apache Solr Reference Guide 6.1

1.

2.

3.
4.

5.

6.

7.

8.

9.

the Data Tables. The worker nodes execute the query plan and stream tuples back to the worker nodes.

Data Table Tier

The Data Table tier is where the tables reside. Each table is it's own SolrCloud collection. The Data Table layer
receives queries from the worker nodes and emits tuples (search results). The Data Table tier also handles the
initial sorting and partitioning of tuples sent to the workers. This means the tuples are always sorted and
partitioned before they hit the network. The partitioned tuples are sent directly to the correct worker nodes in the
proper sort order, ready to be reduced.

The image above shows the three tiers broken out into different SolrCloud collections for clarity. In practice the /

 handler and worker collection by default share the same collection.sql

Note: The image shows the network flow for a single Parallel SQL Query (SQL over MapReduce). This network
flow is used when aggregation mode is used for aggregations or the map_reduce GROUP BY SELECT

 query. The traditional SolrCloud network flow (without workers) is used when the aggregation DISTINCT facet
mode is used.

Below is a description of the flow:

The client sends a SQL query to the handler. The request is handled by a single handler/sql /sql
instance.
The handler parses the SQL query and creates the parallel query plan./sql

The query plan is sent to worker nodes (in green).
The worker nodes execute the plan in parallel. The diagram shows each worker node contacting a
collection in the Data Table tier (in blue).
The collection in the Data Table tier is the table from the SQL query. Notice that the collection has five
shards each with 3 replicas.
Notice that each worker contacts one replica from each shard. Because there are 5 workers, each worker
is returned 1/5 of the search results from each shard. The partitioning is done inside of the Data Table tier
so there is no duplication of data across the network.
Also notice with this design ALL replicas in the data layer are shuffling (sorting & partitioning) data
simultaneously. As the number of shards, replicas and workers grows this design allows for a massive
amount of computing power to be applied to a single query.
The worker nodes process the tuples returned from the Data Table tier in parallel. The worker nodes
perform the relational algebra needed to satisfy the query plan.
The worker nodes stream tuples back to the handler where the final merge is done, and finally the/sql

tuples are streamed back to the client.

SQL Clients and Database Visualization Tools

455Apache Solr Reference Guide 6.1

The SQL interface supports queries sent from SQL clients and database visualization tools such as DbVisualizer
and Apache Zeppelin.

Generic

For most Java based clients, the following jars will need to be placed on the client classpath:

all .jars found in $SOLR_HOME/dist/solrj-libs
the SolrJ .jar found at $SOLR_HOME/dist/solr-solrj-<version>.jar

If you are using Maven, the artifact contains the required jars.org.apache.solr.solr-solrj

Once the jars are available on the classpath, the Solr JDBC driver name is org.apache.solr.client.solr
 and a connection can be made with the following connection string format:j.io.sql.DriverImpl

jdbc:solr://SOLR_ZK_CONNECTION_STRING?collection=COLLECTION_NAME

There are other parameters that can be optionally added to the connection string like and aggregationMode n
. An example of a Java connection is available in the section .umWorkers JDBC Driver

DbVisualizer

A step-by-step guide for setting up is in the section .DbVisualizer Solr JDBC - DbVisualizer

SQuirreL SQL

A step-by-step guide for setting up is in the section .SQuirreL SQL Solr JDBC - SQuirreL SQL

Apache Zeppelin (incubating)

.A step-by-step guide for setting up Apache Zeppelin is in the section Solr JDBC - Apache Zeppelin

Solr JDBC - DbVisualizer

Setup Driver
Open Driver Manager
Create a New Driver
Name the Driver
Add Driver Files to Classpath
Review and Close Driver Manager

Create a Connection
Use the Connection Wizard
Name the Connection
Select the Solr driver
Specify the Solr URL

Open and Connect to Solr
Open SQL Commander to Enter Queries

For , you will need to create a new driver for Solr using the DbVisualizer Driver Manager. This willDbVisualizer
add several SolrJ client .jars to the DbVisualizer classpath. The files required are:

all .jars found in $SOLR_HOME/dist/solrj-lib

https://www.dbvis.com/
http://squirrel-sql.sourceforge.net
http://zeppelin.apache.org/
https://www.dbvis.com/

456Apache Solr Reference Guide 6.1

the SolrJ .jar found at $SOLR_HOME/dist/solr-solrj-<version>.jar

Once the driver has been created, you can create a connection to Solr with the connection string format outlined
in the generic section and use the SQL Commander to issue queries.

Setup Driver

Open Driver Manager

From the Tools menu, choose Driver Manager to add a driver.

Create a New Driver

457Apache Solr Reference Guide 6.1

Name the Driver

Provide a name for the driver, and provide the URL format: jdbc:solr://<zk_connection_string>/?col
. Do not fill in values for the variables " " and "lection=<collection> zk_connection_string collection

", those will be provided later when the connection to Solr is configured. The Driver Class will also be
automatically added when the driver .jars are added.

Add Driver Files to Classpath

The driver files to be added are:

all .jars in $SOLR_HOME/dist/solrj-lib
the SolrJ .jar found in $SOLR_HOME/dist/solr-solrj-<version>.jar

458Apache Solr Reference Guide 6.1

459Apache Solr Reference Guide 6.1

460Apache Solr Reference Guide 6.1

Review and Close Driver Manager

Once the driver files have been added, you can close the Driver Manager.

Create a Connection

Next, create a connection to Solr using the driver just created.

Use the Connection Wizard

461Apache Solr Reference Guide 6.1

Name the Connection

Select the Solr driver

Specify the Solr URL

462Apache Solr Reference Guide 6.1

Provide the Solr URL, using the ZooKeeper host and port and the collection. For example, jdbc:solr://loca
lhost:9983?collection=test

Open and Connect to Solr

Once the connection has been created, double-click on it to open the connection details screen and connect to
Solr.

463Apache Solr Reference Guide 6.1

Open SQL Commander to Enter Queries

When the connection is established, you can use the SQL Commander to issue queries and view data.

464Apache Solr Reference Guide 6.1

Solr JDBC - SQuirreL SQL

Add Solr JDBC Driver
Open Drivers
Add Driver
Name the Driver
Add Solr JDBC jars to Classpath
Add the Solr JDBC driver class name

Create an Alias
Open Aliases
Add an Alias
Configure the Alias
Connect to the Alias

Querying

For , you will need to create a new driver for Solr. This will add several SolrJ client .jars to theSQuirreL SQL
SQuirreL SQL classpath. The files required are:

all .jars found in $SOLR_HOME/dist/solrj-libs
the SolrJ .jar found at $SOLR_HOME/dist/solr-solrj-<version>.jar

Once the driver has been created, you can create a connection to Solr with the connection string format outlined
in the generic section and use the editor to issue queries.

Add Solr JDBC Driver

Open Drivers

http://squirrel-sql.sourceforge.net

465Apache Solr Reference Guide 6.1

Add Driver

Name the Driver

Provide a name for the driver, and provide the URL format: jdbc:solr://<zk_connection_string>/?col
. Do not fill in values for the variables " " and "lection=<collection> zk_connection_string collection

", those will be defined later when the connection to Solr is configured.

466Apache Solr Reference Guide 6.1

Add Solr JDBC jars to Classpath

467Apache Solr Reference Guide 6.1

468Apache Solr Reference Guide 6.1

Add the Solr JDBC driver class name

After adding the .jars, you will need to additionally define the Class Name org.apache.solr.client.solrj
..io.sql.DriverImpl

Create an Alias

To define a JDBC connection, you must define an alias.

Open Aliases

469Apache Solr Reference Guide 6.1

Add an Alias

Configure the Alias

Connect to the Alias

470Apache Solr Reference Guide 6.1

Querying

Once you've successfully connected to Solr, you can use the SQL interface to enter queries and work with data.

Solr JDBC - Apache Zeppelin

Create the Apache Solr JDBC Interpreter
Create a Notebook
Query with the Notebook

471Apache Solr Reference Guide 6.1

For , you will need to create a JDBC interpreter for Solr. This will add SolrJ to the interpreterApache Zeppelin
classpath. Once the interpreter has been created, you can create a notebook to issue queries.

Create the Apache Solr JDBC Interpreter

This requires Apache Zeppelin 0.6.0 or greater which contains the JDBC interpreter.

http://zeppelin.apache.org

472Apache Solr Reference Guide 6.1

Create a Notebook

473Apache Solr Reference Guide 6.1

Query with the Notebook

474Apache Solr Reference Guide 6.1

The Well-Configured Solr Instance
This section tells you how to fine-tune your Solr instance for optimum performance. This section covers the
following topics:

Configuring solrconfig.xml: Describes how to work with the main configuration file for Solr, ,solrconfig.xml
covering the major sections of the file.

Solr Cores and solr.xml: Describes how to work with and to configure your Solrsolr.xml core.properties
core, or multiple Solr cores within a single instance.

Configuration APIs: Describes several APIs used to configure Solr: Blob Store, Config, Request Parameters and
Managed Resources.

Solr Plugins: Introduces Solr plugins with pointers to more information.

JVM Settings: Gives some guidance on best practices for working with Java Virtual Machines.

Configuring solrconfig.xml
The file is the configuration file with the most parameters affecting Solr itself. Whilesolrconfig.xml
configuring Solr, you'll work with often, either directly or via the to createsolrconfig.xml Config API
"Configuration Overlays" () to override the values in .configoverlay.json solrconfig.xml

In , you configure important features such as:solrconfig.xml

request handlers, which process the requests to Solr, such as requests to add documents to the index or
requests to return results for a query

listeners, processes that "listen" for particular query-related events; listeners can be used to trigger the
execution of special code, such as invoking some common queries to warm-up caches

the Request Dispatcher for managing HTTP communications

the Admin Web interface

parameters related to replication and duplication (these parameters are covered in detail in Legacy
)Scaling and Distribution

The file is located in the directory for each collection. Several well-commentedsolrconfig.xml conf/
example files can be found in the directories demonstrating best practices forserver/solr/configsets/
many different types of installations.

We've covered the options in the following sections:

DataDir and DirectoryFactory in SolrConfig
Lib Directives in SolrConfig
Schema Factory Definition in SolrConfig
IndexConfig in SolrConfig
RequestHandlers and SearchComponents in SolrConfig
InitParams in SolrConfig
UpdateHandlers in SolrConfig
Query Settings in SolrConfig
RequestDispatcher in SolrConfig

The focus of this section is generally on configuring a single Solr instance, but for those interested in
scaling a Solr implementation in a cluster environment, see also the section . There are alsoSolrCloud
options to scale through sharding or replication, described in the section .Legacy Scaling and Distribution

475Apache Solr Reference Guide 6.1

Update Request Processors
Codec Factory

Substituting Properties in Solr Config Files

Solr supports variable substitution of property values in config files, which allows runtime specification of various
configuration options in . The syntax is }.solrconfig.xml ${propertyname[:option default value]
This allows defining a default that can be overridden when Solr is launched. If a default value is not specified,
then the property be specified at runtime or the configuration file will generate an error when parsed.must

There are multiple methods for specifying properties that can be used in configuration files.

JVM System Properties

Any JVM System properties, usually specified using the flag when starting the JVM, can be used as variables-D
in any XML configuration file in Solr.

For example, in the sample files, you will see this value which defines the locking type to use:solrconfig.xml

<lockType>${solr.lock.type:native}</lockType>

Which means the lock type defaults to "native" but when starting Solr, you could override this using a JVM
system property by launching the Solr it with:

bin/solr start -Dsolr.lock.type=none

In general, any Java system property that you want to set can be passed through the script using thebin/solr
standard syntax. Alternatively, you can add common system properties to the -Dproperty=value SOLR_OPTS
environment variable defined in the Solr include file (). For more information about how thebin/solr.in.sh
Solr include file works, refer to: .Taking Solr to Production

solrcore.properties

If the configuration directory for a Solr core contains a file named that file can containsolrcore.properties
any arbitrary user defined property names and values using the Java standard , and thoseproperties file format
properties can be used as variables in the XML configuration files for that Solr core.

For example, the following file could be created in the directory of a collectionsolrcore.properties conf/
using one of the example configurations, to override the lockType used.

#conf/solrcore.properties
solr.lock.type=none

User defined properties from core.properties

If you are using , then any user defined properties in that file may bea core.properties file with solr.xml
specified there and those properties will be available for substitution when parsing XML configuration files for that
Solr core.

The path and name of the file can be overridden using the solrcore.properties propproperties
.erty in core.properties

https://en.wikipedia.org/wiki/.properties

476Apache Solr Reference Guide 6.1

For example, consider the following file:core.properties

#core.properties
name=collection2
my.custom.prop=edismax

The property can then be used as a variable, such as in :my.custom.prop solrconfig.xml

<requestHandler name="/select">
 <lst name="defaults">
 <str name="defType">${my.custom.prop}</str>
 </lst>
</requestHandler>

Implicit Core Properties

Several attributes of a Solr core are available as "implicit" properties that can be used in variable substitution,
independent of where or how they underlying value is initialized. For example: regardless of whether the name
for a particular Solr core is explicitly configured in or inferred from the name of the instancecore.properties
directory, the implicit property is available for use as a variable in that core's configurationsolr.core.name
file...

<requestHandler name="/select">
 <lst name="defaults">
 <str name="collection_name">${solr.core.name}</str>
 </lst>
</requestHandler>

All implicit properties use the name prefix, and reflect the runtime value of the equivalent solr.core. core.pr
: propertyoperties

solr.core.name
solr.core.config
solr.core.schema
solr.core.dataDir
solr.core.transient
solr.core.loadOnStartup

DataDir and DirectoryFactory in SolrConfig

Specifying a Location for Index Data with the ParameterdataDir

By default, Solr stores its index data in a directory called under the Solr home. If you would like to specify/data
a different directory for storing index data, use the parameter in the file. You can<dataDir> solrconfig.xml
specify another directory either with a full pathname or a pathname relative to the instance dir of the SolrCore.
For example:

<dataDir>/var/data/solr/</dataDir>

If you are using replication to replicate the Solr index (as described in), then the Legacy Scaling and Distribution

477Apache Solr Reference Guide 6.1

 directory should correspond to the index directory used in the replication configuration.<dataDir>

Specifying the DirectoryFactory For Your Index

The default is filesystem based, and tries to pick the best implementationsolr.StandardDirectoryFactory
for the current JVM and platform. You can force a particular implementation by specifying solr.MMapDirector

, , or .yFactory solr.NIOFSDirectoryFactory solr.SimpleFSDirectoryFactory

<directoryFactory name="DirectoryFactory"
 class="${solr.directoryFactory:solr.StandardDirectoryFactory}"/>

The is memory based, not persistent, and does not work with replication. Usesolr.RAMDirectoryFactory
this DirectoryFactory to store your index in RAM.

<directoryFactory class="org.apache.solr.core.RAMDirectoryFactory"/>

Lib Directives in SolrConfig

Solr allows loading plugins by defining directives in .<lib/> solrconfig.xml

The plugins are loaded in the order they appear in . If there are dependencies, list the lowestsolrconfig.xml
level dependency jar first.

Regular expressions can be used to provide control loading jars with dependencies on other jars in the same
directory. All directories are resolved as relative to the Solr .instanceDir

<lib dir="../../../contrib/extraction/lib" regex=".*\.jar" />
<lib dir="../../../dist/" regex="solr-cell-\d.*\.jar" />

<lib dir="../../../contrib/clustering/lib/" regex=".*\.jar" />
<lib dir="../../../dist/" regex="solr-clustering-\d.*\.jar" />

<lib dir="../../../contrib/langid/lib/" regex=".*\.jar" />
<lib dir="../../../dist/" regex="solr-langid-\d.*\.jar" />

<lib dir="../../../contrib/velocity/lib" regex=".*\.jar" />
<lib dir="../../../dist/" regex="solr-velocity-\d.*\.jar" />

Schema Factory Definition in SolrConfig

Solr's enables remote clients to access information, and make Schema modifications,Schema API Schema
through a REST interface. Other features such as Solr's also work via Schema modificationsSchemaless Mode
made programatically at run time.

While the "read" features of the Solr API are supported for all Schema types, support for making Schema

If you are using Hadoop and would like to store your indexes in HDFS, you should use the solr.HdfsD
 instead of either of the above implementations. For more details, see the section irectoryFactory Ru
.nning Solr on HDFS

478Apache Solr Reference Guide 6.1

modifications programatically depends on the in use. <schemaFactory/>

Managed Schema Default

When a is not explicitly declared in a file, Solr implicitly uses a <schemaFactory/> solrconfig.xml Manage
, which is by default and keeps schema information in a dIndexSchemaFactory "mutable" managed-schem

 file.a

<!-- An example of Solr's implicit default behavior if no
 no schemaFactory is explicitly defined.
 -->
 <schemaFactory class="ManagedIndexSchemaFactory">
 <bool name="mutable">true</bool>
 <str name="managedSchemaResourceName">managed-schema</str>
 </schemaFactory>

If you wish to explicitly configure the following options are available:ManagedIndexSchemaFactory

mutable - controls whether changes may be made to the Schema data. This must be set to to allowtrue
edits to be made with the Schema API.
managedSchemaResourceName is an optional parameter that defaults to "managed-schema", and
defines a new name for the schema file that can be anything other than " ".schema.xml

With the default configuration shown above, you can use the to modify the schema as much as youSchema API
want, and then later change the value of to if you wish to "lock" the schema in place and preventmutable false
future changes.

Classic schema.xml

An alternative to using a managed schema is to explicitly configure a . ClassicIndexSchemaFactory Class
 requires the use of a configuration file, and disallows any programaticicIndexSchemaFactory schema.xml

changes to the Schema at run time. The file must be edited manually and is only loaded onlyschema.xml
when the collection is loaded.

<schemaFactory class="ClassicIndexSchemaFactory"/>

Switching from to Managed Schemaschema.xml

If you have an existing Solr collection that uses , and you wish to convert toClassicIndexSchemaFactory
use a managed schema, you can simplify modify the to specify the use of the solrconfig.xml ManagedInde

. Once Solr is restarted and it detects that a file exists, but the xSchemaFactory schema.xml managedSchem
 file (ie: " ") does not exist, the existing file will be renamed to aResourceName managed-schema schema.xml s
 and the contents are re-written to the managed schema file. If you look at the resulting file,chema.xml.bak

you'll see this at the top of the page:

<!-- Solr managed schema - automatically generated - DO NOT EDIT -->

You are now free to use the as much as you want to make changes, and remove the Schema API schema.xml
..bak

Changing to Manually Edited schema.xml

If you have started Solr with managed schema enabled and you would like to switch to manually editing a sche

479Apache Solr Reference Guide 6.1

1.
2.

a.
b.

3.

 file, you should take the following steps:ma.xml

Rename the file to .managed-schema schema.xml
Modify to replace the class.solrconfig.xml schemaFactory

Remove any definition if it exists.ManagedIndexSchemaFactory
Add a definition as shown aboveClassicIndexSchemaFactory

Reload the core(s).

If you are using SolrCloud, you may need to modify the files via ZooKeeper.

IndexConfig in SolrConfig
The section of defines low-level behavior of the Lucene index writers.<indexConfig> solrconfig.xml
By default, the settings are commented out in the sample included with Solr, which meanssolrconfig.xml
the defaults are used. In most cases, the defaults are fine.

<indexConfig>
 ...
</indexConfig>

Parameters covered in this section:
Writing New Segments
Merging Index Segments
Compound File Segments
Index Locks
Other Indexing Settings

Writing New Segments

ramBufferSizeMB

Once accumulated document updates exceed this much memory space (defined in megabytes), then the
pending updates are flushed. This can also create new segments or trigger a merge. Using this setting is
generally preferable to . If both and are set in maxBufferedDocs maxBufferedDocs ramBufferSizeMB s

, then a flush will occur when either limit is reached. The default is 100Mb.olrconfig.xml

<ramBufferSizeMB>100</ramBufferSizeMB>

maxBufferedDocs

Sets the number of document updates to buffer in memory before they are flushed as a new segment. This
may also trigger a merge. The default Solr configuration sets to flush by RAM usage ().ramBufferSizeMB

<maxBufferedDocs>1000</maxBufferedDocs>

useCompoundFile

Controls whether newly written (and not yet merged) index segments should use the Compound File
 format. The default is false.Segment

<useCompoundFile>false</useCompoundFile>

480Apache Solr Reference Guide 6.1

Merging Index Segments

mergePolicyFactory

Defines how merging segments is done. The default in Solr is to use a , which mergesTieredMergePolicy
segments of approximately equal size, subject to an allowed number of segments per tier. Other policies
available are the and . For more information on theseLogByteSizeMergePolicy LogDocMergePolicy
policies, please see .the MergePolicy javadocs

<mergePolicyFactory class="org.apache.solr.index.TieredMergePolicyFactory">
 <int name="maxMergeAtOnce">10</int>
 <int name="segmentsPerTier">10</int>
</mergePolicyFactory>

Controlling Segment Sizes: Merge Factors

The most common adjustment some folks make to the configuration of TieredMergePolicy (or
LogByteSizeMergePolicy) are the "merge factors" to change how many segments should be merged at one
time. For TieredMergePolicy, this is controlled by setting the and <int name="maxMergeAtOnce"> <int

 options, while LogByteSizeMergePolicy has a single name="segmentsPerTier"> <int
 option (all of which default to " ").name="mergeFactor"> 10

To understand why these options are important, consider what happens when an update is made to an index
using LogByteSizeMergePolicy: Documents are always added to the most recently opened segment. When
a segment fills up, a new segment is created and subsequent updates are placed there. If creating a new
segment would cause the number of lowest-level segments to exceed the value, then allmergeFactor
those segments are merged together to form a single large segment. Thus, if the merge factor is 10, each
merge results in the creation of a single segment that is roughly ten times larger than each of its ten
constituents. When there are 10 of these larger segments, then they in turn are merged into an even larger
single segment. This process can continue indefinitely.

When using TieredMergePolicy, the process is the same, but instead of a single value, the mergeFactor se
 setting is used as the threshold to decide if a merge should happen, and the gmentsPerTier maxMergeAt

 setting determines how many segments should be included in the merge.Once

Choosing the best merge factors is generally a trade-off of indexing speed vs. searching speed. Having fewer
segments in the index generally accelerates searches, because there are fewer places to look. It also can
also result in fewer physical files on disk. But to keep the number of segments low, merges will occur more
often, which can add load to the system and slow down updates to the index.

Conversely, keeping more segments can accelerate indexing, because merges happen less often, making an
update is less likely to trigger a merge. But searches become more computationally expensive and will likely
be slower, because search terms must be looked up in more index segments. Faster index updates also
means shorter commit turnaround times, which means more timely search results.

Customizing Merge Policies

If the configuration options for the built-in merge policies do not fully suit your use case, you can customize
them: either by creating a custom merge policy factory that you specify in your configuration, or by configuring
a which uses a configuration option to control how the factory itmerge policy wrapper wrapped.prefix
wraps will be configured:

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/index/MergePolicy.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/index/WrapperMergePolicyFactory.html

481Apache Solr Reference Guide 6.1

<mergePolicyFactory class="org.apache.solr.index.SortingMergePolicyFactory">
 <str name="sort">timestamp desc</str>
 <str name="wrapped.prefix">inner</str>
 <str name="inner.class">org.apache.solr.index.TieredMergePolicyFactory</str>
 <int name="inner.maxMergeAtOnce">10</int>
 <int name="inner.segmentsPerTier">10</int>
</mergePolicyFactory>

The example above shows Solr's being configured to sort documents inSortingMergePolicyFactory
merged segments by , and wrapped around a configur"timestamp desc" TieredMergePolicyFactory
ed to use the values and via the prefix defined by maxMergeAtOnce=10 segmentsPerTier=10 inner So

's option. For more information on using rtingMergePolicyFactory wrapped.prefix SortingMergeP
, see .olicyFactory the segmentTerminateEarly parameter

mergeScheduler

The merge scheduler controls how merges are performed. The default perfoConcurrentMergeScheduler
rms merges in the background using separate threads. The alternative, , does notSerialMergeScheduler
perform merges with separate threads.

<mergeScheduler class="org.apache.lucene.index.ConcurrentMergeScheduler"/>

mergedSegmentWarmer

When using Solr in for a merged segment warmer can be configured to warm theNear Real Time Searching
reader on the newly merged segment, before the merge commits. This is not required for near real-time
search, but will reduce search latency on opening a new near real-time reader after a merge completes.

<mergedSegmentWarmer class="org.apache.lucene.index.SimpleMergedSegmentWarmer"/>

Compound File Segments

Each Lucene segment is typically comprised of a dozen or so files. Lucene can be configured to bundle all of
the files for a segment into a single compound file using a file extension of ; it's an abbreviation for.cfs
Compound File Segment. CFS segments may incur a minor performance hit for various reasons, depending
on the runtime environment. For example, filesystem buffers are typically associated with open file
descriptors, which may limit the total cache space available to each index. On systems where the number of
open files allowed per process is limited, CFS may avoid hitting that limit. The open files limit might also be
tunable for your OS with the Linux/Unix command, or something similar for other operating systems.ulimit

Index Locks

CFS: New Segments vs Merged Segments
To configure whether should use CFS, see the settingnewly written segments useCompoundFile
described above. To configure whether use CFS, review the Javadocs for your merged segments me

.rgePolicyFactory

 implementations support and settingsMany Merge Policy noCFSRatio maxCFSSegmentSizeMB wit
h default values that prevent compound files from being used for large segments, but do use
compound files for small segments.

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/index/SortingMergePolicyFactory.html
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThesegmentTerminateEarlyParameter

482Apache Solr Reference Guide 6.1

lockType

The LockFactory options specify the locking implementation to use.

The set of valid lock type options depends on the you have configured. The values listedDirectoryFactory
below are are supported by (the default):StandardDirectoryFactory

native (default) uses NativeFSLockFactory to specify native OS file locking. If a second Solr process
attempts to access the directory, it will fail. Do not use when multiple Solr web applications are
attempting to share a single index.
simple uses SimpleFSLockFactory to specify a plain file for locking.
single (expert) uses SingleInstanceLockFactory. Use for special situations of a read-only index
directory, or when there is no possibility of more than one process trying to modify the index (even
sequentially). This type will protect against multiple cores within the JVM attempting to accesssame
the same index. WARNING! If multiple Solr instances in different JVMs modify an index, this type will n

protect against index corruption.ot
hdfs uses HdfsLockFactory to support reading and writing index and transaction log files to a HDFS
filesystem. See the section for more details on using this feature.Running Solr on HDFS

For more information on the nuances of each LockFactory, see http://wiki.apache.org/lucene-java/AvailableLo
.ckFactories

<lockType>native</lockType>

writeLockTimeout

The maximum time to wait for a write lock on an IndexWriter. The default is 1000, expressed in milliseconds.

<writeLockTimeout>1000</writeLockTimeout>

Other Indexing Settings

There are a few other parameters that may be important to configure for your implementation. These settings
affect how or when updates are made to an index.

Setting Description

reopenReaders Controls if IndexReaders will be re-opened, instead of closed and then opened, which is
often less efficient. The default is true.

deletionPolicy Controls how commits are retained in case of rollback. The default is SolrDeletionPo
, which has sub-parameters for the maximum number of commits to keep (licy maxCom

), the maximum number of optimized commits to keep (mitsToKeep maxOptimizedCom
), and the maximum age of any commit to keep (), whichmitsToKeep maxCommitAge

supports syntax.DateMathParser

infoStream The InfoStream setting instructs the underlying Lucene classes to write detailed debug
information from the indexing process as Solr log messages.

http://wiki.apache.org/lucene-java/AvailableLockFactories
http://wiki.apache.org/lucene-java/AvailableLockFactories

483Apache Solr Reference Guide 6.1

<reopenReaders>true</reopenReaders>
<deletionPolicy class="solr.SolrDeletionPolicy">
 <str name="maxCommitsToKeep">1</str>
 <str name="maxOptimizedCommitsToKeep">0</str>
 <str name="maxCommitAge">1DAY</str>
</deletionPolicy>
<infoStream>false</infoStream>

RequestHandlers and SearchComponents in SolrConfig
After the section of , request handlers and search components are configured.<query> solrconfig.xml

A processes requests coming to Solr. These might be query requests or index update requests.request handler
You will likely need several of these defined, depending on how you want Solr to handle the various requests you
will make.

A is a feature of search, such as highlighting or faceting. The search component is defined in search component
 separate from the request handlers, and then registered with a request handler as needed.solrconfig.xml

These are often referred to as "requestHandler" and "searchComponent", which is how they are defined in solr
.config.xml

Topics covered in this section:
Request Handlers

SearchHandlers
UpdateRequestHandlers
ShardHandlers
Other Request Handlers

Search Components
Default Components
First-Components and Last-Components
Components
Other Useful Components

Request Handlers

Every request handler is defined with a name and a class. The name of the request handler is referenced with
the request to Solr, typically as a path. For example, if Solr is installed at ahttp://localhost:8983/solr/
nd you have a collection named " ", you can make a request using URLs like this:gettingstarted

http://localhost:8983/solr/gettingstarted/select?q=solr

This query will be processed by the request handler with the name " ". We've only used the "q"/select
parameter here, which includes our query term, a simple keyword of "solr". If the request handler has more
parameters defined, those will be used with any query we send to this request handler unless they are
over-ridden by the client (or user) in the query itself.

If you have another request handler defined, you would send your request with that name. For example, /updat
 is a request handler that handles index updates (i.e., sending new documents to the index). By default, e /sele

 is a request handler that handles query requests.ct

Request handlers can also process requests for nested paths of their names, for example, a request using /myh
 may be processed by a request handler registered with the name . If aandler/extrapath /myhandler

request handler is explicitly defined by the name , that would take precedence over/myhandler/extrapath
the nested path. This assumes you are using the request handler classes included with Solr; if you create your

484Apache Solr Reference Guide 6.1

own request handler, you should make sure it includes the ability to handle nested paths if you want to use them
with your custom request handler.

It is also possible to configure defaults for request handlers with a section called . These defaultsinitParams
can be used when you want to have common properties that will be used by each separate handler. For
example, if you intend to create several request handlers that will all request the same list of fields in the
response, you can configure an section with your list of fields. For more information about initParams initPa

, see the section .rams InitParams in SolrConfig

SearchHandlers

The primary request handler defined with Solr by default is the "SearchHandler", which handles search queries.
The request handler is defined, and then a list of defaults for the handler are defined with a list.defaults

For example, in the default , the first request handler defined looks like this:solrconfig.xml

<requestHandler name="/select" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <int name="rows">10</int>
 </lst>
</requestHandler>

This example defines the parameter, which defines how many search results to return, to "10". The rows echoP
 parameter defines that the parameters defined in the query should be returned when debug information isarams

returned. Note also that the way the defaults are defined in the list varies if the parameter is a string, an integer,
or another type.

All of the parameters described in the section on can be defined as defaults for any of thesearching
SearchHandlers.

Besides , there are other options for the SearchHandler, which are:defaults

appends: This allows definition of parameters that are added to the user query. These might be filter
, or other query rules that should be added to each query. There is no mechanism in Solr to allowqueries

a client to override these additions, so you should be absolutely sure you always want these parameters
applied to queries.

<lst name="appends">
 <str name="fq">inStock:true</str>
</lst>

In this example, the filter query "inStock:true" will always be added to every query.
invariants: This allows definition of parameters that cannot be overridden by a client. The values
defined in an section will always be used regardless of the values specified by the user, byinvariants
the client, in or in .defaults appends

<lst name="invariants">
 <str name="facet.field">cat</str>
 <str name="facet.field">manu_exact</str>
 <str name="facet.query">price:[* TO 500]</str>
 <str name="facet.query">price:[500 TO *]</str>
</lst>

In this example, facet fields have been defined which limits the facets that will be returned by Solr. If the

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefq(FilterQuery)Parameter
https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-Thefq(FilterQuery)Parameter

485Apache Solr Reference Guide 6.1

client requests facets, the facets defined with a configuration like this are the only facets they will see.

The final section of a request handler definition is , which defines a list of search components thatcomponents
can be used with a request handler. They are only registered with the request handler. How to define a search
component is discussed further on in the section on . The element can only beSearch Components components
used with a request handler that is a SearchHandler.

The file includes many other examples of SearchHandlers that can be used or modified assolrconfig.xml
needed.

UpdateRequestHandlers

The UpdateRequestHandlers are request handlers which process updates to the index.

In this guide, we've covered these handlers in detail in the section .Uploading Data with Index Handlers

ShardHandlers

It is possible to configure a request handler to search across shards of a cluster, used with distributed search.
More information about distributed search and how to configure the shardHandler is in the section Distributed

.Search with Index Sharding

Other Request Handlers

There are other request handlers defined in , covered in other sections of this guide:solrconfig.xml

RealTime Get
Index Replication
Ping

Search Components

Search components define the logic that is used by the SearchHandler to perform queries for users.

Default Components

There are several default search components that work with all SearchHandlers without any additional
configuration. If no components are defined (with the exception of and first-components last-component

 - see below), these are executed by default, in the following order:s

Component
Name

Class Name More Information

query solr.QueryComponent Described in the section .Query Syntax and Parsing

facet solr.FacetComponent Described in the section .Faceting

mlt solr.MoreLikeThisComponent Described in the section .MoreLikeThis

highlight solr.HighlightComponent Described in the section .Highlighting

stats solr.StatsComponent Described in the section .The Stats Component

debug solr.DebugComponent Described in the section on Common Query Parameters
.

expand solr.ExpandComponent Described in the section .Collapse and Expand Results

If you register a new search component with one of these default names, the newly defined component will be

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThedebugParameter

486Apache Solr Reference Guide 6.1

used instead of the default.

First-Components and Last-Components

It's possible to define some components as being used before (with) or after (with first-components last-c
) the default components listed above.omponents

<arr name="first-components">
 <str>mycomponent</str>
</arr>
<arr name="last-components">
 <str>spellcheck</str>
</arr>

Components

If you define , the default components (see above) will not be executed, and components first-components
and are disallowed:last-components

<arr name="components">
 <str>mycomponent</str>
 <str>query</str>
 <str>debug</str>
</arr>

Other Useful Components

Many of the other useful components are described in sections of this Guide for the features they support. These
are:

SpellCheckComponent, described in the section .Spell Checking
TermVectorComponent, described in the section .The Term Vector Component
QueryElevationComponent, described in the section .The Query Elevation Component
TermsComponent, described in the section .The Terms Component

InitParams in SolrConfig

An section of allows you to define request handler parameters outside of<initParams> solrconfig.xml
the handler configuration.

The use cases are

Some handlers are implicitly defined in code and there should be a way to add/append/override some of
the implicitly defined properties
There are a few properties that are used across handlers . This helps you keep only a single definition of
those properties and apply them over multiple handlers

For example, if you want several of your search handlers to return the same list of fields, you can create an <ini
 section without having to define the same set of parameters in each request handler definition. If youtParams>

first-components and/or may only be used in conjunction with the defaultlast-components
components. If you define your own , the default components will not be executed, and components fir

 and are disallowed.st-components last-components

487Apache Solr Reference Guide 6.1

have a single request handler that should return different fields, you can define the overriding parameters in
individual sections as usual.<requestHandler>

The properties and configuration of an section mirror the properties and configuration of a<initParams>
request handler. It can include sections for defaults, appends, and invariants, the same as any request handler.

For example, here is one of the sections defined by default in the exam<initParams> data_driven_config
ple:

<initParams path="/update/**,/query,/select,/tvrh,/elevate,/spell,/browse">
 <lst name="defaults">
 <str name="df">_text_</str>
 </lst>
</initParams>

This sets the default search field ("df") to be "_text_" for all of the request handlers named in the path section. If
we later want to change the request handler to search a different field by default, we could override the /query

 by defining the parameter in the section for .<initParams> <requestHandler> /query

The syntax and semantics are similar to that of a . The following are the attributes<requestHandler>

property Description

path A comma-separated list of paths which will use the parameters. Wildcards can be used in paths to
define nested paths, as described below.

name The name of this set of parameters. The name can be directly in a requestHandler definition if a
path is not explicitly named. If you give your a name, you can refer to the params<initParams>
in a that is not defined as a path.<requestHandler>

For example, if an section has the name "myParams", you can call the name<initParams>
when defining your request handler:

<requestHandler name="/dump1" class="DumpRequestHandler"
initParams="myParams"/>

Wildcards

An section can support wildcards to define nested paths that should use the parameters<initParams>
defined. A single asterisk (*) denotes that a nested path one level deeper should use the parameters. Double
asterisks (**) denote all nested paths no matter how deep should use the parameters.

For example, if we have an that looks like this:<initParams>

<initParams name="myParams" path="/myhandler,/root/*,/root1/**">
 <lst name="defaults">
 <str name="fl">_text_</str>
 </lst>
 <lst name="invariants">
 <str name="rows">10</str>
 </lst>
 <lst name="appends">
 <str name="df">title</str>
 </lst>
</initParams>

488Apache Solr Reference Guide 6.1

We've defined three paths with this section:

/myhandler declared as a direct path.
/root/* with a single asterisk to indicate the parameters should apply to paths that are one level deep.
/root1/** with double asterisks to indicate the parameters should apply to all nested paths, no matter
how deep.

When we define the request handlers, the wildcards will work in the following ways:

<requestHandler name="/myhandler" class="SearchHandler"/>

The class was named as a path in the so this will use those parameters./myhandler <initParams>

Next we have a request handler named :/root/search5

<requestHandler name="/root/search5" class="SearchHandler"/>

We defined a wildcard for nested paths that are one level deeper than , so this request handler will use/root
the parameters. This one, however, will not, because is more than one level deep from /root/search5/test

:/root

<requestHandler name="/root/search5/test" class="SearchHandler"/>

If we want to define all levels of nested paths, we should use double asterisks, as in the example path /root1/
:**

<requestHandler name="/root1/search/tests" class="SearchHandler"/>

Any path under , whether explicitly defined in a request handler or not, will use the parameters defined in/root1
the matching section.initParams

UpdateHandlers in SolrConfig
The settings in this section are configured in the element in and may<updateHandler> solrconfig.xml
affect the performance of index updates. These settings affect how updates are done internally. <updateHandl

 configurations do not affect the higher level configuration of that process client updateer> RequestHandlers
requests.

<updateHandler class="solr.DirectUpdateHandler2">
 ...
</updateHandler>

Topics covered in this section:
Commits

commit and softCommit
autoCommit
commitWithin

Event Listeners
Transaction Log

Commits

489Apache Solr Reference Guide 6.1

Data sent to Solr is not searchable until it has been to the index. The reason for this is that in somecommitted
cases commits can be slow and they should be done in isolation from other possible commit requests to avoid
overwriting data. So, it's preferable to provide control over when data is committed. Several options are available
to control the timing of commits.

commit and softCommit

In Solr, a is an action which asks Solr to "commit" those changes to the Lucene index files. By defaultcommit
commit actions result in a "hard commit" of all the Lucene index files to stable storage (disk). When a client
includes a parameter with an update request, this ensures that all index segments affected by thecommit=true
adds & deletes on an update are written to disk as soon as index updates are completed.

If an additional flag is specified, then Solr performs a 'soft commit', meaning that Solr willsoftCommit=true
commit your changes to the Lucene data structures quickly but not guarantee that the Lucene index files are
written to stable storage. This is an implementation of Near Real Time storage, a feature that boosts document
visibility, since you don't have to wait for background merges and storage (to ZooKeeper, if using) toSolrCloud
finish before moving on to something else. A full commit means that, if a server crashes, Solr will know exactly
where your data was stored; a soft commit means that the data is stored, but the location information isn't yet
stored. The tradeoff is that a soft commit gives you faster visibility because it's not waiting for background
merges to finish.

For more information about Near Real Time operations, see .Near Real Time Searching

autoCommit

These settings control how often pending updates will be automatically pushed to the index. An alternative to au
 is to use , which can be defined when making the update request to Solr (i.e., whentoCommit commitWithin

pushing documents), or in an update RequestHandler.

Setting Description

maxDocs The number of updates that have occurred since the last commit.

maxTime The number of milliseconds since the oldest uncommitted update.

openSearcher Whether to open a new searcher when performing a commit. If this is , the default, thefalse
commit will flush recent index changes to stable storage, but does not cause a new searcher
to be opened to make those changes visible

If either of these or limits are reached, Solr automatically performs a commit operation. If the maxDocs maxTime
 tag is missing, then only explicit commits will update the index. The decision whether to useautoCommit

auto-commit or not depends on the needs of your application.

Determining the best auto-commit settings is a tradeoff between performance and accuracy. Settings that cause
frequent updates will improve the accuracy of searches because new content will be searchable more quickly,
but performance may suffer because of the frequent updates. Less frequent updates may improve performance
but it will take longer for updates to show up in queries.

<autoCommit>
 <maxDocs>10000</maxDocs>
 <maxTime>1000</maxTime>
 <openSearcher>false</openSearcher>
</autoCommit>

You can also specify 'soft' autoCommits in the same way that you can specify 'soft' commits, except that instead
of using you set the tag.autoCommit autoSoftCommit

490Apache Solr Reference Guide 6.1

<autoSoftCommit>
 <maxTime>1000</maxTime>
</autoSoftCommit>

commitWithin

The settings allow forcing document commits to happen in a defined time period. This is usedcommitWithin
most frequently with , and for that reason the default is to perform a soft commit. ThisNear Real Time Searching
does not, however, replicate new documents to slave servers in a master/slave environment. If that's a
requirement for your implementation, you can force a hard commit by adding a parameter, as in this example:

<commitWithin>
 <softCommit>false</softCommit>
</commitWithin>

With this configuration, when you call as part of your update message, it will automaticallycommitWithin
perform a hard commit every time.

Event Listeners

The UpdateHandler section is also where update-related event listeners can be configured. These can be
triggered to occur after any commit () or only after optimize commands (event="postCommit" event="postO

).ptimize"

Users can write custom update event listener classes, but a common use case is to run external executables via
the :RunExecutableListener

Setting Description

exe The name of the executable to run. It should include the path to the file, relative to Solr home.

dir The directory to use as the working directory. The default is ".".

wait Forces the calling thread to wait until the executable returns a response. The default is .true

args Any arguments to pass to the program. The default is none.

env Any environment variables to set. The default is none.

Transaction Log

As described in the section , a transaction log is required for that feature. It is configured in the RealTime Get upd
 section of .ateHandler solrconfig.xml

Realtime Get currently relies on the update log feature, which is enabled by default. It relies on an update log,
which is configured in , in a section like:solrconfig.xml

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
</updateLog>

Three additional expert-level configuration settings affect indexing performance and how far a replica can fall
behind on updates before it must enter into full recovery - see the section on for morewrite side fault tolerance

https://cwiki.apache.org/confluence/display/solr/Read+and+Write+Side+Fault+Tolerance#ReadandWriteSideFaultTolerance-WriteSideFaultTolerance

491Apache Solr Reference Guide 6.1

information:

Setting Name Type Default Description

numRecordsToKeep int 100 The number of update records to keep per log

maxNumLogsToKeep int 10 The maximum number of logs keep

numVersionBuckets int 65536 The number of buckets used to keep track of max version values
when checking for re-ordered updates; increase this value to reduce
the cost of synchronizing access to version buckets during
high-volume indexing, this requires (8 bytes (long) *
numVersionBuckets) of heap space per Solr core.

An example, to be included under in , employing the above<config><updateHandler> solrconfig.xml
advanced settings:

<updateLog>
 <str name="dir">${solr.ulog.dir:}</str>
 <int name="numRecordsToKeep">500</int>
 <int name="maxNumLogsToKeep">20</int>
 <int name="numVersionBuckets">65536</int>
</updateLog>

Query Settings in SolrConfig
The settings in this section affect the way that Solr will process and respond to queries. These settings are all
configured in child elements of the element in .<query> solrconfig.xml

<query>
 ...
</query>

Topics covered in this section:
Caches
Query Sizing and Warming
Query-Related Listeners

Caches

Solr caches are associated with a specific instance of an Index Searcher, a specific view of an index that doesn't
change during the lifetime of that searcher. As long as that Index Searcher is being used, any items in its cache
will be valid and available for reuse. Caching in Solr differs from caching in many other applications in that
cached Solr objects do not expire after a time interval; instead, they remain valid for the lifetime of the Index
Searcher.

When a new searcher is opened, the current searcher continues servicing requests while the new one
auto-warms its cache. The new searcher uses the current searcher's cache to pre-populate its own. When the
new searcher is ready, it is registered as the current searcher and begins handling all new search requests. The
old searcher will be closed once it has finished servicing all its requests.

In Solr, there are three cache implementations: , asolr.search.LRUCache solr.search.FastLRUCache,
nd .solr.search.LFUCache

The acronym LRU stands for Least Recently Used. When an LRU cache fills up, the entry with the oldest
last-accessed timestamp is evicted to make room for the new entry. The net effect is that entries that are

492Apache Solr Reference Guide 6.1

accessed frequently tend to stay in the cache, while those that are not accessed frequently tend to drop out and
will be re-fetched from the index if needed again.

The , which was introduced in Solr 1.4, is designed to be lock-free, so it is well suited for cachesFastLRUCache
which are hit several times in a request.

Both and use an auto-warm count that supports both integers and percentagesLRUCache FastLRUCache
which get evaluated relative to the current size of the cache when warming happens.

The refers to the Least Frequently Used cache. This works in a way similar to the LRU cache, exceptLFUCache
that when the cache fills up, the entry that has been used the least is evicted.

The Statistics page in the Solr Admin UI will display information about the performance of all the active caches.
This information can help you fine-tune the sizes of the various caches appropriately for your particular
application. When a Searcher terminates, a summary of its cache usage is also written to the log.

Each cache has settings to define it's initial size (), maximum size () and number of items toinitialSize size
use for during warming (). The LRU and FastLRU cache implementations can take aautowarmCount
percentage instead of an absolute value for .autowarmCount

Details of each cache are described below.

filterCache

This cache is used by for filters (DocSets) for unordered sets of all documents that matchSolrIndexSearcher
a query. The numeric attributes control the number of entries in the cache.

Solr uses the to cache results of queries that use the search parameter. Subsequent queriesfilterCache fq
using the same parameter setting result in cache hits and rapid returns of results. See for a detailedSearching
discussion of the parameter.fq

Solr also makes this cache for faceting when the configuration parameter is set to . For afacet.method fc
discussion of faceting, see .Searching

<filterCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="128"/>

queryResultCache

This cache holds the results of previous searches: ordered lists of document IDs (DocList) based on a query, a
sort, and the range of documents requested.

The has an additional (optional) setting to limit the maximum amount of RAM used (queryResultCache maxRa
). This lets you specify the maximum heap size, in megabytes, used by the contents of this cache. When themMB

cache grows beyond this size, oldest accessed queries will be evicted until the heap usage of the cache
decreases below the specified limit.

<queryResultCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="128"
 maxRamMB="1000"/>

documentCache

This cache holds Lucene Document objects (the stored fields for each document). Since Lucene internal

493Apache Solr Reference Guide 6.1

document IDs are transient, this cache is not auto-warmed. The size for the should always bedocumentCache
greater than times the , to ensure that Solr does not need to refetchmax_results max_concurrent_queries
a document during a request. The more fields you store in your documents, the higher the memory usage of this
cache will be.

<documentCache class="solr.LRUCache"
 size="512"
 initialSize="512"
 autowarmCount="0"/>

User Defined Caches

You can also define named caches for your own application code to use. You can locate and use your cache
object by name by calling the methods , and SolrIndexSearcher getCache() cacheLookup() cacheInse

.rt()

<cache name="myUserCache" class="solr.LRUCache"
 size="4096"
 initialSize="1024"
 autowarmCount="1024"
 regenerator="org.mycompany.mypackage.MyRegenerator" />

If you want auto-warming of your cache, include a attribute with the fully qualified name of a classregenerator
that implements . You can also use the , which simplysolr.search.CacheRegenerator NoOpRegenerator
repopulates the cache with old items. Define it with the parameter asregenerator :

.regenerator="solr.NoOpRegenerator"

Query Sizing and Warming

maxBooleanClauses

This sets the maximum number of clauses allowed in a boolean query. This can affect range or prefix queries
that expand to a query with a large number of boolean terms. If this limit is exceeded, an exception is thrown.

<maxBooleanClauses>1024</maxBooleanClauses>

enableLazyFieldLoading

If this parameter is set to true, then fields that are not directly requested will be loaded lazily as needed. This can
boost performance if the most common queries only need a small subset of fields, especially if infrequently
accessed fields are large in size.

<enableLazyFieldLoading>true</enableLazyFieldLoading>

useFilterForSortedQuery

This parameter configures Solr to use a filter to satisfy a search. If the requested sort does not include "score",

This option modifies a global property that effects all Solr cores. If multiple filessolrconfig.xml
disagree on this property, the value at any point in time will be based on the last Solr core that was
initialized.

494Apache Solr Reference Guide 6.1

the will be checked for a filter matching the query. For most situations, this is only useful if thefilterCache
same search is requested often with different sort options and none of them ever use "score".

<useFilterForSortedQuery>true</useFilterForSortedQuery>

queryResultWindowSize

Used with the , this will cache a superset of the requested number of document IDs. ForqueryResultCache
example, if the a search in response to a particular query requests documents 10 through 19, and queryWindo

 is 50, documents 0 through 49 will be cached.wSize

<queryResultWindowSize>20</queryResultWindowSize>

queryResultMaxDocsCached

This parameter sets the maximum number of documents to cache for any entry in the .queryResultCache

<queryResultMaxDocsCached>200</queryResultMaxDocsCached>

useColdSearcher

This setting controls whether search requests for which there is not a currently registered searcher should wait
for a new searcher to warm up (false) or proceed immediately (true). When set to "false", requests will block until
the searcher has warmed its caches.

<useColdSearcher>false</useColdSearcher>

maxWarmingSearchers

This parameter sets the maximum number of searchers that may be warming up in the background at any given
time. Exceeding this limit will raise an error. For read-only slaves, a value of two is reasonable. Masters should
probably be set a little higher.

<maxWarmingSearchers>2</maxWarmingSearchers>

Query-Related Listeners

As described in the section on , new Index Searchers are cached. It's possible to use the triggers forCaches
listeners to perform query-related tasks. The most common use of this is to define queries to further "warm" the
Index Searchers while they are starting. One benefit of this approach is that field caches are pre-populated for
faster sorting.

Good query selection is key with this type of listener. It's best to choose your most common and/or heaviest
queries and include not just the keywords used, but any other parameters such as sorting or filtering requests.

There are two types of events that can trigger a listener. A event occurs when a new searcherfirstSearcher
is being prepared but there is no current registered searcher to handle requests or to gain auto-warming data
from (i.e., on Solr startup). A event is fired whenever a new searcher is being prepared and therenewSearcher
is a current searcher handling requests.

The (commented out) examples below can be found in the file of the solrconfig.xml sample_techproduct
 included with Solr, and demonstrate using the class tos_configs config set solr.QuerySenderListener

495Apache Solr Reference Guide 6.1

warm a set of explicit queries:

<listener event="newSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <!--
 <lst><str name="q">solr</str><str name="sort">price asc</str></lst>
 <lst><str name="q">rocks</str><str name="sort">weight asc</str></lst>
 -->
 </arr>
</listener>

<listener event="firstSearcher" class="solr.QuerySenderListener">
 <arr name="queries">
 <lst><str name="q">static firstSearcher warming in solrconfig.xml</str></lst>
 </arr>
</listener>

RequestDispatcher in SolrConfig
The element of controls the way the Solr HTTP requestDispatcher solrconfig.xml RequestDispatche

 implementation responds to requests. Included are parameters for defining if it should handle urlsr /select
(for Solr 1.1 compatibility), if it will support remote streaming, the maximum size of file uploads and how it will
respond to HTTP cache headers in requests.

Topics in this section:
handleSelect Element
requestParsers Element
httpCaching Element

handleSelect Element

The first configurable item is the attribute on the element itself. ThishandleSelect <requestDispatcher>
attribute can be set to one of two values, either "true" or "false". It governs how Solr responds to requests such
as . The default value "false" will ignore requests to if a requestHandler is not/select?qt=XXX /select
explicitly registered with the name . A value of "true" will route query requests to the parser defined with/select
the value.qt

In recent versions of Solr, a requestHandler is defined by default, so a value of "false" will work fine./select
See the section for more information.RequestHandlers and SearchComponents in SolrConfig

<requestDispatcher handleSelect="true" >
 ...
</requestDispatcher>

The above code comes from a . A key best practice is to modify thesesample solrconfig.xml
defaults before taking your application to production, but please note: while the sample queries are
commented out in the section for the "newSearcher", the sample quer is not commented out for the
"firstSearcher" event. There is no point in auto-warming your Index Searcher with the query string "static
firstSearcher warming in solrconfig.xml" if that is not relevant to your search application.

handleSelect is for legacy back-compatibility; those new to Solr do not need to change anything about
the way this is configured by default.

496Apache Solr Reference Guide 6.1

requestParsers Element

The sub-element controls values related to parsing requests. This is an empty XML<requestParsers>
element that doesn't have any content, only attributes.

The attribute controls whether remote streaming of content is allowed. If set to enableRemoteStreaming fal
, streaming will not be allowed. Setting it to (the default) lets you specify the location of content to bese true

streamed using or parameters.stream.file stream.url

If you enable remote streaming, be sure that you have authentication enabled. Otherwise, someone could
potentially gain access to your content by accessing arbitrary URLs. It's also a good idea to place Solr behind a
firewall to prevent it being accessed from untrusted clients.

The attribute sets an upper limit in kilobytes on the size of a document that maymultipartUploadLimitInKB
be submitted in a multi-part HTTP POST request. The value specified is multiplied by 1024 to determine the size
in bytes.

The attribute sets a limit in kilobytes on the size of form dataformdataUploadLimitInKB
(application/x-www-form-urlencoded) submitted in a HTTP POST request, which can be used to pass request
parameters that will not fit in a URL.

The attribute can be used to indicate that the original obaddHttpRequestToContext HttpServletRequest
ject should be included in the context map of the using the key . This SolrQueryRequest httpRequest Http

 is not used by any Solr component, but may be useful when developing custom plugins.ServletRequest

<requestParsers enableRemoteStreaming="true"
 multipartUploadLimitInKB="2048000"
 formdataUploadLimitInKB="2048"
 addHttpRequestToContext="false" />

httpCaching Element

The element controls HTTP cache control headers. Do not confuse these settings with Solr's<httpCaching>
internal cache configuration. This element controls caching of HTTP responses as defined by the W3C HTTP
specifications.

This element allows for three attributes and one sub-element. The attributes of the element<httpCaching>
control whether a 304 response to a GET request is allowed, and if so, what sort of response it should be. When
an HTTP client application issues a GET, it may optionally specify that a 304 response is acceptable if the
resource has not been modified since the last time it was fetched.

Parameter Description

never304 If present with the value , then a GET request will never respond with a 304 code, even iftrue
the requested resource has not been modified. When this attribute is set to true, the next two
attributes are ignored. Setting this to true is handy for development, as the 304 response can
be confusing when tinkering with Solr responses through a web browser or other client that
supports cache headers.

lastModFrom This attribute may be set to either (the default) or . The value openTime dirLastMod openTi
 indicates that last modification times, as compared to the If-Modified-Since header sent byme

the client, should be calculated relative to the time the Searcher started. Use ifdirLastMod
you want times to exactly correspond to when the index was last updated on disk.

497Apache Solr Reference Guide 6.1

1.

2.

etagSeed This value of this attribute is sent as the value of the header. Changing this value can beETag
helpful to force clients to re-fetch content even when the indexes have not changed---for
example, when you've made some changes to the configuration.

<httpCaching never304="false"
 lastModFrom="openTime"
 etagSeed="Solr">
 <cacheControl>max-age=30, public</cacheControl>
</httpCaching>

cacheControl Element

In addition to these attributes, accepts one child element: . The content of<httpCaching> <cacheControl>
this element will be sent as the value of the Cache-Control header on HTTP responses. This header is used to
modify the default caching behavior of the requesting client. The possible values for the Cache-Control header
are defined by the HTTP 1.1 specification in .Section 14.9

Setting the max-age field controls how long a client may re-use a cached response before requesting it again
from the server. This time interval should be set according to how often you update your index and whether or
not it is acceptable for your application to use content that is somewhat out of date. Setting must-revalidate
will tell the client to validate with the server that its cached copy is still good before re-using it. This will ensure
that the most timely result is used, while avoiding a second fetch of the content if it isn't needed, at the cost of a
request to the server to do the check.

Update Request Processors
Every update request received by Solr is run through a chain of plugins known as Update Request Processor.
This can be useful, for example, to add a field to the document being indexed or to change the value of a
particular field or to drop an update if the incoming document doesn't fulfill certain criteria. In fact, a surprisingly
large number of features in Solr are implemented as Update Processors and therefore it is necessary to
understand how such plugins work and where are they configured.

Topics in this section:

Anatomy and life cycle
Configuration
Update processors in SolrCloud
Using custom chains
Update Request Processor Factories

Anatomy and life cycle

An Update Request Processor is created as part of a of one or more update processors. Solr creates achain
default update request processor chain comprising of a few update request processors which enable essential
Solr features. This default chain is used to process every update request unless a user chooses to configure and
specify a different .custom update request processor chain

The easiest way to describe an Update Request Processor is to look at the Javadocs of the abstract class Updat
. Every UpdateRequestProcessor must have a corresponding factory class which extends eRequestProcessor Up

. This factory class is used by Solr to create a new instance of this plugin. Such adateRequestProcessorFactory
design provides two benefits:

An update request processor need not be thread safe because it is used by one and only one request
thread and destroyed once the request is complete.
The factory class can accept configuration parameters and maintain any state that may be

required between requests. The factory class must be thread-safe.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UpdateRequestProcessorChain.html
http://lucene.apache.org/solr/6_1_0//solr-core/org/apache/solr/update/processor/UpdateRequestProcessor.html
http://lucene.apache.org/solr/6_1_0//solr-core/org/apache/solr/update/processor/UpdateRequestProcessor.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UpdateRequestProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UpdateRequestProcessorFactory.html

498Apache Solr Reference Guide 6.1

1.
2.

3.

Every update request processor chain is constructed during loading of a Solr core and cached until the core is
unloaded. Each UpdateRequestProcessorFactory specified in the chain is also instantiated and initialized with
configuration that may have been specified in solrconfig.xml.

When an update request is received by Solr, it looks up the update chain to be used for this request. A new
instance of each UpdateRequestProcessor specified in the chain is created using the corresponding factory. The
update request is parsed into corresponding objects which are run through the chain. EachUpdateCommand
UpdateRequestProcessor instance is responsible for invoking the next plugin in the chain. It can choose to short
circuit the chain by not invoking the next processor and even abort further processing by throwing an exception.

Configuration

Update request processors chains can be created by either creating the whole chain directly in solrconfig.xml or
by creating individual update processors in solrconfig.xml and then dynamically creating the chain at run-time by
specifying all processors via request parameters.

However, before we understand how to configure update processor chains, we must learn about the default
update processor chain because it provides essential features which are needed in most custom request
processor chains as well.

The default update request processor chain

In case no update processor chains are configured in solrconfig.xml, Solr will automatically create a default
update processor chain which will be used for all update requests. This default update processor chain consists
of the following processors (in order):

LogUpdateProcessorFactory - Tracks the commands processed during this request and logs them
DistributedUpdateProcessorFactory - Responsible for distributing update requests to the right node e.g.
routing requests to the leader of the right shard and distributing updates from the leader to each replica. T
his processor is activated only in SolrCloud mode.
RunUpdateProcessorFactory - Executes the update using internal Solr APIs.

Each of these perform an essential function and as such any custom chain usually contain all of these
processors. The RunUpdateProcessorFactory is usually the last update processor in any custom chain.

Custom update request processor chain

The following example demonstrates how a custom chain can be configured inside solrconfig.xml.

A single update request may contain a batch of multiple new documents or deletes and therefore the
corresponding processXXX methods of an UpdateRequestProcessor will be invoked multiple times for
every individual update. However, it is guaranteed that a single thread will serially invoke these methods.

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/UpdateCommand.html

499Apache Solr Reference Guide 6.1

<updateRequestProcessorChain name="dedupe">
 <processor class="solr.processor.SignatureUpdateProcessorFactory">
 <bool name="enabled">true</bool>
 <str name="signatureField">id</str>
 <bool name="overwriteDupes">false</bool>
 <str name="fields">name,features,cat</str>
 <str name="signatureClass">solr.processor.Lookup3Signature</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

In the above example, a new update processor chain named "dedupe" is created with
SignatureUpdateProcessorFactory, LogUpdateProcessorFactory and RunUpdateProcessorFactory in the chain.
The SignatureUpdateProcessorFactory is further configured with different parameters such as "signatureField",
"overwriteDupes" etc. This chain is an example of how Solr can be configured to perform de-duplication of
documents by calculating a signature using the value of name, features, cat fields which is then used as the "id"
field. As you may have noticed, this chain does not specify the DistributedUpdateProcessorFactory - because
this processor is critical for Solr to operate properly, Solr will automatically insert DistributedUpdateProcessorFac
tory in this chain that does not include it just prior to the RunUpdateProcessorFactory.

Configuring individual processors as top-level plugins

Update request processors can also be configured independent of a chain in solrconfig.xml.

<updateProcessor class="solr.processor.SignatureUpdateProcessorFactory"
name="signature">
 <bool name="enabled">true</bool>
 <str name="signatureField">id</str>
 <bool name="overwriteDupes">false</bool>
 <str name="fields">name,features,cat</str>
 <str name="signatureClass">solr.processor.Lookup3Signature</str>
</updateProcessor>
<updateProcessor class="solr.RemoveBlankFieldUpdateProcessorFactory"
name="remove_blanks"/>

In this case, an instance of SignatureUpdateProcessorFactory is configured with the name "signature" and a
RemoveBlankFieldUpdateProcessorFactory is defined with the name "remove_blanks". Once the above has
been specified in solrconfig.xml, we can be refer to them in update request processor chains in solrconfig.xml as
follows:

updateRequestProcessorChain

RunUpdateProcessorFactory
Do not forget to add RunUpdateProcessorFactory at the end of any chains you define in solrconfig.xml
otherwise update requests processed by that chain will not actually affect the indexed data.

updateProcessor

500Apache Solr Reference Guide 6.1

1.

2.

<updateProcessorChain name="custom" processor="remove_blanks,signature">
 <processor class="solr.RunUpdateProcessorFactory" />
</updateProcessorChain>

Update processors in SolrCloud

In a single node, stand alone Solr, each update is run through all the update processors in a chain exactly once.
But the behavior of update request processors in SolrCloud deserves special consideration.

A critical SolrCloud functionality is the routing and distributing of requests – for update requests this routing is
implemented by the DistributedUpdateRequestProcessor, and this processor is given a special status by Solr
due to its important function.

In a distributed SolrCloud situation setup, All processors in the chain the DistributedUpdateProcessor arebefore
run on the first node that receives an update from the client, regardless of this nodes status as a leader or
replica. The DistributedUpdateProcessor then forwards the update to the appropriate shard leader for the
update (or to multiple leaders in the event of an update that affects multiple documents, such as a delete by
query, or commit). The shard leader uses a transaction log to apply aAtomic Updates & Optimistic Concurrency
nd then forwards the update to all of the shard replicas. The leader and each replica run all of the processors in
the chain that are listed the DistributedUpdateProcessor.after

For example, consider the "dedupe" chain which we saw in a section above. Assume that a 3 node SolrCloud
cluster exists where node A hosts the leader of shard1, node B hosts the leader of shard2 and node C hosts the
replica of shard2. Assume that an update request is sent to node A which forwards the update to node B
(because the update belongs to shard2) which then distributes the update to its replica node C. Let's see what
happens at each node:

Node A: Runs the update through the SignatureUpdateProcessor (which computes the signature and puts
it in the "id" field), then LogUpdateProcessor and then DistributedUpdateProcessor. This processor
determines that the update actually belongs to node B and is forwarded to node B. The update is not
processed further. This is required because the next processor which is RunUpdateProcessor will execute
the update against the local shard1 index which would lead to duplicate data on shard1 and shard2.
Node B: Receives the update and sees that it was forwarded by another node. The update is directly sent
to DistributedUpdateProcessor because it has already been through the SignatureUpdateProcessor on
node A and doing the same signature computation again would be redundant. The DistributedUpdateProc
essor determines that the update indeed belongs to this node, distributes it to its replica on Node C and
then forwards the update further in the chain to RunUpdateProcessor.

: Receives the update and sees that it was distributed by its leader. The update is directly sent toNode C
DistributedUpdateProcessor which performs some consistency checks and forwards the update further in
the chain to RunUpdateProcessor.

In summary:

All processors before DistributedUpdateProcessor are only run on the first node that receives an update
request whether it be a forwarding node (e.g. node A in the above example) or a leader (e.g. node B). We
call these pre-processors or just processors.
All processors after DistributedUpdateProcessor run only on the leader and the replica nodes. They are
not executed on forwarding nodes. Such processors are called "post-processors".

In the previous section, we saw that the updateRequestProcessorChain was configured with processor="rem
. This means that such processors are of the #1 kind and are run only on theove_blanks, signature"

forwarding nodes. Similarly, we can configure them as the #2 kind by specifying with the attribute
"post-processor" as follows:

updateRequestProcessorChains and updateProcessors

501Apache Solr Reference Guide 6.1

<updateProcessorChain name="custom" processor="signature"
post-processor="remove_blanks">
 <processor class="solr.RunUpdateProcessorFactory" />
</updateProcessorChain>

However executing a processor only on the forwarding nodes is a great way of distributing an expensive
computation such as de-duplication across a SolrCloud cluster by sending requests randomly via a load
balancer. Otherwise the expensive computation is repeated on both the leader and replica nodes.

Using custom chains

update.chain request parameter

The update.chain parameter can be used in any update request to choose a custom chain which has been
configured in solrconfig.xml. For example, in order to choose the "dedupe" chain described in a previous section,
one can issue the following request:

curl
"http://localhost:8983/solr/gettingstarted/update/json?update.chain=dedupe&commit=tr
ue" -H 'Content-type: application/json' -d '
[
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]
 },
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]
 }
]'

The above should dedupe the two identical documents and index only one of them.

processor & post-processor request parameters

We can dynamically construct a custom update request processor chain using the "processor" and
"post-processor" request parameters. Multiple processors can be specified as a comma-separated value for

 For example:these two parameters.

post-processors

Pre-processors and Atomic Updates
Because DistributedUpdateProcessor is responsible for processing into full documentsAtomic Updates
on the leader node, this means that pre-processors which are executed only on the forwarding nodes
can only operate on the partial document. If you have a processor which must process a full document
then the only choice is to specify it as a post-processor.

update.chain

502Apache Solr Reference Guide 6.1

Executing processors configured in solrconfig.xml as (pre)-processors
curl
"http://localhost:8983/solr/gettingstarted/update/json?processor=remove_blanks,signa
ture&commit=true" -H 'Content-type: application/json' -d '
[
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]
 },
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]

 }
]'

Executing processors configured in solrconfig.xml as pre and post processors
curl
"http://localhost:8983/solr/gettingstarted/update/json?processor=remove_blanks&post-
processor=signature&commit=true" -H 'Content-type: application/json' -d '
[
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]
 },
 {
 "name" : "The Lightning Thief",
 "features" : "This is just a test",
 "cat" : ["book","hardcover"]
 }
]'

In the first example, Solr will dynamically create a chain which has "signature" and "remove_blanks" as
pre-processors to be executed only on the forwarding node where as in the second example, "remove_blanks"
will be executed as a pre-processor and "signature" will be executed on the leader and replicas as a post
processor.

Configuring a custom chain as a default

We can also specify a custom chain to be used by default for all requests sent to specific update handlers
instead of specifying the names in request parameters for each request.

This can be done by adding either "update.chain" or "processor" and "post-processor" as default parameter for a
given path which can be done either via or by adding them in a whichInitParams in SolrConfig "defaults" section
is supported by all request handlers.

The following is an actual InitParam defined in the schemaless configuration which applies a custom update
chain to all request handlers starting with "/update/".

Constructing a chain at request time

503Apache Solr Reference Guide 6.1

<initParams path="/update/**">
 <lst name="defaults">
 <str name="update.chain">add-unknown-fields-to-the-schema</str>
 </lst>
</initParams>

Alternately, one can achieve a similar effect using the "defaults" as shown in the example below:

<requestHandler name="/update/extract"
 startup="lazy"
 class="solr.extraction.ExtractingRequestHandler" >
 <lst name="defaults">
 <str name="update.chain">add-unknown-fields-to-the-schema</str>
 </lst>
</requestHandler>

Update Request Processor Factories

What follows are brief descriptions of the currently available update request processors.
UpdateRequestProcessorFactories can be integrated into an update chain in solrconfig.xml as necessary. You
are strongly urged to examine the Javadocs for these classes; these descriptions are abridged snippets taken for
the most part from the Javadocs.

: AddSchemaFieldsUpdateProcessorFactory This processor will dynamically add fields to the schema if
an input document contains one or more fields that don't match any field or dynamic field in the schema.

: CloneFieldUpdateProcessorFactory Clones the values found in any matching field into thesource
configured field.dest

: DefaultValueUpdateProcessorFactory A simple processor that adds a default value to any document
which does not already have a value in fieldName.

: DocBasedVersionConstraintsProcessorFactory This Factory generates an UpdateProcessor that
helps to enforce version constraints on documents based on per-document version numbers using a
configured name of a versionField.

: DocExpirationUpdateProcessorFactory Update Processor Factory for managing automatic
"expiration" of documents.

: IgnoreCommitOptimizeUpdateProcessorFactory Allows you to ignore commit and/or optimize
requests from client applications when running in SolrCloud mode, for more information, see: Shards and
Indexing Data in SolrCloud

: RegexpBoostProcessorFactory A processor which will match content of "inputField" against regular
expressions found in "boostFilename", and if it matches will return the corresponding boost value from the
file and output this to "boostField" as a double value.

: SignatureUpdateProcessorFactory Uses a defined set of fields to generate a hash "signature" for
the document. Useful for only indexing one copy of "similar" documents.

: StatelessScriptUpdateProcessorFactory An update request processor factory that enables the use of
update processors implemented as scripts.

: TimestampUpdateProcessorFactory An update processor that adds a newly generated date value of
"NOW" to any document being added that does not already have a value in the specified field.

: URLClassifyProcessorFactory Update processor which examines a URL and outputs to various other
fields with characteristics of that URL, including length, number of path levels, whether it is a top level
URL (levels==0), whether it looks like a landing/index page, a canonical representation of the URL (e.g.

InitParams

defaults

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/AddSchemaFieldsUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/CloneFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DefaultValueUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DocBasedVersionConstraintsProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DocExpirationUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/IgnoreCommitOptimizeUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/RegexpBoostProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/SignatureUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/StatelessScriptUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/TimestampUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/URLClassifyProcessorFactory.html

504Apache Solr Reference Guide 6.1

stripping index.html), the domain and path parts of the URL etc.
: UUIDUpdateProcessorFactory An update processor that adds a newly generated UUID value to any

document being added that does not already have a value in the specified field.

FieldMutatingUpdateProcessorFactory derived factories

These factories all provide functionality to fields in a document as they're being indexed. When using anymodify
of these factories, please consult the for details on the commonFieldMutatingUpdateProcessorFactory javadocs
options they all support for configuring which fields are modified.

: ConcatFieldUpdateProcessorFactory Concatenates multiple values for fields matching the specified
conditions using a configurable delimiter.

:CountFieldValuesUpdateProcessorFactory Replaces any list of values for a field matching the
specified conditions with the the count of the number of values for that field.

: FieldLengthUpdateProcessorFactory Replaces any CharSequence values found in fields matching the
specified conditions with the lengths of those CharSequences (as an Integer).

: FirstFieldValueUpdateProcessorFactory Keeps only the first value of fields matching the specified
conditions.
HTMLStripFieldUpdateProcessorFactory: Strips all HTML Markup in any CharSequence values found
in fields matching the specified conditions.

:IgnoreFieldUpdateProcessorFactory Ignores and removes fields matching the specified conditions
from any document being added to the index.

:LastFieldValueUpdateProcessorFactory Keeps only the last value of fields matching the specified
conditions.

: MaxFieldValueUpdateProcessorFactory An update processor that keeps only the the maximum value
from any selected fields where multiple values are found.

: MinFieldValueUpdateProcessorFactory An update processor that keeps only the the minimum value
from any selected fields where multiple values are found.

:ParseBooleanFieldUpdateProcessorFactory Attempts to mutate selected fields that have only
CharSequence-typed values into Boolean values.

:ParseDateFieldUpdateProcessorFactory Attempts to mutate selected fields that have only
CharSequence-typed values into Solr date values.

 derived classes:ParseNumericFieldUpdateProcessorFactory
: ParseDoubleFieldUpdateProcessorFactory Attempts to mutate selected fields that have only

CharSequence-typed values into Double values.
: ParseFloatFieldUpdateProcessorFactory Attempts to mutate selected fields that have only

CharSequence-typed values into Float values.
: ParseIntFieldUpdateProcessorFactory Attempts to mutate selected fields that have only

CharSequence-typed values into Integer values.
: ParseLongFieldUpdateProcessorFactory Attempts to mutate selected fields that have only

CharSequence-typed values into Long values.
: PreAnalyzedUpdateProcessorFactory An update processor that parses configured fields of any

document being added using with the configured format parser.PreAnalyzedField
: RegexReplaceProcessorFactory An updated processor that applies a configured regex to any

CharSequence values found in the selected fields, and replaces any matches with the configured
replacement string.

: RemoveBlankFieldUpdateProcessorFactory Removes any values found which are CharSequence
with a length of 0. (ie: empty strings).

: TrimFieldUpdateProcessorFactory Trims leading and trailing whitespace from any CharSequence
values found in fields matching the specified conditions.

: TruncateFieldUpdateProcessorFactory Truncates any CharSequence values found in fields matching
the specified conditions to a maximum character length.

: UniqFieldsUpdateProcessorFactory Removes duplicate values found in fields matching the specified
conditions.

Update Processor factories that can be loaded as plugins

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UUIDUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/FieldMutatingUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ConcatFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/CountFieldValuesUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/FieldLengthUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/FirstFieldValueUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/HTMLStripFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/IgnoreFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/LastFieldValueUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/MaxFieldValueUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/MinFieldValueUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseBooleanFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseDateFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseNumericFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseDoubleFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseFloatFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseIntFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/ParseLongFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/PreAnalyzedUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/RegexReplaceProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/RemoveBlankFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/TrimFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/TruncateFieldUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/UniqFieldsUpdateProcessorFactory.html

505Apache Solr Reference Guide 6.1

These processors are included in Solr releases as "contribs", and require additional jars loaded at runtime. See
the README files associated with each contrib for details:

The contrib provides langid :
: LangDetectLanguageIdentifierUpdateProcessorFactory Identifies the language of a set of

input fields using http://code.google.com/p/language-detection
: TikaLanguageIdentifierUpdateProcessorFactory Identifies the language of a set of input fields

using Tika's LanguageIdentifier.
The contrib provides: uima

: UIMAUpdateRequestProcessorFactory Update document(s) to be indexed with UIMA extracted
information.

Update Processor factories you should modify or remove.not

These are listed for completeness, but are part of the Solr infrastructure, particularly SolrCloud. Other than
insuring you do remove them when modifying the update request handlers (or any copies you make), you willnot
rarely, if ever, need to change these.

: DistributedUpdateProcessorFactory Used to distribute updates to all necessary nodes.
: NoOpDistributingUpdateProcessorFactory An alternative No-Op implementation of

DistributingUpdateProcessorFactory that always returns null. Designed for experts who want to
bypass distributed updates and use their own custom update logic.

: LogUpdateProcessorFactory A logging processor. This keeps track of all commands that have passed
through the chain and prints them on finish().

: RunUpdateProcessorFactory Executes the update commands using the underlying UpdateHandler.
Almost all processor chains should end with an instance of unless the userRunUpdateProcessorFactory
is explicitly executing the update commands in an alternative custom .UpdateRequestProcessorFactory

Codec Factory

A can be specified in to determine which Lucene is used whencodecFactory solrconfig.xml Codec
writing the index to disk.

If not specified, Lucene's default codec is implicitly used, but a is also availablesolr.SchemaCodecFactory
which supports 2 key features:

Schema based per-fieldtype configuration for and - see the docValuesFormat postingsFormat Field
 section for more details.Type Definitions and Properties

A option:compressionMode
BEST_SPEED (default) is optimized for search speed performance
BEST_COMPRESSION is optimized for disk space usage

Example:

<codecFactory class="solr.SchemaCodecFactory">
 <str name="compressionMode">BEST_COMPRESSION</str>
</codecFactory>

Solr Cores and solr.xml

http://lucene.apache.org/solr/6_1_0/solr-langid/index.html
http://lucene.apache.org/solr/6_1_0/solr-langid/org/apache/solr/update/processor/LangDetectLanguageIdentifierUpdateProcessorFactory.html
http://code.google.com/p/language-detection
http://lucene.apache.org/solr/6_1_0/solr-langid/org/apache/solr/update/processor/TikaLanguageIdentifierUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-uima/index.html
http://lucene.apache.org/solr/6_1_0/solr-uima/org/apache/solr/uima/processor/UIMAUpdateRequestProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-uima/org/apache/solr/uima/processor/UIMAUpdateRequestProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/DistributedUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/NoOpDistributingUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/LogUpdateProcessorFactory.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/update/processor/RunUpdateProcessorFactory.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/codecs/Codec.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/core/SchemaCodecFactory.html
https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-GeneralProperties
https://cwiki.apache.org/confluence/display/solr/Field+Type+Definitions+and+Properties#FieldTypeDefinitionsandProperties-GeneralProperties

506Apache Solr Reference Guide 6.1

In Solr, the term is used to refer to a single index and associated transaction log and configuration filescore
(including the and Schema files, among others). Your Solr installation can have multiplesolrconfig.xml
cores if needed, which allows you to index data with different structures in the same server, and maintain more
control over how your data is presented to different audiences. In SolrCloud mode you will be more familiar with

Behind the scenes a collection consists of one or more cores.the term collection.

Cores can be created using script or as part of SolrCloud collection creation using the APIs. Cbin/solr ore-spe
cific properties (such as the directories to use for the indexes or configuration files, the core name, and other
options) are defined in a core.properties file. Any core.properties file in any directory of your Solr
installation (or in a directory under where solr_home is defined) will be found by Solr and the defined properties
will be used for the core named in the file.

In standalone mode, must reside in . In SolrCloud mode, will be loaded fromsolr.xml solr_home solr.xml
Zookeeper if it exists, with fallback to .solr_home

The following sections describe these options in more detail.

Format of solr.xml: Details on how to define , including the acceptable parameters for the solr.xml sol
 filer.xml

Defining core.properties: Details on placement of and available property options.core.properties
CoreAdmin API: Tools and commands for core administration using a REST API.
Config Sets: How to use configsets to avoid duplicating effort when defining a new core.

Format of solr.xml

This section will describe the default file included with Solr and how to modify it for your needs. Forsolr.xml
details on how to configure , see the section .core.properties Defining core.properties

Defining solr.xml
Solr.xml Parameters

The <solr> Element
The <solrcloud> element
The <logging> element

The <logging><watcher> element
The <shardHandlerFactory> element

Substituting JVM System Properties in solr.xml

Defining solr.xml

You can find in your Solr Home directory or in Zookeeper. The default file looks like this:solr.xml solr.xml

In older versions of Solr, cores had to be predefined as tags in <core> solr.xml in order for Solr to
know about them. Now, however, Solr supports automatic discovery of cores and they no longer need to
be explicitly defined. The recommended way is to dynamically create cores/collections using the APIs.

507Apache Solr Reference Guide 6.1

<solr>

 <solrcloud>
 <str name="host">${host:}</str>
 <int name="hostPort">${jetty.port:8983}</int>
 <str name="hostContext">${hostContext:solr}</str>
 <int name="zkClientTimeout">${zkClientTimeout:15000}</int>
 <bool name="genericCoreNodeNames">${genericCoreNodeNames:true}</bool>
 </solrcloud>

 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>

</solr>

As you can see, the discovery Solr configuration is "SolrCloud friendly". However, the presence of the <solrclo
 element does mean that the Solr instance is running in SolrCloud mode. Unless the or ud> not -DzkHost -Dzk
 are specified at startup time, this section is ignored.Run

Solr.xml Parameters

The Element<solr>

There are no attributes that you can specify in the tag, which is the root element of . The<solr> solr.xml
tables below list the child nodes of each XML element in .solr.xml

Node Description

adminHandler If used, this attribute should be set to the FQN (Fully qualified name) of a class that
inherits from CoreAdminHandler. For example, <str

 wouldname="adminHandler">com.myorg.MyAdminHandler</str>
configure the custom admin handler (MyAdminHandler) to handle admin requests.
If this attribute isn't set, Solr uses the default admin handler,
org.apache.solr.handler.admin.CoreAdminHandler. For more information on this
parameter, see the Solr Wiki at .http://wiki.apache.org/solr/CoreAdmin#cores

collectionsHandler As above, for custom CollectionsHandler implementations.

infoHandler As above, for custom InfoHandler implementations.

coreLoadThreads Specifies the number of threads that will be assigned to load cores in parallel.

coreRootDirectory The root of the core discovery tree, defaults to SOLR_HOME.

managementPath Currently non-operational.

sharedLib Specifies the path to a common library directory that will be shared across all cores.
Any JAR files in this directory will be added to the search path for Solr plugins. This
path is relative to the top-level container's Solr Home. Custom handlers may be
placed in this directory

http://wiki.apache.org/solr/CoreAdmin#cores

508Apache Solr Reference Guide 6.1

shareSchema This attribute, when set to true, ensures that the multiple cores pointing to the same
Schema resource file will be referring to the same IndexSchema Object. Sharing
the IndexSchema Object makes loading the core faster. If you use this feature,
make sure that no core-specific property is used in your Schema file.

transientCacheSize Defines how many cores with transient=true that can be loaded before swapping
the least recently used core for a new core.

configSetBaseDir The directory under which configsets for solr cores can be found. Defaults to
SOLR_HOME/configsets

The element<solrcloud>

This element defines several parameters that relate so SolrCloud. This section is ignored unless the solr
instance is started with either or -DzkRun -DzkHost

Node Description

distribUpdateConnTimeout Used to set the underlying "connTimeout" for intra-cluster updates.

distribUpdateSoTimeout Used to set the underlying "socketTimeout" for intra-cluster updates.

host The hostname Solr uses to access cores.

hostContext The url context path.

hostPort The port Solr uses to access cores. In the default file, this issolr.xml
set to }, which will use the Solr port defined in${jetty.port:8983
Jetty, and otherwise fall back to 8983.

leaderVoteWait When SolrCloud is starting up, how long each Solr node will wait for all
known replicas for that shard to be found before assuming that any nodes
that haven't reported are down.

leaderConflictResolveWait When trying to elect a leader for a shard, this property sets the maximum
time a replica will wait to see conflicting state information to be resolved;
temporary conflicts in state information can occur when doing rolling
restarts, especially when the node hosting the Overseer is restarted.
Typically, the default value of 180000 (ms) is sufficient for conflicts to be
resolved; you may need to increase this value if you have hundreds or
thousands of small collections in SolrCloud.

zkClientTimeout A timeout for connection to a ZooKeeper server. It is used with SolrCloud.

zkHost In SolrCloud mode, the URL of the ZooKeeper host that Solr should use
for cluster state information.

genericCoreNodeNames If , node names are not based on the address of the node, but on aTRUE
generic name that identifies the core. When a different machine takes
over serving that core things will be much easier to understand.

zkCredentialsProvider &
zkACLProvider

Optional parameters that can be specified if you are using ZooKeeper
.Access Control

The element<logging>

Node Description

509Apache Solr Reference Guide 6.1

class The class to use for logging. The corresponding JAR file must be available to solr, perhaps
through a directive in solrconfig.xml.<lib>

enabled true/false - whether to enable logging or not.

The element<logging><watcher>

Node Description

size The number of log events that are buffered.

threshold The logging level above which your particular logging implementation will record. For example
when using log4j one might specify DEBUG, WARN, INFO, etc.

The element<shardHandlerFactory>

Custom shard handlers can be defined in if you wish to create a custom shard handler.solr.xml

<shardHandlerFactory name="ShardHandlerFactory" class="qualified.class.name">

Since this is a custom shard handler, sub-elements are specific to the implementation.

Substituting JVM System Properties in solr.xml

Solr supports variable substitution of JVM system property values in , which allows runtimesolr.xml
specification of various configuration options. The syntax is }.${propertyname[:option default value]
This allows defining a default that can be overridden when Solr is launched. If a default value is not specified,
then the property must be specified at runtime or the file will generate an error when parsed.solr.xml

Any JVM system properties usually specified using the -D flag when starting the JVM, can be used as variables
in the file.solr.xml

For example, in the file shown below, the and values are each setsolr.xml socketTimeout connTimeout
to "0". However, if you start Solr using ' ', the option ofbin/solr -DsocketTimeout=1000 socketTimeout
the to be overridden using a value of 1000ms, while the optionHttpShardHandlerFactory connTimeout
will continue to use the default property value of "0".

<solr>
 <shardHandlerFactory name="shardHandlerFactory"
 class="HttpShardHandlerFactory">
 <int name="socketTimeout">${socketTimeout:0}</int>
 <int name="connTimeout">${connTimeout:0}</int>
 </shardHandlerFactory>
</solr>

Defining core.properties

Core discovery means that creating a core is as simple as a file located on disk. The core.properties core.
 file is a simple Java Properties file where each line is just a key=value pair, e.g., .properties name=core1

Notice that no quotes are required.

A minimal file looks like this (however, it can also be empty, see information on placementcore.properties
of below):core.properties

510Apache Solr Reference Guide 6.1

name=my_core_name

Placement of core.properties

Solr cores are configured by placing a file named in a sub-directory under .core.properties solr.home
There are no a-priori limits to the depth of the tree, nor are there limits to the number of cores that can be
defined. Cores may be anywhere in the tree with the exception that cores may be defined under an existingnot
core. That is, the following is not allowed:

./cores/core1/core.properties

./cores/core1/coremore/core5/core.properties

In this example, the enumeration will stop at "core1".

The following is legal:

./cores/somecores/core1/core.properties

./cores/somecores/core2/core.properties

./cores/othercores/core3/core.properties

./cores/extracores/deepertree/core4/core.properties

It is possible to segment Solr into multiple cores, each with its own configuration and indices. Cores may be
dedicated to a single application or to very different ones, but all are administered through a common
administration interface. You can create new Solr cores on the fly, shutdown cores, even replace one running
core with another, all without ever stopping or restarting Solr.

Your file can be empty if necessary. Suppose is located in core.properties core.properties ./cores/c
 In that case, the core name is assumed to be "core1". Theore1 (relative to solr_home) but is empty.

instanceDir will be the folder containing (i.e.,). The dataDir will be core.properties ./cores/core1 ../cor
, etc.es/core1/data

Defining core.properties Files

The minimal file is an empty file, in which case all of the properties are defaultedcore.properties
appropriately.

Java properties files allow the hash ("#") or bang ("!") characters to specify comment-to-end-of-line.

This table defines the recognized properties:

Property Description

name The name of the SolrCore. You'll use this name to reference the SolrCore when running
commands with the CoreAdminHandler.

config The configuration file name for a given core. The default is .solrconfig.xml

You can run Solr without configuring any cores.

511Apache Solr Reference Guide 6.1

schema The schema file name for a given core. The default is but please note that ifschema.xml
you are using a "managed schema" (the default behavior) then any value for this property
which does not match the effective will be read once,managedSchemaResourceName
backed up, and converted for managed schema use. See Schema Factory Definition in

 for details.SolrConfig

dataDir The core's data directory (where indexes are stored) as either an absolute pathname, or a
path relative to the value of . This is by default.instanceDir data

configSet The name of a defined configset, if desired, to use to configure the core (see the Config
 for more details).Sets

properties The name of the properties file for this core. The value can be an absolute pathname or a
path relative to the value of .instanceDir

transient If , the core can be unloaded if Solr reaches the . The defaulttrue transientCacheSize
if not specified is . Cores are unloaded in order of least recently used first. false Setting to t

is not recommended in SolrCloud mode.rue

loadOnStartup If , the default if it is not specified, the core will loaded when Solr starts. true Setting to fals
 is not recommended in SolrCloud mode.e

coreNodeName Used only in , this is a unique identifier for the node hosting this replica. BySolrCloud
default a coreNodeName is generated automatically, but setting this attribute explicitly
allows you to manually assign a new core to replace an existing replica. For example:
when replacing a machine that has had a hardware failure by restoring from backups on a
new machine with a new hostname or port..

ulogDir The absolute or relative directory for the update log for this core (SolrCloud).

shard The shard to assign this core to (SolrCloud).

collection The name of the collection this core is part of (SolrCloud).

roles Future param for SolrCloud or a way for users to mark nodes for their own use.

Additional "user defined" properties may be specified for use as variables. For more information on how to define
local properties, see the section .Substituting Properties in Solr Config Files

CoreAdmin API

The Core Admin API is primarily used under the covers by the when running a cluster.Collections API SolrCloud
 SolrCloud users should not typically use the CoreAdmin API directly – but it may be useful for users of
single-node or master/slave Solr installations for core maintenance operations.

The CoreAdmin API is implemented by the CoreAdminHandler, which is a special purpose SolrRequestHandler
that is used to manage Solr cores. Unlike normal SolrRequestHandlers, the CoreAdminHandler is not attached to
a single core. Instead, it there is a single instance of the CoreAdminHandler in each Solr node that manages all
the cores running in that node and is accessible at the path./solr/admin/cores

CoreAdmin actions can be executed by via HTTP requests that specify an " " request parameter, withaction
additional action specific arguments provided as additional parameters.

All action names are uppercase, and are defined in depth in the sections below.

STATUS
CREATE

https://cwiki.apache.org/confluence/display/solr/Configuring+solrconfig.xml#Configuringsolrconfig.xml-SubstitutingPropertiesinSolrConfigFiles

512Apache Solr Reference Guide 6.1

RELOAD
RENAME
SWAP
UNLOAD
MERGEINDEXES
SPLIT
REQUESTSTATUS

STATUS

The action returns the status of all running Solr cores, or status for only the named core.STATUS

http://localhost:8983/solr/admin/cores?action=STATUS&core=core0

Input

Query Parameters

Parameter Type Required Default Description

core string No The name of a core, as listed in the "name" attribute of a <core
 element in .> solr.xml

indexInfo boolean No true If , information about the index will not be returned with afalse
core STATUS request. In Solr implementations with a large
number of cores (i.e., more than hundreds), retrieving the index
information for each core can take a lot of time and isn't always
required.

CREATE

The action creates a new core and registers it.CREATE

If a Solr core with the given name already exists, it will continue to handle requests while the new core is
initializing. When the new core is ready, it will take new requests and the old core will be unloaded.

http://localhost:8983/solr/admin/cores?action=CREATE&name=coreX&instanceDir=pat
h/to/dir&config=config_file_name.xml&dataDir=data

CREATE must be able to find a configuration!
Your CREATE call must be able to find a configuration, or it will not succeed.

When you are running SolrCloud and create a new core for a collection, the configuration will be
inherited from the collection – each collection is linked to a configName, which is stored in the zookeeper
database. This satisfies the config requirement. There is something to note, though – if you're running
SolrCloud, you should be using the CoreAdmin API at all. Use the Collections API.NOT

When you are not running SolrCloud, if you have defined, you can use the configSetConfig Sets
parameter as documented below. If there are no config sets, then the instanceDir specified in the
CREATE call must already exist, and it must contain a conf directory which in turn must contain solrco

 and your schema, which is usually named either or , as wellnfig.xml managed-schema schema.xml
as any files referenced by those configs. The config and schema filenames could be specified with the
config and schema parameters, but these are expert options. One thing you COULD do to avoid creating
the conf directory is use config and schema parameters that point at absolute paths, but this can lead to
confusing configurations unless you fully understand what you are doing.

513Apache Solr Reference Guide 6.1

Input

Query Parameters

Parameter Type Required Default Description

name string Yes N/A The name of the new core. Same as "name" on the ele<core>
ment.

instanceDir string No whatever
is
specified
for
"name"
parameter

The directory where files for this SolrCore should be stored.
Same as on the element.instanceDir <core>

config string No Name of the config file (i.e.,) relative to solrconfig.xml inst
.anceDir

schema string No Name of the schema file to use for the core. Please note that if
you are using a "managed schema" (the default behavior) then
any value for this property which does not match the effective m

 will be read once, backed up,anagedSchemaResourceName
and converted for managed schema use. See Schema Factory

 for details.Definition in SolrConfig

dataDir string No Name of the data directory relative to .instanceDir

configSet string No Name of the configset to use for this core. For more information,
see the section .Config Sets

collection string No The name of the collection to which this core belongs. The
default is the name of the core. collection.<param>=<valu

 causes a property of to be set if a newe> <param>=<value>
collection is being created. Use collection.configName=<c

 to point to the configuration for a new collection.onfigname>

shard string No The shard id this core represents. Normally you want to be
auto-assigned a shard id.

property.n
=ame value

string No Sets the core property to . See the section onname value
defining .core.properties file contents

async string No Request ID to track this action which will be processed
asynchronously

Use to point to the config for a new collection.collection.configName=<configname>

Example

http://localhost:8983/solr/admin/cores?action=CREATE&name=my_core&collection=my_co
llection&shard=shard2

While it's possible to create a core for a non-existent collection, this approach is not supported and not
recommended. Always create a collection using the before creating a core directly for it.Collections API

https://cwiki.apache.org/confluence/display/solr/Defining+core.properties#Definingcore.properties-core.properties_files
http://localhost:8983/solr/admin/cores?action=CREATE&name=my_core&collection=my_collection&shard=shard2
http://localhost:8983/solr/admin/cores?action=CREATE&name=my_core&collection=my_collection&shard=shard2

514Apache Solr Reference Guide 6.1

RELOAD

The action loads a new core from the configuration of an existing, registered Solr core. While the newRELOAD
core is initializing, the existing one will continue to handle requests. When the new Solr core is ready, it takes
over and the old core is unloaded.

http://localhost:8983/solr/admin/cores?action=RELOAD&core=core0

This is useful when you've made changes to a Solr core's configuration on disk, such as adding new field
definitions. Calling the RELOAD action lets you apply the new configuration without having to restart the Web
container.

Input

Query Parameters

Parameter Type Required Default Description

core string Yes N/A The name of the core, as listed in the "name" attribute of a <core
 element in .> solr.xml

RENAME

The action changes the name of a Solr core.RENAME

http://localhost:8983/solr/admin/cores?action=RENAME&core=core0&other=core5

Input

Query Parameters

Parameter Type Required Default Description

core string Yes The name of the Solr core to be renamed.

other string Yes The new name for the Solr core. If the persistent attribute of <sol
 is , the new name will be written to as the r> true solr.xml nam

 attribute of the attribute.e <core>

async string No Request ID to track this action which will be processed
asynchronously

SWAP

SWAP atomically swaps the names used to access two existing Solr cores. This can be used to swap new content
into production. The prior core remains available and can be swapped back, if necessary. Each core will be
known by the name of the other, after the swap.

http://localhost:8983/solr/admin/cores?action=SWAP&core=core1&other=core0

RELOAD performs "live" reloads of SolrCore, reusing some existing objects. Some configuration options,
such as the location and -related settings in can not bedataDir IndexWriter solrconfig.xml
changed and made active with a simple RELOAD action.

Do not use with a SolrCloud node. It is not supported and can result in the core being unusable.SWAP

515Apache Solr Reference Guide 6.1

Input

Query Parameters

Parameter Type Required Default Description

core string Yes The name of one of the cores to be swapped.

other string Yes The name of one of the cores to be swapped.

async string No Request ID to track this action which will be processed
asynchronously

UNLOAD

The action removes a core from Solr. Active requests will continue to be processed, but no newUNLOAD
requests will be sent to the named core. If a core is registered under more than one name, only the given name
is removed.

http://localhost:8983/solr/admin/cores?action=UNLOAD&core=core0

The action requires a parameter () identifying the core to be removed. If the persistent attribute of UNLOAD core
 is set to , the element with this attribute will be removed from .<solr> true <core> name solr.xml

Input

Query Parameters

Parameter Type Required Default Description

core string Yes The name of one of the cores to be removed.

deleteIndex boolean No false If true, will remove the index when unloading the core.

deleteDataDir boolean No false If true, removes the directory and all sub-directories.data

deleteInstanceDir boolean No false If true, removes everything related to the core, including
the index directory, configuration files and other related
files.

async string No Request ID to track this action which will be processed
asynchronously

MERGEINDEXES

The action merges one or more indexes to another index. The indexes must have completedMERGEINDEXES
commits, and should be locked against writes until the merge is complete or the resulting merged index may
become corrupted. The target core index must already exist and have a compatible schema with the one or more
indexes that will be merged to it. Another commit on the target core should also be performed after the merge is
complete.

http://localhost:8983/solr/admin/cores?action=MERGEINDEXES&core=new_core_name&i
ndexDir=/solr_home/core1/data/index&indexDir=/solr_home/core2/data/index

Unloading all cores in a SolrCloud collection causes the removal of that collection's metadata from
ZooKeeper.

516Apache Solr Reference Guide 6.1

In this example, we use the parameter to define the index locations of the source cores. The paindexDir core
rameter defines the target index. A benefit of this approach is that we can merge any Lucene-based index that
may not be associated with a Solr core.

Alternatively, we can instead use a parameter, as in this example:srcCore

http://localhost:8983/solr/admin/cores?action=mergeindexes&core=new_core_name&s
rcCore=core1&srcCore=core2

This approach allows us to define cores that may not have an index path that is on the same physical server as
the target core. However, we can only use Solr cores as the source indexes. Another benefit of this approach is
that we don't have as high a risk for corruption if writes occur in parallel with the source index.

We can make this call run asynchronously by specifying the parameter and passing a request-id. This idasync
can then be used to check the status of the already submitted task using the REQUESTSTATUS API.

Input

Query Parameters

Parameter Type Required Default Description

core string Yes The name of the target core/index.

indexDir string Multi-valued, directories that would be merged.

srcCore string Multi-valued, source cores that would be merged.

async string Request ID to track this action which will be processed
asynchronously

SPLIT

The action splits an index into two or more indexes. The index being split can continue to handleSPLIT
requests. The split pieces can be placed into a specified directory on the server's filesystem or it can be merged
into running Solr cores.

The action supports five parameters, which are described in the table below.SPLIT

Input

Query Parameters

Parameter Type Required Default Description

core string Yes The name of the core to be split.

path string Multi-valued, the directory path in which a piece of the index will be
written.

targetCore string Multi-valued, the target Solr core to which a piece of the index will
be merged

ranges string No A comma-separated list of hash ranges in hexadecimal format

split.key string No The key to be used for splitting the index

async string No Request ID to track this action which will be processed
asynchronously

517Apache Solr Reference Guide 6.1

Examples

The index will be split into as many pieces as the number of or parameters.core path targetCore

Usage with two parameters:targetCore

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1
&targetCore=core2

Here the index will be split into two pieces and merged into the two indexes.core targetCore

Usage of with two parameters:path

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&path=/path/to/in
dex/1&path=/path/to/index/2

The index will be split into two pieces and written into the two directory paths specified.core

Usage with the parameter:split.key

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1
&split.key=A!

Here all documents having the same route key as the i.e. 'A!' will be split from the index andsplit.key core
written to the .targetCore

Usage with ranges parameter:

http://localhost:8983/solr/admin/cores?action=SPLIT&core=core0&targetCore=core1
&targetCore=core2&targetCore=core3&ranges=0-1f4,1f5-3e8,3e9-5dc

This example uses the parameter with hash ranges 0-500, 501-1000 and 1001-1500 specified inranges
hexadecimal. Here the index will be split into three pieces with each targetCore receiving documents matching
the hash ranges specified i.e. core1 will get documents with hash range 0-500, core2 will receive documents with
hash range 501-1000 and finally, core3 will receive documents with hash range 1001-1500. At least one hash
range must be specified. Please note that using a single hash range equal to a route key's hash range is NOT
equivalent to using the parameter because multiple route keys can hash to the same range.split.key

The must already exist and must have a compatible schema with the index. A commit istargetCore core
automatically called on the index before it is split.core

This command is used as part of the command but it can be used for non-cloud Solr cores asSPLITSHARD
well. When used against a non-cloud core without parameter, this action will split the source indexsplit.key
and distribute its documents alternately so that each split piece contains an equal number of documents. If the s

 parameter is specified then only documents having the same route key will be split from the sourceplit.key
index.

REQUESTSTATUS

Request the status of an already submitted asynchronous CoreAdmin API call.

Input

Query Parameters

Either or parameter must be specified but not both. The ranges and split.keypath targetCore
parameters are optional and only one of the two should be specified, if at all required.

https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-SplitaShard

518Apache Solr Reference Guide 6.1

Parameter Type Required Default Description

requestid string Yes The user defined request-id for the Asynchronous request.

The call below will return the status of an already submitted Asynchronous CoreAdmin call.

http://localhost:8983/solr/admin/cores?action=REQUESTSTATUS&requestid=1

Config Sets

On a multicore Solr instance, you may find that you want to share configuration between a number of different
cores. You can achieve this using named configsets, which are essentially shared configuration directories
stored under a configurable configset base directory.

To create a configset, simply add a new directory under the configset base directory. The configset will be
identified by the name of this directory. Then into this copy the config directory you want to share. The structure
should look something like this:

/<configSetBaseDir>
 /configset1
 /conf
 /managed-schema
 /solrconfig.xml
 /configset2
 /conf
 /managed-schema
 /solrconfig.xml

The default base directory is , and it can be configured in .$SOLR_HOME/configsets solr.xml

To create a new core using a configset, pass as one of the core properties. For example, if you doconfigSet
this via the core admin API:

http://<solr>/admin/cores?action=CREATE&name=mycore&instanceDir=path/to/instanc
e&configSet=configset2

Configuration APIs
Solr includes several APIs that can be used to modify settings in .solrconfig.xml

Blob Store API
Config API
Request Parameters API
Managed Resources

Blob Store API

The Blob Store REST API provides REST methods to store, retrieve or list files in a Lucene index. This can be
used to upload a jar file which contains standard solr components such as RequestHandlers,
SearchComponents, or other custom code you have written for Solr.

When using the blob store, note that the API does not delete or overwrite a previous object if a new one is

519Apache Solr Reference Guide 6.1

uploaded with the same name. It always adds a new version of the blob to the index. Deletes can be performed
with standard REST delete commands.

The blob store is only available when running in SolrCloud mode. Solr in standalone mode does not support
use of a blob store.

The blob store API is implemented as a requestHandler. A special collection named ".system" must be created
as the collection that contains the blob store index.

Create a .system Collection

Before using the blob store, a special collection must be created and it must be named ..system

The BlobHandler is automatically registered in the .system collection. The , Schema, andsolrconfig.xml
other configuration files for the collection are automatically provided by the system and don't need to be defined
specifically.

If you do not use the or options, then defaults of 1 shard and 1 replica will be-shards -replicationFactor
used.

You can create the collection with the , as in this example:.system Collections API

curl
"http://localhost:8983/solr/admin/collections?action=CREATE&name=.system&replication
Factor=2"

 Note that the script cannot be used to create the collection at this time. Also, pleasebin/solr .system
ensure that there is at least one collection created before creating the collection..system

Upload Files to Blob Store

After the collection has been created, files can be uploaded to the blob store with a request similar to.system
the following:

curl -X POST -H 'Content-Type: application/octet-stream' --data-binary @{filename}
http://localhost:8983/solr/.system/blob/{blobname}

For example, to upload a file named "test1.jar" as a blob named "test", you would make a POST request like:

curl -X POST -H 'Content-Type: application/octet-stream' --data-binary @test1.jar
http://localhost:8983/solr/.system/blob/test

A GET request will return the list of blobs and other details:

curl http://localhost:8983/solr/.system/blob?omitHeader=true

Output:

520Apache Solr Reference Guide 6.1

{
 "response":{"numFound":1,"start":0,"docs":[
 {
 "id":"test/1",
 "md5":"20ff915fa3f5a5d66216081ae705c41b",
 "blobName":"test",
 "version":1,
 "timestamp":"2015-02-04T16:45:48.374Z",
 "size":13108}]
 }
}

Details on individual blobs can be accessed with a request similar to:

curl http://localhost:8983/solr/.system/blob/{blobname}

For example, this request will return only the blob named 'test':

curl http://localhost:8983/solr/.system/blob/test?omitHeader=true

Output:

{
 "response":{"numFound":1,"start":0,"docs":[
 {
 "id":"test/1",
 "md5":"20ff915fa3f5a5d66216081ae705c41b",
 "blobName":"test",
 "version":1,
 "timestamp":"2015-02-04T16:45:48.374Z",
 "size":13108}]
 }
}

The filestream response writer can return a particular version of a blob for download, as in:

curl http://localhost:8983/solr/.system/blob/{blobname}/{version}?wt=filestream >
{outputfilename}

For the latest version of a blob, the {version} can be omitted,

curl http://localhost:8983/solr/.system/blob/{blobname}?wt=filestream >
{outputfilename}

Use a Blob in a Handler or Component

To use the blob as the class for a request handler or search component, you create a request handler in solrco
 as usual. You will need to define the following parameters:nfig.xml

class: the fully qualified class name. For example, if you created a new request handler class called
CRUDHandler, you would enter .org.apache.solr.core.CRUDHandler
runtimeLib: Set to true to require that this component should be loaded from the classloader that loads

521Apache Solr Reference Guide 6.1

the runtime jars.

For example, to use a blob named test, you would configure like this:solrconfig.xml

<requestHandler name="/myhandler" class="org.apache.solr.core.myHandler"
runtimeLib="true" version="1">
</requestHandler>

If there are parameters available in the custom handler, you can define them in the same way as any other
request handler definition.

Config API

The Config API enables manipulating various aspects of your using REST-like API calls. Thissolrconfig.xml
feature is enabled by default and works similarly in both SolrCloud and standalone mode. Many commonly edited
properties (such as cache sizes and commit settings) and request handler definitions can be changed with this
API.

When using this API, is is not changed. Instead, all edited configuration is stored in a filesolrconfig.xml
called . The values in override the values in .configoverlay.json configoverlay.json solrconfig.xml

API Entry Points
Commands

Commands for Common Properties
Commands for Custom Handlers and Local Components
Commands for User-Defined Properties

How to Map solrconfig.xml Properties to JSON
Examples

Creating and Updating Common Properties
Creating and Updating Request Handlers
Creating and Updating User-Defined Properties

How It Works
Empty Command
Listening to config Changes

API Entry Points

/config: retrieve or modify the config. GET to retrieve and POST for executing commands
/config/overlay: retrieve the details in the aloneconfigoverlay.json
/config/params : allows creating parameter sets that can override or take the place of parameters
defined in . See the section for more details.solrconfig.xml Request Parameters API

Commands

This API uses specific commands to tell Solr what property or type of property to add to .configoverlay.json
The commands are passed as part of the data sent with the request.

The config commands are categorized into 3 different sections which manipulate various data structures in solr
. Each of these is described below.config.xml

Common Properties
Components
User-defined properties

522Apache Solr Reference Guide 6.1

Commands for Common Properties

The common properties are those that are frequently need to be customized in a Solr instance. They are
manipulated with two commands:

set-property: Set a well known property. The names of the properties are predefined and fixed. If the
property has already been set, this command will overwrite the previous setting.
unset-property: Remove a property set using the command.set-property

The properties that are configured with these commands are predefined and listed below. The names of these
properties are derived from their XML paths as found in .solrconfig.xml

updateHandler.autoCommit.maxDocs
updateHandler.autoCommit.maxTime
updateHandler.autoCommit.openSearcher
updateHandler.autoSoftCommit.maxDocs
updateHandler.autoSoftCommit.maxTime
updateHandler.commitWithin.softCommit
updateHandler.commitIntervalLowerBound
updateHandler.indexWriter.closeWaitsForMerges
query.filterCache.class
query.filterCache.size
query.filterCache.initialSize
query.filterCache.autowarmCount
query.filterCache.regenerator
query.queryResultCache.class
query.queryResultCache.size
query.queryResultCache.initialSize
query.queryResultCache.autowarmCount
query.queryResultCache.regenerator
query.documentCache.class
query.documentCache.size
query.documentCache.initialSize
query.documentCache.autowarmCount
query.documentCache.regenerator
query.fieldValueCache.class
query.fieldValueCache.size
query.fieldValueCache.initialSize
query.fieldValueCache.autowarmCount
query.fieldValueCache.regenerator
query.useFilterForSortedQuery
query.queryResultWindowSize
query.queryResultMaxDocCached
query.enableLazyFieldLoading
query.boolToFilterOptimizer
query.maxBooleanClauses
jmx.agentId
jmx.serviceUrl
jmx.rootName
requestDispatcher.handleSelect
requestDispatcher.requestParsers.multipartUploadLimitInKB
requestDispatcher.requestParsers.formdataUploadLimitInKB
requestDispatcher.requestParsers.enableRemoteStreaming
requestDispatcher.requestParsers.addHttpRequestToContext

Commands for Custom Handlers and Local Components

Custom request handlers, search components, and other types of localized Solr components (such as custom

523Apache Solr Reference Guide 6.1

query parsers, update processors, etc.) can be added, updated and deleted with specific commands for the
component being modified.

The syntax is similar in each case: , , and add-<component-name> update-<component-name> delete-<c
. Please note that the command name is not case sensitive, so , omponent-name> Add-RequestHandler ADD

 and are all equivalent. In each case, commands add the new-REQUESTHANDLER add-requesthandler add-
configuration to , which will override any other settings for the component in configoverlay.json solrconfi

; commands overwrite an existing setting in ; and commandsg.xml update- configoverlay.json delete-
remove the setting from . Settings removed from are notconfigoverlay.json configoverlay.json
removed from .solrconfig.xml

The full list of available commands follows below:

General Purpose Commands

These commands are the most commonly used:

add-requesthandler
update-requesthandler
delete-requesthandler
add-searchcomponent
update-searchcomponent
delete-searchcomponent
add-initparams
update-initparams
delete-initparams
add-queryresponsewriter
update-queryresponsewriter
delete-queryresponsewriter

Advanced Commands

These commands allow registering more advanced customizations to Solr:
add-queryparser
update-queryparser
delete-queryparser
add-valuesourceparser
update-valuesourceparser
delete-valuesourceparser
add-transformer
update-transformer
delete-transformer
add-updateprocessor
update-updateprocessor
delete-updateprocessor
add-queryconverter
update-queryconverter
delete-queryconverter
add-listener
update-listener
delete-listener
add-runtimelib
update-runtimelib
delete-runtimelib

See the section below for examples of using these commands.Creating and Updating Request Handlers

What about < ?updateRequestProcessorChain>

524Apache Solr Reference Guide 6.1

The Config API does not let you create or edit elements. However, it is<updateRequestProcessorChain>
possible to create entries and can use them by name to create a chain.<updateProcessor>

example:

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
"add-updateprocessor" : { "name" : "firstFld",
 "class": "solr.FirstFieldValueUpdateProcessorFactory",
 "fieldName":"test_s"}}'

You can use this directly in your request by adding a parameter in the for<updateRequestProcessorChain>
the specific update processor called .processor=firstFld

Commands for User-Defined Properties

Solr lets users templatize the using the place holder format solrconfig.xml ${variable_name:default_
. You could set the values using system properties, for example, .val} -Dvariable_name= my_customvalue

The same can be achieved during runtime using these commands:

set-user-property: Set a user-defined property. If the property has already been set, this command
will overwrite the previous setting.
unset-user-property: Remove a user-defined property.

The structure of the request is similar to the structure of requests using other commands, in the format of "comm
. You can add more than one variable at a time ifand":{"variable_name":"property_value"}

necessary.

For more information about user-defined properties, see the section User defined properties from core.properties
. See also the section below for examples of how to use this typeCreating and Updating User-Defined Properties
of command.

How to Map Properties to JSONsolrconfig.xml

By using this API, you will be generating JSON representations of properties defined in . Tosolrconfig.xml
understand how properties should be represented with the API, let's take a look at a few examples.

Here is what a request handler looks like in :solrconfig.xml

<requestHandler name="/query" class="solr.SearchHandler">
 <lst name="defaults">
 <str name="echoParams">explicit</str>
 <str name="wt">json</str>
 <str name="indent">true</str>
 </lst>
</requestHandler>

The same request handler defined with the Config API would look like this:

https://cwiki.apache.org/confluence/display/solr/Configuring+solrconfig.xml#Configuringsolrconfig.xml-Userdefinedpropertiesfromcore.properties

525Apache Solr Reference Guide 6.1

{
 "add-requesthandler":{
 "name":"/query",
 "class":"solr.SearchHandler",
 "defaults":{
 "echoParams":"explicit",
 "wt":"json",
 "indent":true
 }
 }
}

A searchComponent in looks like this:solrconfig.xml

<searchComponent name="elevator" class="solr.QueryElevationComponent" >
 <str name="queryFieldType">string</str>
 <str name="config-file">elevate.xml</str>
</searchComponent>

And the same searchComponent with the Config API:

{
 "add-searchcomponent":{
 "name":"elevator",
 "class":"QueryElevationComponent",
 "queryFieldType":"string",
 "config-file":"elevate.xml"
 }
}

Set autoCommit properties in :solrconfig.xml

<autoCommit>
 <maxTime>15000</maxTime>
 <openSearcher>false</openSearcher>
</autoCommit>

Define the same properties with the Config API:

{
 "set-property": {
 "updateHandler.autoCommit.maxTime":15000,
 "updateHandler.autoCommit.openSearcher":false
 }
}

Name Components for the Config API

The Config API always allows changing the configuration of any component by name. However, some
configurations such as or do not require a name in . In order to belistener initParams solrconfig.xml
able to and of the same item in , the name attribute becomesupdate delete configoverlay.json
mandatory.

526Apache Solr Reference Guide 6.1

Examples

Creating and Updating Common Properties

This change sets the to 1000 items and unsets the query.filterCache.autowarmCount query.filterCa
.che.size

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d'{
 "set-property" : {"query.filterCache.autowarmCount":1000},
 "unset-property" :"query.filterCache.size"}'

Using the endpoint, you can verify the changes with a request like this:/config/overlay

curl http://localhost:8983/solr/gettingstarted/config/overlay?omitHeader=true

And you should get a response like this:

{
 "overlay":{
 "znodeVersion":1,
 "props":{"query":{"filterCache":{
 "autowarmCount":1000,
 "size":25}}}}}

Creating and Updating Request Handlers

To create a request handler, we can use the command:add-requesthandler

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "add-requesthandler" : {
 "name": "/mypath",
 "class":"solr.DumpRequestHandler",
 "defaults":{ "x":"y" ,"a":"b", "wt":"json", "indent":true },
 "useParams":"x"
 },
}'

Make a call to the new request handler to check if it is registered:

curl http://localhost:8983/solr/techproducts/mypath?omitHeader=true

And you should see the following as output:

527Apache Solr Reference Guide 6.1

{
 "params":{
 "indent":"true",
 "a":"b",
 "x":"y",
 "wt":"json"},
 "context":{
 "webapp":"/solr",
 "path":"/mypath",
 "httpMethod":"GET"}}

To update a request handler, you should use the command :update-requesthandler

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "update-requesthandler": {
 "name": "/mypath",
 "class":"solr.DumpRequestHandler",
 "defaults": { "x":"new value for X", "wt":"json", "indent":true },
 "useParams":"x"
 }
}'

As another example, we'll create another request handler, this time adding the 'terms' component as part of the
definition:

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "add-requesthandler": {
 "name": "/myterms",
 "class":"solr.SearchHandler",
 "defaults": { "terms":true, "distrib":false },
 "components": ["terms"]
 }
}'

Creating and Updating User-Defined Properties

This command sets a user property.

curl http://localhost:8983/solr/techproducts/config
-H'Content-type:application/json' -d '{
 "set-user-property" : {"variable_name":"some_value"}}'

Again, we can use the endpoint to verify the changes have been made:/config/overlay

curl http://localhost:8983/solr/techproducts/config/overlay?omitHeader=true

And we would expect to see output like this:

528Apache Solr Reference Guide 6.1

{"overlay":{
 "znodeVersion":5,
 "userProps":{
 "variable_name":"some_value"}}
}

To unset the variable, issue a command like this:

curl http://localhost:8983/solr/techproducts/config
-H'Content-type:application/json' -d '{"unset-user-property" : "variable_name"}'

How It Works

Every core watches the ZooKeeper directory for the configset being used with that core. In standalone mode,
however, there is no watch (because ZooKeeper is not running). If there are multiple cores in the same node
using the same configset, only one ZooKeeper watch is used. For instance, if the configset 'myconf' is used by a
core, the node would watch . Every write operation performed through the API would 'touch'/configs/myconf
the directory (sets an empty byte[] to trigger watches) and all watchers are notified. Every core would check if the
Schema file, or is modified by comparing the versions and ifsolrconfig.xml configoverlay.json znode
modified, the core is reloaded.

If is modified, the params object is just updated without a core reload (see the section params.json Request
 for more information about).Parameters API params.json

Empty Command

If an empty command is sent to the endpoint, the watch is triggered on all cores using this configset./config
For example:

curl http://localhost:8983/solr/techproducts/config
-H'Content-type:application/json' -d '{}'

Directly editing any files without 'touching' the directory make it visible to all nodes.will not

It is possible for components to watch for the configset 'touch' events by registering a listener using SolrCore#r
 .egisterConfListener()

Listening to config Changes

Any component can register a listener using:

SolrCore#addConfListener(Runnable listener)

to get notified for config changes. This is not very useful if the files modified result in core reloads (i.e., configo
 or Schema). Components can use this to reload the files they are interested in. verlay.xml

Request Parameters API

The Request Parameters API allows creating parameter sets that can override or take the place of parameters
defined in . The parameter sets defined with this API can be used in requests to Solr, orsolrconfig.xml
referenced directly in request handler definitions.solrconfig.xml

It is really another endpoint of the instead of a separate API, and has distinct commands. It does notConfig API

529Apache Solr Reference Guide 6.1

replace or modify any sections of , but instead provides another approach to handlingsolrconfig.xml
parameters used in requests. It behaves in the same way as the Config API, by storing parameters in another file
that will be used at runtime. In this case, the parameters are stored in a file named . This file isparams.json
kept in ZooKeeper or in the directory of a standalone Solr instance.conf

The settings stored in are used at query time to override settings defined in inparams.json solrconfig.xml
some cases as described below.

When might you want to use this feature?

To avoid frequently editing your to update request parameters that change often.solrconfig.xml
To reuse parameters across various request handlers.
To mix and match parameter sets at request time.
To avoid a reload of your collection for small parameter changes.

The Request Parameters Endpoint

All requests are sent to the endpoint of the Config API. /config/params

Setting Request Parameters

The request to set, unset, or update request parameters is sent as a set of Maps with names. These objects can
be directly used in a request or a request handler definition.

The available commands are:

set: Create or overwrite a parameter set map.
unset: delete a parameter set map.
update: update a parameter set map. This is equivalent to a map.putAll(newMap) . Both the maps are
merged and if the new map has same keys as old they are overwritten

You can mix these commands into a single request if necessary.

Each map must include a name so it can be referenced later, either in a direct request to Solr or in a request
handler definition.

In the following example, we are setting 2 sets of parameters named 'myFacets' and 'myQueries'.

curl http://localhost:8983/solr/techproducts/config/params -H
'Content-type:application/json' -d '{
 "set":{
 "myFacets":{
 "facet":"true",
 "facet.limit":5}},
 "set":{
 "myQueries":{
 "defType":"edismax",
 "rows":"5",
 "df":"text_all"}}
}'

In the above example all the parameters are equivalent to the "defaults" in solrconfig.xml. It is possible to add
invariants and appends as follows

530Apache Solr Reference Guide 6.1

curl http://localhost:8983/solr/techproducts/config/params -H
'Content-type:application/json' -d '{
 "set":{
 "my_handler_params":{
 "facet.limit":5,
 "_invariants_": {
 "facet":true,
 "wt":"json"
 },
 "_appends_":{"facet.field":["field1","field2"]
 }
 }}
}'

now it is possible to define a request handler as follows

<requestHandler name="/my_handler" class="solr.SearchHandler"
useParams="my_handler_params"/>

It will be equivalent to a requesthandler definition as follows,

<requestHandler name="/my_handler" class="solr.SearchHandler">
<lst name="defaults">
 <int name="facet.limit">5</int>
</lst>
<lst name="invariants>
 <str name="wt">json</>
 <bool name="facet">true<bool>
</lst>
<lst name="appends">
 <arr name="facet.field">
 <str>field1</str>
 <str>field2</str>
</arr>
</lst>
</requestHandler>

Update example,

curl http://localhost:8983/solr/techproducts/config/params -H
'Content-type:application/json' -d '{
 "update":{
 "myFacets":{
 "facet.limit":10}},
}'

This command will add (or replace) the param to the map, keeping all other existing facet.limit myFacets m
 params.yFacets

To see the parameters that have been set, you can use the endpoint to read the contents of /config/params
, or use the name in the request:params.json

531Apache Solr Reference Guide 6.1

curl http://localhost:8983/solr/techproducts/config/params

#Or use the params name
curl http://localhost:8983/solr/techproducts/config/params/myQueries

The ParameteruseParams

When making a request, the parameter applies the request parameters set to the request. This isuseParams
translated at request time to the actual params.

For example (using the names we set up in the earlier example, please replace with your own name):

http://localhost/solr/techproducts/select?useParams=myQueries

It is possible to pass more than one parameter set in the same request. For example:

http://localhost/solr/techproducts/select?useParams=myFacets,myQueries

In the above example the param set 'myQueries' is applied on top of 'myFacets'. So, values in 'myQueries'
take precedence over values in 'myFacets'. Additionally, any values passed in the request take precedence over
'useParams' params. This acts like the "defaults" specified in the ' ' definition in <requestHandler> solrconfi

.g.xml

The parameter sets can be used directly in a request handler definition as follows. Please note that the
'useParams' specified is always applied even if the request contains .useParams

<requestHandler name="/terms" class="solr.SearchHandler" useParams="myQueries">
 <lst name="defaults">
 <bool name="terms">true</bool>
 <bool name="distrib">false</bool>
 </lst>
 <arr name="components">
 <str>terms</str>
 </arr>
</requestHandler>

To summarize, parameters are applied in this order:

parameters defined in in .<invariants> solrconfig.xml
parameters applied in _invariants_ in params.json and that is specified in the requesthandler definition or
even in request
parameters defined in the request directly.
parameter sets defined in the request, in the order they have been listed with .useParams
parameter sets defined in that have been defined in the request handler.params.json
parameters defined in in .<defaults> solrconfig.xml

Public APIs

The RequestParams Object can be accessed using the method . EachSolrConfig#getRequestParams()
paramset can be accessed by their name using the method RequestParams#getRequestParams(String

.name)

532Apache Solr Reference Guide 6.1

Managed Resources

Managed resources expose a REST API endpoint for performing Create-Read-Update-Delete (CRUD)
operations on a Solr object. Any long-lived Solr object that has configuration settings and/or data is a good
candidate to be a managed resource. Managed resources complement other programmatically manageable
components in Solr, such as the RESTful schema API to add fields to a managed schema. Consider a
Web-based UI that offers Solr-as-a-Service where users need to configure a set of stop words and synonym
mappings as part of an initial setup process for their search application. This type of use case can easily be
supported using the Managed Stop Filter & Managed Synonym Filter Factories provided by Solr, via the
Managed resources REST API. Users can also write their own custom plugins, that leverage the same internal
hooks to make additional resources REST managed.

All of the examples in this section assume you are running the "techproducts" Solr example:

bin/solr -e techproducts

Overview

Let's begin learning about managed resources by looking at a couple of examples provided by Solr for managing
stop words and synonyms using a REST API. After reading this section, you'll be ready to dig into the details of
how managed resources are implemented in Solr so you can start building your own implementation.

Stop words

To begin, you need to define a field type that uses the , such as: ManagedStopFilterFactory

<fieldType name="managed_en" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ManagedStopFilterFactory"
 managed="english" />
 </analyzer>
</fieldType>

There are two important things to notice about this field type definition. First, the filter implementation class is so
. This is a special implementation of the that uses a set of lr.ManagedStopFilterFactory StopFilterFactory

stop words that are managed from a REST API. Second, the attribute gives a name to managed=”english”
the set of managed stop words, in this case indicating the stop words are for English text.

The REST endpoint for managing the English stop words in the techproducts collection is: /solr/techproduc
.ts/schema/analysis/stopwords/english

The example resource path should be mostly self-explanatory. It should be noted that the
ManagedStopFilterFactory implementation determines the part of the path, which/schema/analysis/stopwords
makes sense because this is an analysis component defined by the schema. It follows that a field type that uses
the following filter:

<filter class="solr.ManagedStopFilterFactory"
 managed="french" />

would resolve to path: ./solr/techproducts/schema/analysis/stopwords/french

So now let’s see this API in action, starting with a simple GET request:

https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-ManagedStopFilter
https://cwiki.apache.org/confluence/display/solr/Filter+Descriptions#FilterDescriptions-StopFilter

533Apache Solr Reference Guide 6.1

curl "http://localhost:8983/solr/techproducts/schema/analysis/stopwords/english"

Assuming you sent this request to Solr, the response body is a JSON document:

{
 "responseHeader":{
 "status":0,
 "QTime":1
 },
 "wordSet":{
 "initArgs":{"ignoreCase":true},
 "initializedOn":"2014-03-28T20:53:53.058Z",
 "managedList":[
 "a",
 "an",
 "and",
 "are",
 ...]
 }
}

The ships with a pre-built set of managed stop words, howeversample_techproducts_configs config set
you should only interact with this file using the API and not edit it directly.

One thing that should stand out to you in this response is that it contains a of words as well as managedList i
. This is an important concept in this framework—managed resources typically have configuration and nitArgs

data. For stop words, the only configuration parameter is a boolean that determines whether to ignore the case
of tokens during stop word filtering (ignoreCase=true|false). The data is a list of words, which is represented as a
JSON array named in the response. managedList

Now, let’s add a new word to the English stop word list using an HTTP PUT:

curl -X PUT -H 'Content-type:application/json' --data-binary '["foo"]'
"http://localhost:8983/solr/techproducts/schema/analysis/stopwords/english"

Here we’re using cURL to PUT a JSON list containing a single word “foo” to the managed English stop words
set. Solr will return 200 if the request was successful. You can also put multiple words in a single PUT request.

You can test to see if a specific word exists by sending a GET request for that word as a child resource of the
set, such as:

curl "http://localhost:8983/solr/techproducts/schema/analysis/stopwords/english/foo"

This request will return a status code of 200 if the child resource (foo) exists or 404 if it does not exist the
managed list.

To delete a stop word, you would do:

curl -X DELETE
"http://localhost:8983/solr/techproducts/schema/analysis/stopwords/english/foo"

Note: PUT/POST is used to add terms to an existing list instead of replacing the list entirely. This is because it is
more common to add a term to an existing list than it is to replace a list altogether, so the API favors the more
common approach of incrementally adding terms especially since deleting individual terms is also supported.

534Apache Solr Reference Guide 6.1

Synonyms

For the most part, the API for managing synonyms behaves similar to the API for stop words, except instead of
working with a list of words, it uses a map, where the value for each entry in the map is a set of synonyms for a
term. As with stop words, the includes a pre-built set of synonymsample_techproducts_configs config set
mappings suitable for the sample data that is activated by the following field type definition in schema.xml:

<fieldType name="managed_en" positionIncrementGap="100">
 <analyzer>
 <tokenizer class="solr.StandardTokenizerFactory"/>
 <filter class="solr.ManagedStopFilterFactory"
 managed="english" />

 <filter class="solr.ManagedSynonymFilterFactory"
 managed="english" />

 </analyzer>
</fieldType>

To get the map of managed synonyms, send a GET request to:

curl "http://localhost:8983/solr/techproducts/schema/analysis/synonyms/english"

This request will return a response that looks like:

{
 "responseHeader":{
 "status":0,
 "QTime":3},
 "synonymMappings":{
 "initArgs":{
 "ignoreCase":true,
 "format":"solr"},
 "initializedOn":"2014-12-16T22:44:05.33Z",
 "managedMap":{
 "GB":
 ["GiB",
 "Gigabyte"],
 "TV":
 ["Television"],
 "happy":
 ["glad",
 "joyful"]}}}

Managed synonyms are returned under the property which contains a JSON Map where the valuemanagedMap
of each entry is a set of synonyms for a term, such as "happy" has synonyms "glad" and "joyful" in the example
above.

To add a new synonym mapping, you can PUT/POST a single mapping such as:

curl -X PUT -H 'Content-type:application/json' --data-binary
'{"mad":["angry","upset"]}'
"http://localhost:8983/solr/techproducts/schema/analysis/synonyms/english"

The API will return status code 200 if the PUT request was successful. To determine the synonyms for a specific
term, you send a GET request for the child resource, such as /schema/analysis/synonyms/english/mad

535Apache Solr Reference Guide 6.1

would return ["angry","upset"].

You can also PUT a list of symmetric synonyms, which will be expanded into a mapping for each term in the list.
For example, you could PUT the following list of symmetric synonyms using the JSON list syntax instead of a
map:

curl -X PUT -H 'Content-type:application/json' --data-binary '["funny",
"entertaining", "whimiscal", "jocular"]'
"http://localhost:8983/solr/techproducts/schema/analysis/synonyms/english"

Note that the expansion is performed when processing the PUT request so the underlying persistent state is still
a managed map. Consequently, if after sending the previous PUT request, you did a GET for /schema/analys

, then you would receive a list containing is/synonyms/english/jocular ["funny", "entertaining",
. Once you've created synonym mappings using a list, each term must be managed separately."whimiscal"]

Lastly, you can delete a mapping by sending a DELETE request to the managed endpoint.

Applying Changes

Changes made to managed resources via this REST API are not applied to the active Solr components until the
Solr collection (or Solr core in single server mode) is reloaded. For example:, after adding or deleting a stop
word, you must reload the core/collection before changes become active.

This approach is required when running in distributed mode so that we are assured changes are applied to all
cores in a collection at the same time so that behavior is consistent and predictable. It goes without saying that
you don’t want one of your replicas working with a different set of stop words or synonyms than the others.

One subtle outcome of this approach is that the once you make changes with the API,apply-changes-at-reload
there is no way to read the active data. In other words, the API returns the most up-to-date data from an API
perspective, which could be different than what is currently being used by Solr components. However, the intent
of this API implementation is that changes will be applied using a reload within a short time frame after making
them so the time in which the data returned by the API differs from what is active in the server is intended to be
negligible.

RestManager Endpoint

Metadata about registered ManagedResources is available using the and /schema/managed /config/managed
endpoints for each collection. Assuming you have the field type shown above defined in yourmanaged_en
schema.xml, sending a GET request to the following resource will return metadata about which schema-related
resources are being managed by the RestManager:

curl "http://localhost:8983/solr/techproducts/schema/managed"

The response body is a JSON document containing metadata about managed resources under
the /schema root:

Changing things like stop words and synonym mappings typically require re-indexing existing documents
if being used by index-time analyzers. The RestManager framework does not guard you from this, it
simply makes it possible to programmatically build up a set of stop words, synonyms etc.

536Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":3
 },
 "managedResources":[
 {
 "resourceId":"/schema/analysis/stopwords/english",
 "class":"org.apache.solr.rest.schema.analysis.ManagedWordSetResource",
 "numObservers":"1"
 },
 {
 "resourceId":"/schema/analysis/synonyms/english",

"class":"org.apache.solr.rest.schema.analysis.ManagedSynonymFilterFactory$SynonymMan
ager",
 "numObservers":"1"
 }
]
}

You can also create new managed resource using PUT/POST to the appropriate URL – before ever configuring
anything that uses these resources.

For example: imagine we want to build up a set of German stop words. Before we can start adding stop words,
we need to create the endpoint:

/solr/techproducts/schema/analysis/stopwords/german

To create this endpoint, send the following PUT/POST request to the endpoint we wish to create:

curl -X PUT -H 'Content-type:application/json' --data-binary \
'{"class":"org.apache.solr.rest.schema.analysis.ManagedWordSetResource"}' \
"http://localhost:8983/solr/techproducts/schema/analysis/stopwords/german"

Solr will respond with status code 200 if the request is successful. Effectively, this action registers a new
endpoint for a managed resource in the RestManager. From here you can start adding German stop words as
we saw above:

curl -X PUT -H 'Content-type:application/json' --data-binary '["die"]' \
"http://localhost:8983/solr/techproducts/schema/analysis/stopwords/german"

For most users, creating resources in this way should never be necessary, since managed resources are created
automatically when configured.

However: You may want to explicitly delete managed resources if they are no longer being used by a Solr
component.

For instance, the managed resource for German that we created above can be deleted because there are no
Solr components that are using it, whereas the managed resource for English stop words cannot be deleted
because there is a token filter declared in schema.xml that is using it.

curl -X DELETE
"http://localhost:8983/solr/techproducts/schema/analysis/stopwords/german"

537Apache Solr Reference Guide 6.1

Related Topics

Using Solr’s REST APIs to manage stop words and synonyms by Tim Potter @ SearchHub.org

Solr Plugins
Solr allows you to load custom code to perform a variety of tasks within Solr, from custom Request Handlers to
process your searches, to custom Analyzers and Token Filters for your text field. You can even load custom
Field Types. These pieces of custom code are called plugins.

Not everyone will need to create plugins for their Solr instances - what's provided is usually enough for most
applications. However, if there's something that you need, you may want to review the Solr Wiki documentation
on plugins at .SolrPlugins

If you have a plugin you would like to use, and you are running in SolrCloud mode, you can use the Blob Store
API and the Config API to load the jars to Solr. The commands to use are described in the section Adding

. Custom Plugins in SolrCloud Mode

Adding Custom Plugins in SolrCloud Mode

When running Solr in SolrCloud mode and you want to use custom code (such as custom analyzers, tokenizers,
query parsers, and other plugins), it can be cumbersome to add jars to the classpath on all nodes in your cluster.
Using the and special commands with the , you can upload jars to a specialBlob Store API Config API
system-level collection and dynamically load plugins from them at runtime with out needing to restart any nodes.

Uploading Jar Files

The first step is to use the to upload your jar files. This will to put your jars in the collectiBlob Store API .system
on and distribute them across your SolrCloud nodes. These jars are added to a separate classloader and only
accessible to components that are configured with the property . These components areruntimeLib=true
loaded lazily because the collection may not be loaded when a particular core is loaded..system

Config API Commands to use Jars as Runtime Libraries

The runtime library feature uses a special set of commands for the to add, update, or remove jar filesConfig API
currently available in the blob store to the list of runtime libraries.

The following commands are used to manage runtime libs:

add-runtimelib
update-runtimelib
delete-runtimelib

This Feature is Disabled By Default
In addition to requiring that Solr by running in mode, this feature is also disabled by defaultSolrCloud
unless all Solr nodes are run with the option on startup.-Denable.runtime.lib=true

Before enabling this feature, users should carefully consider the issues discussed in the Securing
 section below.Runtime Libraries

http://searchhub.org/2014/03/31/introducing-solrs-restmanager-and-managed-stop-words-and-synonyms/
http://wiki.apache.org/solr/SolrPlugins

538Apache Solr Reference Guide 6.1

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "add-runtimelib": { "name":"jarblobname", "version":2 },
 "update-runtimelib": { "name":"jarblobname", "version":3 },
 "delete-runtimelib": "jarblobname"
}'

The name to use is the name of the blob that you specified when you uploaded your jar to the blob store. You
should also include the version of the jar found in the blob store that you want to use. These details are added to

. configoverlay.json

The default does not have visibility to the jars that have been defined as runtimeSolrResourceLoader
libraries. There is a classloader that can access these jars which is made available only to those components
which are specially annotated.

Every pluggable component can have an optional extra attribute called , which means thatruntimeLib=true
the components are not loaded at core load time. Instead, they will be loaded on demand. If all the dependent
jars are not available when the component is loaded, an error is thrown.

This example shows creating a ValueSourceParser using a jar that has been loaded to the Blob store.

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "create-valuesourceparser": {
 "name": "nvl",
 "runtimeLib": true,
 "class": "solr.org.apache.solr.search.function.NvlValueSourceParser,
 "nvlFloatValue": 0.0 }
}'

Securing Runtime Libraries

A drawback of this feature is that it could be used to load malicious executable code into the system. However, it
is possible to restrict the system to load only trusted jars using to verify that the executables loaded into thePKI
system are trustworthy.

The following steps will allow you enable security for this feature. The instructions assume you have started all
your Solr nodes with the .-Denable.runtime.lib=true

Step 1: Generate an RSA Private Key

The first step is to generate an RSA private key. The example below uses a 512-bit key, but you should use the
strength appropriate to your needs.

$ openssl genrsa -out priv_key.pem 512

Step 2: Output the Public Key

The public portion of the key should be output in DER format so Java can read it.

$ openssl rsa -in priv_key.pem -pubout -outform DER -out pub_key.der

Step 3: Load the Key to ZooKeeper

http://en.wikipedia.org/wiki/Public_key_infrastructure

539Apache Solr Reference Guide 6.1

The .der files that are output from Step 2 should then be loaded to ZooKeeper under a node so they/keys/exe
are available throughout every node. You can load any number of public keys to that node and all are valid. If a
key is removed from the directory, the signatures of that key will cease to be valid. So, before removing the a
key, make sure to update your runtime library configurations with valid signatures with the update-runtimeli

 command.b

At the current time, you can only use the ZooKeeper (or on Windows) script to issuezkCli.sh zkCli.cmd
these commands (the Solr version has the same name, but is not the same). If you are running the embedded
ZooKeeper that is included with Solr, you have this script already; in order to use it, you will need todo not
download a copy of ZooKeeper v3.4.6 from Don't worry about configuring thehttp://zookeeper.apache.org/.
download, you're just trying to get the command line utility script. When you start the script, you will connect to
the embedded ZooKeeper. If you have your own ZooKeeper ensemble running already, you can find the script
in (or if you are using Windows).$ZK_INSTALL/bin/zkCli.sh zkCli.cmd

To load the keys, you will need to connect to ZooKeeper with , create the directories, and then createzkCli.sh
the key file, as in the following example.

Connect to ZooKeeper
Replace the server location below with the correct ZooKeeper connect string for
your installation.
$.bin/zkCli.sh -server localhost:9983

After connection, you will interact with the ZK prompt.
Create the directories
[zk: localhost:9983(CONNECTED) 5] create /keys
[zk: localhost:9983(CONNECTED) 5] create /keys/exe

Now create the public key file in ZooKeeper
The second path is the path to the .der file on your local machine
[zk: localhost:9983(CONNECTED) 5] create /keys/exe/pub_key.der
/myLocal/pathTo/pub_key.der

After this, any attempt to load a jar will fail. All your jars must be signed with one of your private keys for Solr to
trust it. The process to sign your jars and use the signature is outlined in Steps 4-6.

Step 4: Sign the jar File

Next you need to sign the sha1 digest of your jar file and get the base64 string.

$ openssl dgst -sha1 -sign priv_key.pem myjar.jar | openssl enc -base64

The output of this step will be a string that you will need to add the jar to your classpath in Step 6 below.

Step 5: Load the jar to the Blob Store

Load your jar to the Blob store, using the . This step does not require a signature; you will needBlob Store API
the signature in Step 6 to add it to your classpath.

curl -X POST -H 'Content-Type: application/octet-stream' --data-binary @{filename}
http://localhost:8983/solr/.system/blob/{blobname}

The blob name that you give the jar file in this step will be used as the name in the next step.

Step 6: Add the jar to the Classpath

Finally, add the jar to the classpath using the Config API as detailed above. In this step, you will need to provide

http://zookeeper.apache.org/.

540Apache Solr Reference Guide 6.1

the signature of the jar that you got in Step 4.

curl http://localhost:8983/solr/techproducts/config -H
'Content-type:application/json' -d '{
 "add-runtimelib": {
 "name":"blobname",
 "version":2,

"sig":"mW1Gwtz2QazjfVdrLFHfbGwcr8xzFYgUOLu68LHqWRDvLG0uLcy1McQ+AzVmeZFBf1yLPDEHBWJb5
KXr8bdbHN/

PYgUB1nsr9pk4EFyD9KfJ8TqeH/ijQ9waa/vjqyiKEI9U550EtSzruLVZ32wJ7smvV0fj2YYhrUaaPzOn9g0
=" }
}'

JVM Settings
Configuring your JVM can be a complex topic. A full discussion is beyond the scope of this document. Luckily,
most modern JVMs are quite good at making the best use of available resources with default settings. The
following sections contain a few tips that may be helpful when the defaults are not optimal for your situation.

For more general information about improving Solr performance, see https://wiki.apache.org/solr/SolrPerformanc
.eFactors

Choosing Memory Heap Settings

The most important JVM configuration settings are those that determine the amount of memory it is allowed to
allocate. There are two primary command-line options that set memory limits for the JVM. These are ,-Xms
which sets the initial size of the JVM's memory heap, and , which sets the maximum size to which the heap-Xmx
is allowed to grow.

If your Solr application requires more heap space than you specify with the option, the heap will grow-Xms
automatically. It's quite reasonable to not specify an initial size and let the heap grow as needed. The only
downside is a somewhat slower startup time since the application will take longer to initialize. Setting the initial
heap size higher than the default may avoid a series of heap expansions, which often results in objects being
shuffled around within the heap, as the application spins up.

The maximum heap size, set with , is more critical. If the memory heap grows to this size, object creation-Xmx
may begin to fail and throw . Setting this limit too low can cause spurious errors inOutOfMemoryException
your application, but setting it too high can be detrimental as well.

It doesn't always cause an error when the heap reaches the maximum size. Before an error is raised, the JVM
will first try to reclaim any available space that already exists in the heap. Only if all garbage collection attempts
fail will your application see an exception. As long as the maximum is big enough, your app will run without error,
but it may run more slowly if forced garbage collection kicks in frequently.

The larger the heap the longer it takes to do garbage collection. This can mean minor, random pauses or, in
extreme cases, "freeze the world" pauses of a minute or more. As a practical matter, this can become a serious
problem for heap sizes that exceed about two gigabytes, even if far more physical memory is available. On
robust hardware, you may get better results running multiple JVMs, rather than just one with a large memory
heap. Some specialized JVM implementations may have customized garbage collection algorithms that do better
with large heaps. Consult your JVM vendor's documentation.

When setting the maximum heap size, be careful not to let the JVM consume all available physical memory. If
the JVM process space grows too large, the operating system will start swapping it, which will severely impact
performance. In addition, the operating system uses memory space not allocated to processes for file system

https://wiki.apache.org/solr/SolrPerformanceFactors
https://wiki.apache.org/solr/SolrPerformanceFactors

541Apache Solr Reference Guide 6.1

cache and other purposes. This is especially important for I/O-intensive applications, like Lucene/Solr. The larger
your indexes, the more you will benefit from filesystem caching by the OS. It may require some experimentation
to determine the optimal tradeoff between heap space for the JVM and memory space for the OS to use.

On systems with many CPUs/cores, it can also be beneficial to tune the layout of the heap and/or the behavior of
the garbage collector. Adjusting the relative sizes of the generational pools in the heap can affect how often GC
sweeps occur and whether they run concurrently. Configuring the various settings of how the garbage collector
should behave can greatly reduce the overall performance impact when it does run. There is a lot of good
information on this topic available on Sun's website. A good place to start is here: Oracle's Java HotSpot

.Garbage Collection

Use the Server HotSpot VM

If you are using Sun's JVM, add the command-line option when you start Solr. This tells the JVM that it-server
should optimize for a long running, server process. If the Java runtime on your system is a JRE, rather than a full
JDK distribution (including and other development tools), then it is possible that it may not support the javac -s

 JVM option. Test this by running and look for as an available option in theerver java -help -server
displayed usage message.

Checking JVM Settings

A great way to see what JVM settings your server is using, along with other useful information, is to use the
admin RequestHandler, . This request handler will display a wealth of server statistics andsolr/admin/system
settings.

You can also use any of the tools that are compatible with the Java Management Extensions (JMX). See the
section in for more information.Using JMX with Solr Managing Solr

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140228.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-140228.html

542Apache Solr Reference Guide 6.1

Managing Solr
This section describes how to run Solr and how to look at Solr when it is running. It contains the following
sections:

Taking Solr to Production: Describes how to install Solr as a service on Linux for production environments.

Securing Solr: How to use the Basic and Kerberos authentication and rule-based authorization plugins for Solr,
and how to enable SSL.

Running Solr on HDFS: How to use HDFS to store your Solr indexes and transaction logs.

Making and Restoring Backups: Describes backup strategies for your Solr indexes.

Configuring Logging: Describes how to configure logging for Solr.

Using JMX with Solr: Describes how to use Java Management Extensions with Solr.

MBean Request Handler: How to use Solr's MBeans for programmatic access to the system plugins and stats.

Taking Solr to Production
This section provides guidance on how to setup Solr to run in production on *nix platforms, such as Ubuntu.
Specifically, we’ll walk through the process of setting up to run a single Solr instance on a Linux host and then
provide tips on how to support multiple Solr nodes running on the same host.

Service Installation Script
Planning your directory structure

Solr Installation Directory
Separate Directory for Writable Files

Create the Solr user
Run the Solr Installation Script

Solr Home Directory
Environment overrides include file
Log settings
init.d script

Progress Check
Fine tune your production setup

Memory and GC Settings
Out-of-Memory Shutdown Hook

SolrCloud
ZooKeeper chroot

Solr Hostname
Override settings in solrconfig.xml
Enable Remote JMX Access

Running multiple Solr nodes per host

Service Installation Script

Solr includes a service installation script () to help you install Solr as abin/install_solr_service.sh
service on Linux. Currently, the script only supports Red Hat, Ubuntu, Debian, and SUSE Linux distributions.
Before running the script, you need to determine a few parameters about your setup. Specifically, you need to
decide where to install Solr and which system user should be the owner of the Solr files and process.

543Apache Solr Reference Guide 6.1

Planning your directory structure

We recommend separating your live Solr files, such as logs and index files, from the files included in the Solr
distribution bundle, as that makes it easier to upgrade Solr and is considered a good practice to follow as a
system administrator.

Solr Installation Directory

By default, the service installation script will extract the distribution archive into . You can change this/opt
location using the option when running the installation script. The script will also create a symbolic link to the-i
versioned directory of Solr. For instance, if you run the installation script for Solr X.0.0, then the following
directory structure will be used:

/opt/solr-X.0.0
/opt/solr -> /opt/solr-X.0.0

Using a symbolic link insulates any scripts from being dependent on the specific Solr version. If, down the road,
you need to upgrade to a later version of Solr, you can just update the symbolic link to point to the upgraded
version of Solr. We’ll use to refer to the Solr installation directory in the remaining sections of this/opt/solr
page.

Separate Directory for Writable Files

You should also separate writable Solr files into a different directory; by default, the installation script uses /var
, but you can override this location using the option. With this approach, the files in will/solr -d /opt/solr

remain untouched and all files that change while Solr is running will live under ./var/solr

Create the Solr user

Running Solr as is not recommended for security reasons. Consequently, you should determine theroot
username of a system user that will own all of the Solr files and the running Solr process. By default, the
installation script will create the user, but you can override this setting using the -u option. If yoursolr
organization has specific requirements for creating new user accounts, then you should create the user before
running the script. The installation script will make the Solr user the owner of the and di/opt/solr /var/solr
rectories.

You are now ready to run the installation script.

Run the Solr Installation Script

To run the script, you'll need to download the latest Solr distribution archive and then do the following (NOTE:
replace with the actual version number):solr-X.Y.Z

$ tar xzf solr-X.Y.Z.tgz solr-X.Y.Z/bin/install_solr_service.sh --strip-components=2

The previous command extracts the script from the archive into the currentinstall_solr_service.sh
directory. If installing on Red Hat, please make sure is installed before running the Solr installation script (lsof su

). The installation script must be run as root:do yum install lsof

$ sudo bash ./install_solr_service.sh solr-X.Y.Z.tgz

By default, the script extracts the distribution archive into , configures Solr to write files into ,/opt /var/solr
and runs Solr as the user. Consequently, the following command produces the same result as the previoussolr

544Apache Solr Reference Guide 6.1

command:

$ sudo bash ./install_solr_service.sh solr-X.Y.Z.tgz -i /opt -d /var/solr -u solr -s
solr -p 8983

You can customize the service name, installation directories, port, and owner using options passed to the
installation script. To see available options, simply do:

$ sudo bash ./install_solr_service.sh -help

Once the script completes, Solr will be installed as a service and running in the background on your server (on
port 8983). To verify, you can do:

$ sudo service solr status

We'll cover some additional configuration settings you can make to fine-tune your Solr setup in a moment. Before
moving on, let's take a closer look at the steps performed by the installation script. This gives you a better
overview and will help you understand important details about your Solr installation when reading other pages in
this guide; such as when a page refers to Solr home, you'll know exactly where that is on your system.

Solr Home Directory

The Solr home directory (not to be confused with the Solr installation directory) is where Solr manages core
directories with index files. By default, the installation script uses . If the option is used on/var/solr/data -d
the install script, then this will change to the subdirectory in the location given to the -d option. Take adata
moment to inspect the contents of the Solr home directory on your system. If you do not store insolr.xml

, the home directory must contain a file. When Solr starts up, the Solr start script passesZooKeeper solr.xml
the location of the home directory using the system property.-Dsolr.solr.home

Environment overrides include file

The service installation script creates an environment specific include file that overrides defaults used by the bin
 script. The main advantage of using an include file is that it provides a single location where all of your/solr

environment-specific overrides are defined. Take a moment to inspect the contents of the /etc/default/solr
 file, which is the default path setup by the installation script. If you used the option on the install script.in.sh -s

to change the name of the service, then the first part of the filename will be different. For a service named solr
, the file will be named . There are many settings that you can-demo /etc/default/solr-demo.in.sh

override using this file. However, at a minimum, this script needs to define the and SOLR_PID_DIR SOLR_HOME
variables, such as:

SOLR_PID_DIR=/var/solr
SOLR_HOME=/var/solr/data

The variable sets the directory where the start script will write out a file containing the SolrSOLR_PID_DIR
server’s process ID.

Log settings

Solr uses Apache Log4J for logging. The installation script copies /opt/solr/server/resources/log4j.p
 to and customizes it for your environment. Specifically it updatesroperties /var/solr/log4j.properties

the Log4J settings to create logs in the directory. Take a moment to verify that the Solr/var/solr/logs

include file is configured to send logs to the correct location by checking the following settings in /etc/defau

lt/solr.in.sh :

545Apache Solr Reference Guide 6.1

LOG4J_PROPS=/var/solr/log4j.properties
SOLR_LOGS_DIR=/var/solr/logs

For more information about Log4J configuration, please see: Configuring Logging

init.d script

When running a service like Solr on Linux, it’s common to setup an init.d script so that system administrators can
control Solr using the service tool, such as: . The installation script creates a very basicservice solr start
init.d script to help you get started. Take a moment to inspect the file, which is the default/etc/init.d/solr
script name setup by the installation script. If you used the option on the install script to change the name of-s
the service, then the filename will be different. Notice that the following variables are setup for your environment
based on the parameters passed to the installation script:

SOLR_INSTALL_DIR=/opt/solr
SOLR_ENV=/etc/default/solr.in.sh
RUNAS=solr

The and variables should be self-explanatory. The variable sets theSOLR_INSTALL_DIR SOLR_ENV RUNAS
owner of the Solr process, such as ; if you don’t set this value, the script will run Solr as , which is notsolr root
recommended for production. You can use the script to start Solr by doing the following/etc/init.d/solr
as root:

service solr start

The script also supports the , , and commands. Please keep in mind/etc/init.d/solr stop restart status
that the init script that ships with Solr is very basic and is intended to show you how to setup Solr as a service.
However, it’s also common to use more advanced tools like or to control Solr as a servicesupervisord upstart
on Linux. While showing how to integrate Solr with tools like supervisord is beyond the scope of this guide, the i

 script should provide enough guidance to help you get started. Also, the installation script sets thenit.d/solr
Solr service to start automatically when the host machine initializes.

Progress Check

In the next section, we cover some additional environment settings to help you fine-tune your production setup.
However, before we move on, let's review what we've achieved thus far. Specifically, you should be able to
control Solr using . Please verify the following commands work with your setup:/etc/init.d/solr

$ sudo service solr restart
$ sudo service solr status

The status command should give some basic information about the running Solr node that looks similar to:

Solr process PID running on port 8983
{
 "version":"5.0.0 - ubuntu - 2014-12-17 19:36:58",
 "startTime":"2014-12-19T19:25:46.853Z",
 "uptime":"0 days, 0 hours, 0 minutes, 8 seconds",
 "memory":"85.4 MB (%17.4) of 490.7 MB"}

If the command is not successful, look for error messages in .status /var/solr/logs/solr.log

546Apache Solr Reference Guide 6.1

Fine tune your production setup

Memory and GC Settings

By default, the script sets the maximum Java heap size to 512M (-Xmx512m), which is fine for gettingbin/solr
started with Solr. For production, you’ll want to increase the maximum heap size based on the memory
requirements of your search application; values between 10 and 20 gigabytes are not uncommon for production
servers. When you need to change the memory settings for your Solr server, use the variableSOLR_JAVA_MEM
in the include file, such as:

SOLR_JAVA_MEM="-Xms10g -Xmx10g"

Also, the include file comes with a set of pre-configured Java Garbage Collection settings that have shown to
work well with Solr for a number of different workloads. However, these settings may not work well for your
specific use of Solr. Consequently, you may need to change the GC settings, which should also be done with the

 variable in the include file. For more information about tuning yourGC_TUNE /etc/default/solr.in.sh
memory and garbage collection settings, see: .JVM Settings

Out-of-Memory Shutdown Hook

The script registers the script to be called by the JVM if an OutOfMemoryErrorbin/solr bin/oom_solr.sh
occurs. The script will issue a to the Solr process that experiences the oom_solr.sh kill -9 OutOfMemoryE

. This behavior is recommended when running in SolrCloud mode so that ZooKeeper is immediatelyrror
notified that a node has experienced a non-recoverable error. Take a moment to inspect the contents of the /op

 script so that you are familiar with the actions the script will perform if it is invokedt/solr/bin/oom_solr.sh
by the JVM.

SolrCloud

To run Solr in SolrCloud mode, you need to set the variable in the include file to point to yourZK_HOST
ZooKeeper ensemble. Running the embedded ZooKeeper is not supported in production environments. For
instance, if you have a ZooKeeper ensemble hosted on the following three hosts on the default client port 2181
(zk1, zk2, and zk3), then you would set:

ZK_HOST=zk1,zk2,zk3

When the variable is set, Solr will launch in "cloud" mode.ZK_HOST

ZooKeeper chroot

If you're using a ZooKeeper instance that is shared by other systems, it's recommended to isolate the SolrCloud
znode tree using ZooKeeper's chroot support. For instance, to ensure all znodes created by SolrCloud are stored
under , you can put on the end of your connection string, such as:/solr /solr ZK_HOST

ZK_HOST=zk1,zk2,zk3/solr

Before using a chroot for the first time, you need to create the root path (znode) in ZooKeeper by using the zkcl
 script. We can use the makepath command for that:i.sh

$ server/scripts/cloud-scripts/zkcli.sh -zkhost zk1,zk2,zk3 -cmd makepath /solr

547Apache Solr Reference Guide 6.1

Solr Hostname

Use the variable in the include file to set the hostname of the Solr server.SOLR_HOST

SOLR_HOST=solr1.example.com

Setting the hostname of the Solr server is recommended, especially when running in SolrCloud mode, as this
determines the address of the node when it registers with ZooKeeper.

Override settings in solrconfig.xml

Solr allows configuration properties to be overridden using Java system properties passed at startup using the -
 syntax. For instance, in , the default auto soft commit settings are set to:Dproperty=value solrconfig.xml

<autoSoftCommit>
 <maxTime>${solr.autoSoftCommit.maxTime:-1}</maxTime>
</autoSoftCommit>

In general, whenever you see a property in a Solr configuration file that uses the ${solr.PROPERTY:DEFAULT
 syntax, then you know it can be overridden using a Java system property. For instance, to set the_VALUE}

maxTime for soft-commits to be 10 seconds, then you can start Solr with -Dsolr.autoSoftCommit.maxTime
, such as:=10000

$ bin/solr start -Dsolr.autoSoftCommit.maxTime=10000

The script simply passes options starting with on to the JVM during startup. For running inbin/solr -D
production, we recommend setting these properties in the variable defined in the include file.SOLR_OPTS
Keeping with our soft-commit example, in , you would do:/etc/default/solr.in.sh

SOLR_OPTS="$SOLR_OPTS -Dsolr.autoSoftCommit.maxTime=10000"

Enable Remote JMX Access

If you need to attach a JMX-enabled Java profiling tool, such as JConsole or VisualVM, to a remote Solr server,
then you need to enable remote JMX access when starting the Solr server. Simply change the ENABLE_REMOTE

 property in the include file to true. You’ll also need to choose a port for the JMX RMI connector to_JMX_OPTS
bind to, such as 18983. For example, if your Solr include script sets:

ENABLE_REMOTE_JMX_OPTS=true
RMI_PORT=18983

The JMX RMI connector will allow Java profiling tools to attach to port 18983. When enabled, the following
properties are passed to the JVM when starting Solr:

If you also want to bootstrap ZooKeeper with existing , you can instead use use / solr_home zkcli.sh
's command, which will also create the chroot path if it does not exist. See zkcli.bat bootstrap Com

 for more info.mand Line Utilities

548Apache Solr Reference Guide 6.1

-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.local.only=false \
-Dcom.sun.management.jmxremote.ssl=false \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.port=18983 \
-Dcom.sun.management.jmxremote.rmi.port=18983

We don’t recommend enabling remote JMX access in production, but it can sometimes be useful when doing
performance and user-acceptance testing prior to going into production.

Running multiple Solr nodes per host

The script is capable of running multiple instances on one machine, but for a installation, thisbin/solr typical
is not a recommended setup. Extra CPU and memory resources are required for each additional instance. A
single instance is easily capable of handling multiple indexes.

If your use case requires multiple instances, at a minimum you will need unique Solr home directories for each
node you want to run; ideally, each home should be on a different physical disk so that multiple Solr nodes don’t
have to compete with each other when accessing files on disk. Having different Solr home directories implies that
you’ll need a different include file for each node. Moreover, if using the script to control/etc/init.d/solr
Solr as a service, then you’ll need a separate script for each node. The easiest approach is to use the service
installation script to add multiple services on the same host, such as:

$ sudo bash ./install_solr_service.sh solr-X.Y.Z.tgz -s solr2 -p 8984

The command shown above will add a service named running on port 8984 using forsolr2 /var/solr2
writable (aka "live") files; the second server will still be owned and run by the user and will use the Solrsolr
distribution files in . After installing the solr2 service, verify it works correctly by doing:/opt

$ sudo service solr2 restart
$ sudo service solr2 status

When to ignore the recommendation
For every recommendation, there are exceptions. For the recommendation above, that exception is
mostly applicable when discussing extreme scalability. The best reason for running multiple Solr nodes
on one host is decreasing the need for extremely large heaps.

When the Java heap gets very large, it can result in extremely long garbage collection pauses, even with
the GC tuning that the startup script provides by default. The exact point at which the heap is
considered "very large" will vary depending on how Solr is used. This means that there is no hard
number that can be given as a threshold, but if your heap is reaching the neighborhood of 16 to 32
gigabytes, it might be time to consider splitting nodes. Ideally this would mean more machines, but
budget constraints might make that impossible.

There is another issue once the heap reaches 32GB. Below 32GB, Java is able to use compressed
pointers, but above that point, larger pointers are required, which uses more memory and slows down
the JVM.

Because of the potential garbage collection issues and the particular issues that happen at 32GB, if a
single instance would require a 64GB heap, performance is likely to improve greatly if the machine is set
up with two nodes that each have a 31GB heap.

549Apache Solr Reference Guide 6.1

Securing Solr
When planning how to secure Solr, you should consider which of the available features or approaches are right
for you.

Authentication or authorization of users using:
Kerberos Authentication Plugin
Basic Authentication Plugin
Rule-Based Authorization Plugin
Custom authentication or authorization plugin

Enabling SSL
If using SolrCloud, ZooKeeper Access Control

Authentication and Authorization Plugins

Solr has security frameworks for supporting authentication and authorization of users. This allows for verifying a
user's identity and for restricting access to resources in a Solr cluster. Solr includes plugins to support Basic
authentication, Kerberos, and rule-based authorization of users. Additional plugins can be developed using the
authentication and authorization frameworks described below.

The plugin implementation will dictate if the plugin can be used with Solr running in SolrCloud mode only or also
if running in standalone mode. If the plugin supports SolrCloud only, a file must be createdsecurity.json

and uploaded to ZooKeeper before it can be used. If the plugin also supports standalone mode, a system
property can be used instead of creating and managing -DauthenticationPlugin=<pluginClassName> s

 in ZooKeeper. Here is a list of the available plugins and the approach supported:ecurity.json

Basic authentication: SolrCloud only.
Kerberos authentication: SolrCloud or standalone mode.
Rule-based authorization: SolrCloud only.

The following section describes how to enable plugins with in ZooKeeper when using Solr insecurity.json
SolrCloud mode.

Enable Plugins with security.json

All of the information required to initialize either type of security plugin is stored in a file in/security.json

ZooKeeper. This file contains 2 sections, one each for authentication and authorization.

{
 "authentication" : {
 "class": "class.that.implements.authentication"
 },
 "authorization": {
 "class": "class.that.implements.authorization"
 }
}

The file needs to be in ZooKeeper before a Solr instance comes up so Solr starts with the/security.json
security plugin enabled. See the section below for information on how to doAdding security.json to Zookeeper
this.

security.json

550Apache Solr Reference Guide 6.1

1.

2.

Depending on the plugin(s) in use, other information will be stored in such as user informationsecurity.json
or rules to create roles and permissions. This information is added through the APIs for each plugin provided by
Solr, or, in the case of a custom plugin, the approach designed by you.

Here is a more detailed example. In this, the Basic authentication and rule-based authorizationsecurity.json
plugins are enabled, and some data has been added:

{
"authentication":{
 "class":"solr.BasicAuthPlugin",
 "credentials":{"solr":"IV0EHq1OnNrj6gvRCwvFwTrZ1+z1oBbnQdiVC3otuq0=
Ndd7LKvVBAaZIF0QAVi1ekCfAJXr1GGfLtRUXhgrF8c="}
},
"authorization":{
 "class":"solr.RuleBasedAuthorizationPlugin",
 "permissions":[{"name":"security-edit",
 "role":"admin"}]
 "user-role":{"solr":"admin"}
}}

Adding security.json to ZooKeeper

While configuring Solr to use an authentication or authorization plugin, you will need to upload a security.jso
 file to ZooKeeper as in the example below.n

> server/scripts/cloud-scripts/zkcli.sh -zkhost localhost:2181 -cmd put
/security.json
 '{"authentication": {"class": "org.apache.solr.security.KerberosPlugin"}}'

Note that this example defines the for authentication. You will want to modify this section asKerberosPlugin
appropriate for the plugin you are using.

This example also defines on the command line, but you can also define a file locally andsecurity.json
upload it to ZooKeeper.

Authentication

Authentication plugins help in securing the endpoints of Solr by authenticating incoming requests. A custom
plugin can be implemented by extending the AuthenticationPlugin class.

An authentication plugin consists of two parts:

Server-side component, which intercepts and authenticates incoming requests to Solr using a mechanism
defined in the plugin, such as Kerberos, Basic Auth or others.
Client-side component, i.e., an extension of , which enables a SolrJ client toHttpClientConfigurer
make requests to a secure Solr instance using the authentication mechanism which the server
understands.

Enabling a Plugin

Depending on the authentication and authorization plugin that you use, you may have user information
stored in . If so, we highly recommend that you implement access control in yoursecurity.json
ZooKeeper nodes. Information about how to enable this is available in the section ZooKeeper Access

.Control

551Apache Solr Reference Guide 6.1

Specify the authentication plugin in as in this example: /security.json

{
 "authentication": {
 "class": "class.that.implements.authentication",
 "other_data" : "..."}
}

All of the content in the authentication block of would be passed on as a map to thesecurity.json
plugin during initialization.
An authentication plugin can also be used with a standalone Solr instance by passing in -Dauthenticat

 during the startup.ionPlugin=<plugin class name>

Available Authentication Plugins

Solr has two implementations of authentication plugins:

Kerberos Authentication Plugin
Basic Authentication Plugin

Authorization

An authorization plugin can be written for Solr by extending the interface.AuthorizationPlugin

Loading a Custom Plugin

Make sure that the plug-in implementation is in the classpath.
The plugin can then be initialized by specifying the same in in the following manner:security.json

{
 "authorization": {
 "class": "org.apache.solr.security.MockAuthorizationPlugin",
 "other_data" : "..."}
}

All of the content in the block of would be passed on as a map to the pluginauthorization security.json
during initialization.

Available Authorization Plugins

Solr has one implementation of an authorization plugin:

Rule-Based Authorization Plugin

Basic Authentication Plugin

security.json

security.json

The authorization plugin is only supported in SolrCloud mode. Also, reloading the plugin isn't supported
at this point and requires a restart of the Solr instance (meaning, the JVM should be restarted, not simply
a core reload).

http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/security/AuthorizationPlugin.html

552Apache Solr Reference Guide 6.1

Solr can support Basic authentication for users with the use of the BasicAuthPlugin.

An authorization plugin is also available to configure Solr with permissions to perform various activities in the
system. The authorization plugin is described in the section .Rule-Based Authorization Plugin

Enable Basic Authentication

To use Basic authentication, you must first create a file and store it in ZooKeeper. This file andsecurity.json
how to upload it to ZooKeeper is described in detail in the section .Enable Plugins with security.json

For Basic authentication, the file must have an part which defines the classsecurity.json authentication
being used for authentication. Usernames and passwords (as a sha256(password+salt) hash) could be added
when the file is created, or can be added later with the Basic authentication API, described below.

The part is not related to Basic authentication, but is a separate authorization plugin designedauthorization
to support fine-grained user access control. For more information, see .Rule-Based Authorization Plugin

An example showing both sections is shown below to show how these plugins can worksecurity.json
together:

{
"authentication":{
 "blockUnknown": true,
 "class":"solr.BasicAuthPlugin",
 "credentials":{"solr":"IV0EHq1OnNrj6gvRCwvFwTrZ1+z1oBbnQdiVC3otuq0=
Ndd7LKvVBAaZIF0QAVi1ekCfAJXr1GGfLtRUXhgrF8c="}
},
"authorization":{
 "class":"solr.RuleBasedAuthorizationPlugin",
 "permissions":[{"name":"security-edit",
 "role":"admin"}],
 "user-role":{"solr":"admin"}
}}

Save the above json to a file called security.json locally. Run the following command to upload it to Zookeeper.
(ensure that the Zookeeper port is correct)

server/scripts/cloud-scripts/zkcli.sh -zkhost localhost:9983 -cmd putfile
/security.json security.json

There are several things defined in this file:

Basic authentication and rule-based authorization plugins are enabled.
A user called 'solr', with a password has been defined.'SolrRocks'
'blockUknown:true' means that unauthenticated requests are not allowed to pass through
The 'admin' role has been defined, and it has permission to edit security settings.
The 'solr' user has been defined to the 'admin' role.

Caveats

There are a few things to keep in mind when using the Basic authentication plugin.

Credentials are sent in plain text by default. It's recommended to use SSL for communication when Basic
authentication is enabled, as described in the section .Enabling SSL
A user who has access to write permissions to will be able to modify all the permissionssecurity.json
and how users have been assigned permissions. Special care should be taken to only grant access to
editing security to appropriate users.
Your network should, of course, be secure. Even with Basic authentication enabled, you should not

https://cwiki.apache.org/confluence/display/solr/Authentication+and+Authorization+Plugins#AuthenticationandAuthorizationPlugins-EnabledPluginswithsecurity.json

553Apache Solr Reference Guide 6.1

unnecessarily expose Solr to the outside world.

Editing Authentication Plugin Configuration

An Authentication API allows modifying user IDs and passwords. The API provides an endpoint with specific
commands to set user details or delete a user.

API Entry Point

admin/authentication

This endpoint is not collection-specific, so users are created for the entire Solr cluster. If users need to be
restricted to a specific collection, that can be done with the authorization rules.

Add a User or Edit a Password

The command allows you to add users and change their passwords. For example, the followingset-user
defines two users and their passwords:

curl --user solr:SolrRocks http://localhost:8983/solr/admin/authentication -H
'Content-type:application/json' -d '{
 "set-user": {"tom" : "TomIsCool" ,
 "harry":"HarrysSecret"}}'

Delete a User

The command allows you to remove a user. The user password does not need to be sent todelete-user
remove a user. In the following example, we've asked that user IDs 'tom' and 'harry' be removed from the
system.

curl --user solr:SolrRocks http://localhost:8983/solr/admin/authentication -H
'Content-type:application/json' -d '{
 "delete-user": ["tom","harry"]}'

Set a property

Set arbitrary properties for authentication plugin. The only supported property is 'blockUnknown'

curl --user solr:SolrRocks http://localhost:8983/solr/admin/authentication -H
'Content-type:application/json' -d '{
 "set-property": {"blockUnknown":false}}'

Using BasicAuth with SolrJ

In SolrJ the basic auth credentials need to be set for each request as in this example:

SolrRequest req ;//create a new request object
req.setBasicAuthCredentials(userName, password);
solrClient.request(req);

Securing inter-node requests

There are a lot of requests that originate from the Solr nodes itself. e.g: requests from overseer to nodes,
recovery threads etc . These requests do not carry any basic auth credentials because no user initiated these
requests. This means the user is Solr itself. Solr uses a special internode authentication mechanism where each

554Apache Solr Reference Guide 6.1

Solr node is a super user and is fully trusted by other Solr nodes.

PKIAuthenticationPlugin

This kicks in when there is any request going on between 2 Solr nodes. It is enabled only when the
Authentication plugin does not wish to handle inter-node security (only BasicAuthPlugin as of now) .For each
outgoing request adds a special header which carries thePKIAuthenticationPlugin 'SolrAuth'
timestamp and principal encrypted using the private key of that node. The public key is exposed through an API
so that any node can read it whenever it needs it. Any node who gets the request with that header, would get the
public key from the sender and decrypt the information. if it is able to decrypt the data, the request trusted. It is
invalid if the timestamp is more than 5 secs old. This assumes that the clocks of different nodes in the cluster are
synchronized. The timeout is configurable through a system property called 'pkiauth.ttl'. For example , if you wish
to bump up the ttl to 10 seconds (10000 milliseconds) , start each node with a property '-Dpkiauth.ttl=1000

 . 0'

Kerberos Authentication Plugin

If you are using Kerberos to secure your network environment, the Kerberos authentication plugin can be used to
secure a Solr cluster. This allows Solr to use a Kerberos service principal and keytab file to authenticate with
ZooKeeper and between nodes of the Solr cluster. Users of the Admin UI and alll clients (such as) wouldSolrJ
also need to have a valid ticket before being able to use the UI or send requests to Solr.

Support for the Kerberos authentication plugin is only available in SolrCloud mode.

How Solr Works With Kerberos

When setting up Solr to use Kerberos, configurations are put in place for Solr to use a , or aservice principal
Kerberos username, which is registered with the Key Distribution Center (KDC) to authenticate requests. The
configurations define the service principal name and the location of the keytab file that contains the credentials.

security.json

The Solr authentication model uses a file called which is stored in ZooKeeper. A description/security.json
of this file and how it is created and maintained is covered in the section Authentication and Authorization

, and can only be used when Solr is running in SolrCloud mode. If this file is created after an initial startupPlugins
of Solr, a restart of the system on each node is required.

Alternatively, the authentication plugin implementation can be specified during node startup using the system
parameter: . This parameter-DauthenticationPlugin=org.apache.solr.security.KerberosPlugin
can be used with either SolrCloud mode or standalone mode. However, if you are using Solr in standalone
mode, this system parameter is the only way to enable Kerberos.

If you are using SolrCloud mode, the approach to use is the best practice.security.json

Service Principals and Keytab Files

Each Solr node must have a service principal registered with the Key Distribution Center (KDC). The Kerberos
plugin uses SPNego to negotiate authentication.

Using , as an example of a service principal:HTTP/host1@YOUR-DOMAIN.ORG

If you are using Solr with a Hadoop cluster secured with Kerberos and intend to store your Solr indexes
in HDFS, also see the section for additional steps to configure Solr for thatRunning Solr on HDFS
purpose. The instructions on this page apply only to scenarios where Solr will be secured with Kerberos.
If you only need to store your indexes in a Kerberized HDFS system, please see the other section
referenced above.

555Apache Solr Reference Guide 6.1

HTTP indicates the type of requests which this service principal will be used to authenticate. The inHTTP/
the service principal is a must for SPNego to work with requests to Solr over HTTP.
host1 is the host name of the machine hosting the Solr node.
YOUR-DOMAIN.ORG is the organization wide Kerberos realm.

Multiple Solr nodes on the same host may have the same service principal, since the host name is common to
them all.

Along with the service principal, each Solr node needs a keytab file which should contain the credentials of the
service principal used. A keytab file contains encrypted credentials to support passwordless logins while
obtaining Kerberos tickets from the KDC. For each Solr node, the keytab file should be kept in a secure location
and not shared with users of the cluster.

Since a Solr cluster requires internode communication, each node must also be able to make Kerberos enabled
requests to other nodes. By default, Solr uses the same service principal and keytab as a 'client principal' for
internode communication. You may configure a distinct client principal explicitly, but doing so is not
recommended and is not covered in the examples below.

Kerberized ZooKeeper

When setting up a kerberized Solr cluster, it is recommended to enable Kerberos security for Zookeeper as well.
In such a setup, the client principal used to authenticate requests with Zookeeper can be shared for internode
communication as well. This has the benefit of not needing to renew the ticket granting tickets (TGTs) separately,
since the Zookeeper client used by Solr takes care of this. To achieve this, a single JAAS configuration (with the
app name as Client) can be used for the Kerberos plugin as well as for the Zookeeper client. See the
configuration section below for an example of starting Zookeeper in Kerberos mode.

Browser Configuration

In order for your browser to access the Solr Admin UI after enabling Kerberos authentication, it must be able to
negotiate with the Kerberos authenticator service to allow you access. Each browser supports this differently,
and some (like Chrome) do not support it at all. If you see 401 errors when trying to access the Solr Admin UI
after enabling Kerberos authentication, it's likely your browser has not been configured properly to know how or
where to negotiate the authentication request.

Detailed information on how to set up your browser is beyond the scope of this documentation; please see your
system administrators for Kerberos for details on how to configure your browser.

Plugin Configuration

Configuration of the Kerberos plugin has several parts:

Create service principals and keytab files
ZooKeeper configuration
Create or update /security.json
Define jaas-client.conf
Solr startup parameters

We'll walk through each of these steps below.

Consult Your Kerberos Admins!
Before attempting to configure Solr to use Kerberos authentication, please review each step outlined
below and consult with your local Kerberos administrators on each detail to be sure you know the correct
values for each parameter. Small errors can cause Solr to not start or not function properly, and are
notoriously difficult to diagnose.

Using Hostnames

556Apache Solr Reference Guide 6.1

Get Service Principals and Keytabs

Before configuring Solr, make sure you have a Kerberos service principal for each Solr host and ZooKeeper (if
ZooKeeper has not already been configured) available in the KDC server, and generate a keytab file as shown
below.

This example assumes the hostname is and your home directory is . This192.168.0.107 /home/foo/
example should be modified for your own environment.

root@kdc:/# kadmin.local
Authenticating as principal foo/admin@EXAMPLE.COM with password.

kadmin.local: addprinc HTTP/192.168.0.107
WARNING: no policy specified for HTTP/192.168.0.107@EXAMPLE.COM; defaulting to no
policy
Enter password for principal "HTTP/192.168.0.107@EXAMPLE.COM":
Re-enter password for principal "HTTP/192.168.0.107@EXAMPLE.COM":
Principal "HTTP/192.168.0.107@EXAMPLE.COM" created.

kadmin.local: ktadd -k /tmp/107.keytab HTTP/192.168.0.107
Entry for principal HTTP/192.168.0.107 with kvno 2, encryption type
aes256-cts-hmac-sha1-96 added to keytab WRFILE:/tmp/107.keytab.
Entry for principal HTTP/192.168.0.107 with kvno 2, encryption type arcfour-hmac
added to keytab WRFILE:/tmp/107.keytab.
Entry for principal HTTP/192.168.0.107 with kvno 2, encryption type des3-cbc-sha1
added to keytab WRFILE:/tmp/108.keytab.
Entry for principal HTTP/192.168.0.107 with kvno 2, encryption type des-cbc-crc
added to keytab WRFILE:/tmp/107.keytab.

kadmin.local: quit

Copy the keytab file from the KDC server’s location to the Solr host at /tmp/107.keytab /keytabs/107.key
. Repeat this step for each Solr node.tab

You might need to take similar steps to create a Zookeeper service principal and keytab if it has not already been
set up. In that case, the example below shows a different service principal for ZooKeeper, so the above might be
repeated with as the service principal for one of the nodeszookeeper/host1

ZooKeeper Configuration

If you are using a ZooKeeper that has already been configured to use Kerberos, you can skip the
ZooKeeper-related steps shown here.

Since ZooKeeper manages the communication between nodes in a SolrCloud cluster, it must also be able to
authenticate with each node of the cluster. Configuration requires setting up a service principal for ZooKeeper,
defining a JAAS configuration file and instructing ZooKeeper to use both of those items.

The first step is to create a file in ZooKeeper's directory and add the following to it, as in thisjava.env conf
example:

export
JVMFLAGS="-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas-client.conf"

To use host names instead of IP addresses, use the SOLR_HOST config in or passbin/ .shsolr.in
a during Solr startup. This guide uses IP addresses . If you specify a hostname-Dhost=<hostname>
replace all the IP addresses in the guide with the solr hostname

http://solr.in

557Apache Solr Reference Guide 6.1

The JAAS configuration file should contain the following parameters. Be sure to change the and principal key
 path as appropriate. The file must be located in the path defined in the step above, with the filenameTab

specified.

Server {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/keytabs/zkhost1.keytab"
 storeKey=true
 doNotPrompt=true
 useTicketCache=false
 debug=true
 principal=”zookeeper/host1”;
};

Finally, add the following lines to the ZooKeeper configuration file :zoo.cfg

authProvider.1=org.apache.zookeeper.server.auth.SASLAuthenticationProvider
jaasLoginRenew=3600000

Once all of the pieces are in place, start ZooKeeper with the following parameter pointing to the JAAS
configuration file:

bin/zkServer.sh start
-Djava.security.auth.login.config=/etc/zookeeper/conf/jaas-client.conf

Create /security.json

Set up Solr to use the Kerberos plugin by uploading the as follows:security.json

> server/scripts/cloud-scripts/zkcli.sh -zkhost localhost:2181 -cmd put
/security.json '{"authentication":{"class":
"org.apache.solr.security.KerberosPlugin"}}'

More details on how to use a file in Solr are available in the section /security.json Authentication and
.Authorization Plugins

Define a JAAS Configuration File

The JAAS configuration file defines the properties to use for authentication, such as the service principal and the
location of the keytab file. Other properties can also be set to ensure ticket caching and other features.

The following example can be copied and modified slightly for your environment. The location of the file can be
anywhere on the server, but it will be referenced when starting Solr so it must be readable on the filesystem. The
JAAS file may contain multiple sections for different users, but each section must have a unique name so it can
be uniquely referenced in each application.

In the below example, we have created a JAAS configuration file with the name and path of /home/foo/jaas

. We will use this name and path when we define the Solr start parameters in the next section.-client.conf

If you already have a file in Zookeeper, download the file, add or modify the/security.json
authentication section and upload it back to ZooKeeper using the available inCommand Line Utilities
Solr.

558Apache Solr Reference Guide 6.1

Note that the client here is the same as the service principal. This will be used to authenticateprincipal

internode requests and requests to Zookeeper. Make sure to use the correct hostname and the principal k

 file path.eyTab

Client {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/keytabs/107.keytab"
 storeKey=true
 useTicketCache=true
 debug=true
 principal="HTTP/192.168.0.107@EXAMPLE.COM";
};

The first line of this file defines the section name, which will be used with the solr.kerberos.jaas.appname
parameter, defined below.

The main properties we are concerned with are the and properties, but there are otherskeyTab principal
which may be required for your environment. The (the class that's being usedjavadocs for the Krb5LoginModule
and is called in the second line above) provide a good outline of the available properties, but for reference the
ones in use in the above example are explained here:

useKeyTab: this boolean property defines if we should use a keytab file (true, in this case).
keyTab: the location and name of the keytab file for the principal this section of the JAAS configuration
file is for. The path should be enclosed in double-quotes.
storeKey: this boolean property allows the key to be stored in the private credentials of the user.
useTicketCache: this boolean property allows the ticket to be obtained from the ticket cache.
debug: this boolean property will output debug messages for help in troubleshooting.
principal: the name of the service principal to be used.

Solr Startup Parameters

While starting up Solr, the following host-specific parameters need to be passed. These parameters can be
passed at the command line with the start script (see for details on how tobin/solr Solr Start Script Reference
pass system parameters) or defined in or as appropriate for yourbin/solr.in.sh bin/solr.in.cmd
operating system.

Parameter Name Required Description

solr.kerberos.name.rules No Used to map Kerberos principals to short names. Default value
is . Example of a name rule: DEFAULT RULE:[1:$1@$0](.*EX

 AMPLE.COM)s/@.*//

solr.kerberos.cookie.domain Yes Used to issue cookies and should have the hostname of the Solr
node.

solr.kerberos.cookie.portaware No When set to true, cookies are differentiated based on host and
port, as opposed to standard cookies which are not port aware.
This should be set if more than one Solr node is hosted on the
same host. The default is false.

solr.kerberos.principal Yes The service principal.

solr.kerberos.keytab Yes Keytab file path containing service principal credentials.

https://docs.oracle.com/javase/8/docs/jre/api/security/jaas/spec/com/sun/security/auth/module/Krb5LoginModule.html

559Apache Solr Reference Guide 6.1

1.
2.

solr.kerberos.jaas.appname No The app name (section name) within the JAAS configuration file
which is required for internode communication. Default is Clien

, which is used for Zookeeper authentication as well. If differentt
users are used for ZooKeeper and Solr, they will need to have
separate sections in the JAAS configuration file.

java.security.auth.login.config Yes Path to the JAAS configuration file for configuring a Solr client
for internode communication.

Here is an example that could be added to . Make sure to change this example to use thebin/solr.in.sh
right hostname and the keytab file path.

SOLR_AUTHENTICATION_CLIENT_CONFIGURER=org.apache.solr.client.solrj.impl.Krb5HttpClie
ntConfigurer
SOLR_AUTHENTICATION_OPTS="-Djava.security.auth.login.config=/home/foo/jaas-client.co
nf -Dsolr.kerberos.cookie.domain=192.168.0.107 -Dsolr.kerberos.cookie.portaware=true
-Dsolr.kerberos.principal=HTTP/192.168.0.107@EXAMPLE.COM
-Dsolr.kerberos.keytab=/keytabs/107.keytab"

Start Solr

Once the configuration is complete, you can start Solr with the script, as in the example below. Thisbin/solr
example assumes you modified or , with the proper values, but if you didbin/solr.in.sh bin/solr.in.cmd
not, you would pas the system parameters along with the start command. Note you also need to customize the -

 property as appropriate for the location of your ZooKeeper nodes.z

bin/solr -c -z server1:2181,server2:2181,server3:2181/solr

Test the Configuration

Do a with your username. For example, "kinit user@EXAMPLE.COM" kinit
Try to access Solr using . You should get a successful response.curl

curl --negotiate -u : "http://192.168.0.107:8983/solr/"

Using SolrJ with a Kerberized Solr

To use Kerberos authentication in a SolrJ application, you need the following two lines before you create a
SolrClient:

KDC with AES-256 encryption
If your KDC uses AES-256 encryption, you need to add the Java Cryptography Extension (JCE)
Unlimited Strength Jurisdiction Policy Files to your JRE before a kerberized Solr can interact with the
KDC.

You will know this when you see an error like this in your Solr logs : "KrbException: Encryption type
AES256 CTS mode with HMAC SHA1-96 is not supported/enabled"

For Java 1.8, this is available here: http://www.oracle.com/technetwork/java/javase/downloads/jce8-dow
.nload-2133166.html

Replace the local_policy.jar present in with the new fromJAVA_HOME/jre/lib/security/ local_policy.jar
the downloaded package and restart the Solr node.

http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html
http://www.oracle.com/technetwork/java/javase/downloads/jce8-download-2133166.html

560Apache Solr Reference Guide 6.1

System.setProperty("java.security.auth.login.config", "/home/foo/jaas-client.conf");
HttpClientUtil.setConfigurer(new Krb5HttpClientConfigurer());

You need to specify a Kerberos service principal for the client and a corresponding keytab in the JAAS client
configuration file above. This principal should be different from the service principal we created for Solr .

Here’s an example:

SolrJClient {
 com.sun.security.auth.module.Krb5LoginModule required
 useKeyTab=true
 keyTab="/keytabs/foo.keytab"
 storeKey=true
 useTicketCache=true
 debug=true
 principal="solrclient@EXAMPLE.COM";
};

Rule-Based Authorization Plugin

Solr allows configuring roles to control user access to the system. This is accomplished through rule-based
permission definitions which are assigned to users. The roles are fully customizable, and provide the ability to
limit access to specific collections, request handlers, request parameters, and request methods.

The roles can be used with any of the authentication plugins or with a custom authentication plugin if you have
created one. You will only need to ensure that you configure the role-to-user mappings with the proper user IDs
that your authentication system provides.

Once defined through the API, roles are stored in in ZooKeeper. This means this feature issecurity.json
available .when using Solr in SolrCloud mode only

Enable the Authorization Plugin

The plugin must be enabled in . This file and how to upload it to ZooKeeper is described insecurity.json
detail in the section .Enable Plugins with security.json

This file has two parts, the part and the part. The partauthentication authorization authentication
stores information about the class being used for authentication.

The part is not related to Basic authentication, but is a separate authorization plugin designedauthorization
to support fine-grained user access control. When creating you can add the permissions to thesecurity.json
file, or you can use the Authorization API described below to add them as needed.

This example shows how the can work with this authorizationsecurity.json Basic authentication plugin
plugin:

https://cwiki.apache.org/confluence/display/solr/Authentication+and+Authorization+Plugins#AuthenticationandAuthorizationPlugins-EnabledPluginswithsecurity.json

561Apache Solr Reference Guide 6.1

{
"authentication":{
 "class":"solr.BasicAuthPlugin",
 "blockUnknown": true,
 "credentials":{"solr":"IV0EHq1OnNrj6gvRCwvFwTrZ1+z1oBbnQdiVC3otuq0=
Ndd7LKvVBAaZIF0QAVi1ekCfAJXr1GGfLtRUXhgrF8c="}
},
"authorization":{
 "class":"solr.RuleBasedAuthorizationPlugin",
 "permissions":[{"name":"security-edit",
 "role":"admin"}]
 "user-role":{"solr":"admin"}
}}

There are several things defined in this example:

Basic authentication and rule-based authorization plugins are enabled.
A user called 'solr', with a password has been defined.
All requests w/o credentials will be rejected with a 401 error. Set to false (or remove it'blockUnknown'
altogether) if you wish to let unauthenticated requests to go through. However, if a particular resource is
protected by a rule, they are rejected anyway with a 401 error.
The 'admin' role has been defined, and it has permission to edit security settings.
The 'solr' user has been defined to the 'admin' role.

Permission Attributes

Each role is comprised of one or more permissions which define what the user is allowed to do. Each permission
is made up of several attributes that define the allowed activity. There are some pre-defined permissions which
cannot be modified.

The permissions are consulted in order they appear in . The first permission that matches issecurity.json
applied for each user, so the strictest permissions should be at the top of the list. Permissions order can be
controlled with a parameter of the Authorization API, as described below.

Predefined Permissions

There are several permissions that are pre-defined. These have fixed default values, which cannot be modified,
and new attributes cannot be added. To use these attributes, simply define a role that includes this permission,
and then assign a user to that role.

The pre-defined permissions are:

security-edit: this permission is allowed to edit the security configuration, meaning any update action that
modifies through the APIs will be allowed.security.json
security-read: this permission is allowed to read the security configuration, meaning any action that reads

 settings through the APIs will be allowed.security.json
schema-edit: this permission is allowed to edit a collection's schema using the . Note thatSchema API
this allows schema edit permissions for collections. If edit permissions should only be applied toall
specific collections, a custom permission would need to be created.
schema-read: this permission is allowed to read a collection's schema using the . Note thatSchema API
this allows schema read permissions for collections. If read permissions should only be applied toall
specific collections, a custom permission would need to be created.
config-edit: this permission is allowed to edit a collection's configuration using the , the Config API Reque

, and other APIs which modify . Note that this allowsst Parameters API configoverlay.json
configuration edit permissions for collections. If edit permissions should only be applied to specificall
collections, a custom permission would need to be created.
core-admin-read : Read operations on the core admin API
core-admin-edit: Core admin commands that can mutate the system state.

562Apache Solr Reference Guide 6.1

config-read: this permission is allowed to read a collection's configuration using the , the Config API Requ
, and other APIs which modify . Note that this allowsest Parameters API configoverlay.json

configuration read permissions for collections. If read permissions should only be applied to specificall
collections, a custom permission would need to be created.
collection-admin-edit: this permission is allowed to edit a collection's configuration using the Collections

. Note that this allows configuration edit permissions for collections. If edit permissions should onlyAPI all
be applied to specific collections, a custom permission would need to be created. Specifically, the
following actions of the Collections API would be allowed:

CREATE
RELOAD
SPLITSHARD
CREATESHARD
DELETESHARD
CREATEALIAS
DELETEALIAS
DELETE
DELETEREPLICA
ADDREPLICA
CLUSTERPROP
MIGRATE
ADDROLE
REMOVEROLE
ADDREPLICAPROP
DELETEREPLICAPROP
BALANCESHARDUNIQUE
REBALANCELEADERS

collection-admin-read: this permission is allowed to read a collection's configuration using the Collection
. Note that this allows configuration read permissions for collections. If read permissions shoulds API all

only be applied to specific collections, a custom permission would need to be created. Specifically, the
following actions of the Collections API would be allowed:

LIST
OVERSEERSTATUS
CLUSTERSTATUS
REQUESTSTATUS

update: this permission is allowed to perform any update action on any collection. This includes sending
documents for indexing (using an).update request handler
read: this permission is allowed to perform any read action on any collection. This includes querying using
search handlers (using) such as , , , , , request handlers /select /get /browse /tvrh /terms /cluste

, , , , , and .ring /elevate /export /spell /clustering /sql
all: Any requests coming to Solr.

Authorization API

API Endpoint

/admin/authorization: takes a set of commands to create permissions, map permissions to roles, and map
roles to users.

Manage Permissions

Three commands control managing permissions:

set-permission: create a new permission, overwrite an existing permission definition, or assign a
pre-defined permission to a role.
update-permission: update some attributes of an existing permission definition.
delete-permission: remove a permission definition.

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-UpdateRequestHandlers
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-SearchHandlers

563Apache Solr Reference Guide 6.1

Permissions need to be created if they are not on the list of pre-defined permissions above.

Several properties can be used to define your custom permission.

Property Description

name The name of the permission. This is required only if it is a predefined permission.

collection The collection or collections the permission will apply to.

When the path that will be allowed is collection-specific, such as when setting permissions to allow
useof the Schema API, omitting the collection property will allow the defined path and/or method
for all collections. However, when the path is one that is non-collection-specific, such as the
Collections API, the collection value must be .null

path A request handler name, such as or . A wild card is supported, to allow for all/update /select
paths as appropriate (such as,)./update/*

method HTTP methods that are allowed for this permission. You could allow only GET requests, or have a
role that allows PUT and POST requests. The method values that are allowed for this property are
GET, POST, PUT,DELETEand HEAD.

params The names and values of request parameters. This property can be omitted if all request
parameters are to be matched, but will restrict access only to the values provided if defined.

For example, this property could be used to limit the actions a role is allowed to perform with the
Collections API. If the role should only be allowed to perform the LIST or CLUSTERSTATUS
requests, you would define this as follows:

"params": {
 "action": [LIST, CLUSTERSTATUS]
}

The value of the parameter can be a simple string or it could be a regular expression. use the
prefix to use a regular expression match instead of a string identity matchREGEX:

If the commands LIST and CLUSTERSTATUS are case insensitive, the above example should be
as follows

"params": {
 "action": ["REGEX:(?i)LIST", "REGEX:(?i)CLUSTERSTATUS"]
}

before This property allows ordering of permissions. The value of this property is the index of the
permission that this new permission should be placed before in . The index issecurity.json
automatically assigned in the order they are created

role The name of the role(s) to give this permission. This name will be used to map user IDs to the role
to grant these permissions. The value can be wildcard such as (), which means that any user is*
OK, but no user is NOT OK.

The following would create a new permission named "collection-mgr" that is allowed to create and list collections.
The permission will be placed before the "read" permission. Note also that we have defined "collection as ,null
this is because requests to the Collections API are never collection-specific.

564Apache Solr Reference Guide 6.1

curl --user solr:SolrRocks -H 'Content-type:application/json' -d '{
 "set-permission": {"collection": null,
 "path":"/admin/collections",
 "params":{"action":[LIST, CREATE]},
 "before: 3,
 "role": "admin"}
}' http://localhost:8983/solr/admin/authorization

update or delete permissions

Permissions can be accessed using their index in the list. Use the GET /security/authorization to see the existing
permissions and their indices.

the following example updates the attribute of permission at index 'role' '3'

curl --user solr:SolrRocks -H 'Content-type:application/json' -d '{
 "update-permission": {"index": 3,
 "role": ["admin", "dev"]}
}' http://localhost:8983/solr/admin/authorization

the following example deletes permission at index '3'

curl --user solr:SolrRocks -H 'Content-type:application/json' -d '{
 "delete-permission": 3
}' http://localhost:8983/solr/admin/authorization

Map Roles to Users

A single command allows roles to be mapped to users:

set-user-role: map a user to a permission.

To remove a user's permission, you should set the role to . There is no command to delete a user role.null

The values supplied to the command are simply a user ID and one or more roles the user should have.

For example, the following would grant a user "solr" the "admin" and "dev" roles, and remove all roles from the
user ID "harry":

curl -u solr:SolrRocks -H 'Content-type:application/json' -d '{
 "set-user-role" : {"solr": ["admin","dev"],
 "harry": null}
}' http://localhost:8983/solr/admin/authorization

Enabling SSL

Both SolrCloud and single-node Solr can encrypt communications to and from clients, and in SolrCloud between
nodes, with SSL. This section describes enabling SSL with the example Jetty server using a self-signed
certificate.

565Apache Solr Reference Guide 6.1

For background on SSL certificates and keys, see .http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/

Basic SSL Setup
Generate a self-signed certificate and a key
Convert the certificate and key to PEM format for use with cURL
Set common SSL related system properties
Run Single Node Solr using SSL

SolrCloud
Configure ZooKeeper
Run SolrCloud with SSL

Example Client Actions
Create a SolrCloud collection using bin/solr
Retrieve SolrCloud cluster status using cURL
Index documents using post.jar
Query using cURL
Index a document using CloudSolrClient

Basic SSL Setup

Generate a self-signed certificate and a key

To generate a self-signed certificate and a single key that will be used to authenticate both the server and the
client, we'll use the JDK command and create a separate keystore. This keystore will also be used as keytool
a truststore below. It's possible to use the keystore that comes with the JDK for these purposes, and to use a
separate truststore, but those options aren't covered here.

Run the commands below in the directory in the binary Solr distribution. It's assumed that youserver/etc/
have the JDK utility on your , and that is also on your . See keytool PATH openssl PATH https://www.openssl.

 for OpenSSL binaries for Windows and Solaris.org/related/binaries.html

The " " option allows you to specify all the DNS names and/or IP addresses that will be-ext SAN=... keytool
allowed during hostname verification (but see below for how to skip hostname verification between Solr nodes so
that you don't have to specify all hosts here). In addition to and , this example includeslocalhost 127.0.0.1
a LAN IP address for the machine the Solr nodes will be running on:192.168.1.3

keytool -genkeypair -alias solr-ssl -keyalg RSA -keysize 2048 -keypass secret
-storepass secret -validity 9999 -keystore solr-ssl.keystore.jks -ext
SAN=DNS:localhost,IP:192.168.1.3,IP:127.0.0.1 -dname "CN=localhost,
OU=Organizational Unit, O=Organization, L=Location, ST=State, C=Country"

The above command will create a keystore file named in the current directory.solr-ssl.keystore.jks

Convert the certificate and key to PEM format for use with cURL

cURL isn't capable of using JKS formatted keystores, so the JKS keystore needs to be converted to PEM format,
which cURL understands.

First convert the JKS keystore into PKCS12 format using :keytool

keytool -importkeystore -srckeystore solr-ssl.keystore.jks -destkeystore
solr-ssl.keystore.p12 -srcstoretype jks -deststoretype pkcs12

The keytool application will prompt you to create a destination keystore password and for the source keystore
password, which was set when creating the keystore ("secret" in the example shown above).

Next convert the PKCS12 format keystore, including both the certificate and the key, into PEM format using the o

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://www.openssl.org/related/binaries.html
https://www.openssl.org/related/binaries.html
http://www.openssl.org

566Apache Solr Reference Guide 6.1

command: penssl

openssl pkcs12 -in solr-ssl.keystore.p12 -out solr-ssl.pem

If you want to use cURL on OS X Yosemite (10.10), you'll need to create a certificate-only version of the PEM
format, as follows:

openssl pkcs12 -nokeys -in solr-ssl.keystore.p12 -out solr-ssl.cacert.pem

Set common SSL related system properties

The Solr start script is already setup to pass SSL-related Java system properties to the JVM. To activate the SSL
settings, uncomment and update the set of properties beginning with SOLR_SSL_* in . (or bin/solr.in.sh bi

 on Windows). Note, if you setup Solr as a service on Linux using the steps outlined in n\solr.in.cmd Taking
, then make these changes in instead.Solr to Production /var/solr/solr.in.sh

SOLR_SSL_KEY_STORE=etc/solr-ssl.keystore.jks
SOLR_SSL_KEY_STORE_PASSWORD=secret
SOLR_SSL_TRUST_STORE=etc/solr-ssl.keystore.jks
SOLR_SSL_TRUST_STORE_PASSWORD=secret
Require clients to authenticate
SOLR_SSL_NEED_CLIENT_AUTH=false
Enable clients to authenticate (but not require)
SOLR_SSL_WANT_CLIENT_AUTH=false

When you start Solr, the script includes the settings in and will pass thesebin/solr bin/solr.in.sh
SSL-related system properties to the JVM.

Similarly, when you start Solr on Windows, the script includes the settings in bin\solr.cmd bin\solr.in.cm
 - uncomment and update the set of properties beginning with to pass these SSL-related systemd SOLR_SSL_*

properties to the JVM:

set SOLR_SSL_KEY_STORE=etc/solr-ssl.keystore.jks
set SOLR_SSL_KEY_STORE_PASSWORD=secret
set SOLR_SSL_TRUST_STORE=etc/solr-ssl.keystore.jks
set SOLR_SSL_TRUST_STORE_PASSWORD=secret
REM Require clients to authenticate
set SOLR_SSL_NEED_CLIENT_AUTH=false
REM Enable clients to authenticate (but not require)
set SOLR_SSL_WANT_CLIENT_AUTH=false

Run Single Node Solr using SSL

bin/solr.in.sh example SOLR_SSL_* configuration

Client Authentication Settings
Enable either SOLR_SSL_NEED_CLIENT_AUTH or SOLR_SSL_WANT_CLIENT_AUTH but not both at
the same time. They are mutually exclusive and Jetty will select one of them which may not be what you
expect.

bin\solr.in.cmd example SOLR_SSL_* configuration

http://www.openssl.org

567Apache Solr Reference Guide 6.1

Start Solr using the command shown below; by default clients will not be required to authenticate:

bin/solr -p 8984

bin\solr.cmd -p 8984

SolrCloud

This section describes how to run a two-node SolrCloud cluster with no initial collections and a single-node
external ZooKeeper. The commands below assume you have already created the keystore described above.

Configure ZooKeeper

Before you start any SolrCloud nodes, you must configure your solr cluster properties in ZooKeeper, so that
Solr nodes know to communicate via SSL.

This section assumes you have created and started a single-node external ZooKeeper on port 2181 on localhost
- see Setting Up an External ZooKeeper Ensemble

The cluster-wide property needs to be set to before any Solr node starts up. The exampleurlScheme https
below uses the tool that comes with the binary Solr distribution to do this:zkcli

server/scripts/cloud-scripts/zkcli.sh -zkhost localhost:2181 -cmd clusterprop -name
urlScheme -val https

server\scripts\cloud-scripts\zkcli.bat -zkhost localhost:2181 -cmd clusterprop -name
urlScheme -val https

If you have set up your ZooKeeper cluster to use a chroot for Solr, make sure you use the correct stringzkhost
with , e.g. .zkcli -zkhost localhost:2181/solr

Run SolrCloud with SSL

Create Solr home directories for two nodes

Create two copies of the directory which will serve as the Solr home directories for each of yourserver/solr/
two SolrCloud nodes:

*nix command

Windows command

ZooKeeper does not support encrypted communication with clients like Solr. There are several related
JIRA tickets where SSL support is being planned/worked on: ; ; ZOOKEEPER-235 ZOOKEEPER-236 ZO

; and .OKEEPER-733 ZOOKEEPER-1000

*nix command

Windows command

https://cwiki.apache.org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrtoProduction-ZooKeeperchroot
https://issues.apache.org/jira/browse/ZOOKEEPER-235
https://issues.apache.org/jira/browse/ZOOKEEPER-236
https://issues.apache.org/jira/browse/ZOOKEEPER-733
https://issues.apache.org/jira/browse/ZOOKEEPER-733
https://issues.apache.org/jira/browse/ZOOKEEPER-1000

568Apache Solr Reference Guide 6.1

mkdir cloud
cp -r server/solr cloud/node1
cp -r server/solr cloud/node2

mkdir cloud
xcopy /E server\solr cloud\node1\
xcopy /E server\solr cloud\node2\

Start the first Solr node

Next, start the first Solr node on port 8984. Be sure to stop the standalone server first if you started it when
working through the previous section on this page.

bin/solr -cloud -s cloud/node1 -z localhost:2181 -p 8984

bin\solr.cmd -cloud -s cloud\node1 -z localhost:2181 -p 8984

Notice the use of the option to set the location of the Solr home directory for node1.-s

If you created your SSL key without all DNS names/IP addresses on which Solr nodes will run, you can tell Solr
to skip hostname verification for inter-Solr-node communications by setting the syssolr.ssl.checkPeerName
tem property to :false

bin/solr -cloud -s cloud/node1 -z localhost:2181 -p 8984
-Dsolr.ssl.checkPeerName=false

bin\solr.cmd -cloud -s cloud\node1 -z localhost:2181 -p 8984
-Dsolr.ssl.checkPeerName=false

Start the second Solr node

Finally, start the second Solr node on port 7574 - again, to skip hostname verification, add -Dsolr.ssl.check
;PeerName=false

bin/solr -cloud -s cloud/node2 -z localhost:2181 -p 7574

*nix commands

Windows commands

*nix command

Windows command

*nix command

Windows command

*nix command

569Apache Solr Reference Guide 6.1

bin\solr.cmd -cloud -s cloud\node2 -z localhost:2181 -p 7574

Example Client Actions

Create a SolrCloud collection using bin/solr

Create a 2-shard, replicationFactor=1 collection named mycollection using the default configset
(data_driven_schema_configs):

bin/solr create -c mycollection -shards 2

bin\solr.cmd create -c mycollection -shards 2

The action will pass the properties set in your include file to the SolrJ code used to createcreate SOLR_SSL_*
the collection.

Retrieve SolrCloud cluster status using cURL

To get the resulting cluster status (again, if you have not enabled client authentication, remove the -E
 option):solr-ssl.pem:secret

curl -E solr-ssl.pem:secret --cacert solr-ssl.pem
"https://localhost:8984/solr/admin/collections?action=CLUSTERSTATUS&wt=json&indent=o
n"

You should get a response that looks like this:

Windows command

cURL on OS X Mavericks (10.9) has degraded SSL support. For more information and workarounds to
allow 1-way SSL, see . cURL on OS X Yosemitehttp://curl.haxx.se/mail/archive-2013-10/0036.html
(10.10) is improved - 2-way SSL is possible - see .http://curl.haxx.se/mail/archive-2014-10/0053.html

The cURL commands in the following sections will not work with the system on OS X Yosemitecurl
(10.10). Instead, the certificate supplied with the param must be in PKCS12 format, and the file-E
supplied with the param must contain only the CA certificate, and no key (see for--cacert above
instructions on creating this file):

curl -E solr-ssl.keystore.p12:secret --cacert solr-ssl.cacert.pem ...

If your operating system does not include cURL, you can download binaries here: http://curl.haxx.se/dow
nload.html

*nix command

Windows command

http://curl.haxx.se/mail/archive-2013-10/0036.html
http://curl.haxx.se/mail/archive-2014-10/0053.html
http://curl.haxx.se/download.html
http://curl.haxx.se/download.html

570Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":2041},
 "cluster":{
 "collections":{
 "mycollection":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"active",
 "replicas":{"core_node1":{
 "state":"active",
 "base_url":"https://127.0.0.1:8984/solr",
 "core":"mycollection_shard1_replica1",
 "node_name":"127.0.0.1:8984_solr",
 "leader":"true"}}},
 "shard2":{
 "range":"0-7fffffff",
 "state":"active",
 "replicas":{"core_node2":{
 "state":"active",
 "base_url":"https://127.0.0.1:7574/solr",
 "core":"mycollection_shard2_replica1",
 "node_name":"127.0.0.1:7574_solr",
 "leader":"true"}}}},
 "maxShardsPerNode":"1",
 "router":{"name":"compositeId"},
 "replicationFactor":"1"}},
 "properties":{"urlScheme":"https"}}}

Index documents using post.jar

Use to index some example documents to the SolrCloud collection created above:post.jar

cd example/exampledocs
java -Djavax.net.ssl.keyStorePassword=secret
-Djavax.net.ssl.keyStore=../../server/etc/solr-ssl.keystore.jks
-Djavax.net.ssl.trustStore=../../server/etc/solr-ssl.keystore.jks
-Djavax.net.ssl.trustStorePassword=secret
-Durl=https://localhost:8984/solr/mycollection/update -jar post.jar *.xml

Query using cURL

Use cURL to query the SolrCloud collection created above, from a directory containing the PEM formatted
certificate and key created above (e.g.) - if you have not enabled client authentication (systemexample/etc/
property , then you can remove the option:-Djetty.ssl.clientAuth=true) -E solr-ssl.pem:secret

curl -E solr-ssl.pem:secret --cacert solr-ssl.pem
"https://localhost:8984/solr/mycollection/select?q=*:*&wt=json&indent=on"

Index a document using CloudSolrClient

From a java client using Solrj, index a document. In the code below, the system propertiesjavax.net.ssl.*

571Apache Solr Reference Guide 6.1

are set programmatically, but you could instead specify them on the java command line, as in the exapost.jar
mple above:

System.setProperty("javax.net.ssl.keyStore", "/path/to/solr-ssl.keystore.jks");
System.setProperty("javax.net.ssl.keyStorePassword", "secret");
System.setProperty("javax.net.ssl.trustStore", "/path/to/solr-ssl.keystore.jks");
System.setProperty("javax.net.ssl.trustStorePassword", "secret");
String zkHost = "127.0.0.1:2181";
CloudSolrClient client = new CloudSolrClient.Builder().withZkHost(zkHost).build();
client.setDefaultCollection("mycollection");
SolrInputDocument doc = new SolrInputDocument();
doc.addField("id", "1234");
doc.addField("name", "A lovely summer holiday");
client.add(doc);
client.commit();

Running Solr on HDFS
Solr has support for writing and reading its index and transaction log files to the HDFS distributed filesystem.
This does not use Hadoop MapReduce to process Solr data, rather it only uses the HDFS filesystem for index
and transaction log file storage. To use Hadoop MapReduce to process Solr data, see the
MapReduceIndexerTool in the Solr contrib area.

To use HDFS rather than a local filesystem, you must be using Hadoop 2.x and you will need to instruct Solr to
use the . There are also several additional parameters to define. These can be set inHdfsDirectoryFactory
one of three ways:

Pass JVM arguments to the script. These would need to be passed every time you start Solrbin/solr
with .bin/solr
Modify (or on Windows) to pass the JVM arguments automatically whensolr.in.sh solr.in.cmd
using without having to set them manually.bin/solr
Define the properties in . These configuration changes would need to be repeated forsolrconfig.xml
every collection, so is a good option if you only want some of your collections stored in HDFS.

Starting Solr on HDFS

Standalone Solr Instances

For standalone Solr instances, there are a few parameters you should be sure to modify before starting Solr.
These can be set in (more on that), or passed to the script at startup.solrconfig.xml below bin/solr

You need to use an HdfsDirectoryFactory and a data dir of the form hdfs://host:port/path
You need to specify an UpdateLog location of the form hdfs://host:port/path
You should specify a lock factory type of ' ' or none.hdfs

If you do not modify , you can instead start Solr on HDFS with the following command:solrconfig.xml

bin/solr start -Dsolr.directoryFactory=HdfsDirectoryFactory
 -Dsolr.lock.type=hdfs
 -Dsolr.data.dir=hdfs://host:port/path
 -Dsolr.updatelog=hdfs://host:port/path

This example will start Solr in standalone mode, using the defined JVM properties (explained in more detail belo
). w

572Apache Solr Reference Guide 6.1

SolrCloud Instances

In SolrCloud mode, it's best to leave the data and update log directories as the defaults Solr comes with and
simply specify the . All dynamically created collections will create the appropriate directoriessolr.hdfs.home
automatically under the root directory.solr.hdfs.home

Set in the form solr.hdfs.home hdfs://host:port/path
You should specify a lock factory type of ' ' or none.hdfs

bin/solr start -c -Dsolr.directoryFactory=HdfsDirectoryFactory
 -Dsolr.lock.type=hdfs
 -Dsolr.hdfs.home=hdfs://host:port/path

This command starts Solr in SolrCloud mode, using the defined JVM properties.

Modifying solr.in.sh (*nix) or solr.in.cmd (Windows)

The examples above assume you will pass JVM arguments as part of the start command every time you use bi
 to start Solr. However, looks for an include file named (onn/solr bin/solr solr.in.sh solr.in.cmd

Windows) to set environment variables. By default, this file is found in the directory, and you can modify it tobin
permanently add the settings and ensure they are used every time Solr is started.HdfsDirectoryFactory

For example, to set JVM arguments to always use HDFS when running in SolrCloud mode (as shown above),
you would add a section such as this:

Set HDFS DirectoryFactory & Settings
-Dsolr.directoryFactory=HdfsDirectoryFactory \
-Dsolr.lock.type=hdfs \
-Dsolr.hdfs.home=hdfs://host:port/path \

The Block Cache

For performance, the HdfsDirectoryFactory uses a Directory that will cache HDFS blocks. This caching
mechanism is meant to replace the standard file system cache that Solr utilizes so much. By default, this cache
is allocated off heap. This cache will often need to be quite large and you may need to raise the off heap memory
limit for the specific JVM you are running Solr in. For the Oracle/OpenJDK JVMs, the follow is an example
command line parameter that you can use to raise the limit when starting Solr:

-XX:MaxDirectMemorySize=20g

HdfsDirectoryFactory Parameters

The has a number of settings that are defined as part of the coHdfsDirectoryFactory directoryFactory
nfiguration.

Solr HDFS Settings

Parameter Example Value Default Description

573Apache Solr Reference Guide 6.1

solr.hdfs.home hdfs://host:port/path/solr N/A A root location in HDFS for Solr to write
collection data to. Rather than specifying
an HDFS location for the data directory or
update log directory, use this to specify
one root location and have everything
automatically created within this HDFS
location.

Block Cache Settings

Parameter Default Description

solr.hdfs.blockcache.enabled true Enable the blockcache

solr.hdfs.blockcache.read.enabled true Enable the read cache

solr.hdfs.blockcache.direct.memory.allocation true Enable direct memory allocation. If
this is false, heap is used

solr.hdfs.blockcache.slab.count 1 Number of memory slabs to allocate.
Each slab is 128 MB in size.

solr.hdfs.blockcache.global true Enable/Disable using one global
cache for all SolrCores. The settings
used will be from the first
HdfsDirectoryFactory created.

NRTCachingDirectory Settings

Parameter Default Description

solr.hdfs.nrtcachingdirectory.enable true Enable the use of
NRTCachingDirectory

solr.hdfs.nrtcachingdirectory.maxmergesizemb 16 NRTCachingDirectory max segment
size for merges

solr.hdfs.nrtcachingdirectory.maxcachedmb 192 NRTCachingDirectory max cache size

HDFS Client Configuration Settings

solr.hdfs.confdir pass the location of HDFS client configuration files - needed for HDFS HA for example.

Parameter Default Description

solr.hdfs.confdir N/A Pass the location of HDFS client configuration files - needed for HDFS HA
for example.

Kerberos Authentication Settings

Hadoop can be configured to use the Kerberos protocol to verify user identity when trying to access core
services like HDFS. If your HDFS directories are protected using Kerberos, then you need to configure Solr's
HdfsDirectoryFactory to authenticate using Kerberos in order to read and write to HDFS. To enable Kerberos

574Apache Solr Reference Guide 6.1

authentication from Solr, you need to set the following parameters:

Parameter Default Description

solr.hdfs.security.kerberos.enabled false Set to true to enable Kerberos authentication

solr.hdfs.security.kerberos.keytabfile N/A A keytab file contains pairs of
Kerberos principals and encrypted keys which
allows for password-less authentication when
Solr attempts to authenticate with secure
Hadoop.

This file will need to be present on all Solr
servers at the same path provided in this
parameter.

solr.hdfs.security.kerberos.principal N/A The Kerberos principal that Solr should use to
authenticate to secure Hadoop; the format of
a typical Kerberos V5 principal is: primary/i
nstance@realm

Example

Here is a sample configuration for storing Solr indexes on HDFS:solrconfig.xml

<directoryFactory name="DirectoryFactory" class="solr.HdfsDirectoryFactory">
 <str name="solr.hdfs.home">hdfs://host:port/solr</str>
 <bool name="solr.hdfs.blockcache.enabled">true</bool>
 <int name="solr.hdfs.blockcache.slab.count">1</int>
 <bool name="solr.hdfs.blockcache.direct.memory.allocation">true</bool>
 <int name="solr.hdfs.blockcache.blocksperbank">16384</int>
 <bool name="solr.hdfs.blockcache.read.enabled">true</bool>
 <bool name="solr.hdfs.nrtcachingdirectory.enable">true</bool>
 <int name="solr.hdfs.nrtcachingdirectory.maxmergesizemb">16</int>
 <int name="solr.hdfs.nrtcachingdirectory.maxcachedmb">192</int>
</directoryFactory>

If using Kerberos, you will need to add the three Kerberos related properties to the elem<directoryFactory>
ent in solrconfig.xml, such as:

<directoryFactory name="DirectoryFactory" class="solr.HdfsDirectoryFactory">
 ...
 <bool name="solr.hdfs.security.kerberos.enabled">true</bool>
 <str name="solr.hdfs.security.kerberos.keytabfile">/etc/krb5.keytab</str>
 <str name="solr.hdfs.security.kerberos.principal">solr/admin@KERBEROS.COM</str>
</directoryFactory>

Automatically Add Replicas in SolrCloud

One benefit to running Solr in HDFS is the ability to automatically add new replicas when the Overseer notices
that a shard has gone down. Because the "gone" index shards are stored in HDFS, the a new core will be
created and the new core will point to the existing indexes in HDFS.

Collections created using on a shared file system have automatic addition of replicasautoAddReplicas=true

575Apache Solr Reference Guide 6.1

enabled. The following settings can be used to override the defaults in the section of .<solrcloud> solr.xml

Param Default Description

autoReplicaFailoverWorkLoopDelay 10000 The time (in ms) between clusterstate inspections by the
Overseer to detect and possibly act on creation of a
replacement replica.

autoReplicaFailoverWaitAfterExpiration 30000 The minimum time (in ms) to wait for initiating replacement
of a replica after first noticing it not being live. This is
important to prevent false positives while stoping or
starting the cluster.

autoReplicaFailoverBadNodeExpiration 60000 The delay (in ms) after which a replica marked as down
would be unmarked.

Temporarily disable autoAddReplicas for the entire cluster
When doing offline maintenance on the cluster and for various other use cases where an admin would like to
temporarily disable auto addition of replicas, the following APIs will disable and re-enable autoAddReplicas for all

:collections in the cluster

Disable auto addition of replicas cluster wide by setting the cluster property to :autoAddReplicas false

http://localhost:8983/solr/admin/collections?action=CLUSTERPROP&name=autoAddReplicas
&val=false

Re-enable auto addition of replicas (for those collections created with autoAddReplica=true) by unsetting the aut
 cluster property (when no param is provided, the cluster property is unset):oAddReplicas val

http://localhost:8983/solr/admin/collections?action=CLUSTERPROP&name=autoAddReplicas

Making and Restoring Backups
If you are worried about data loss, and of course you be, you need a way to back up your Solr indexes soshould
that you can recover quickly in case of catastrophic failure.

Solr provides two approaches to backing up and restoring Solr cores or collections, depending on how you are
running Solr. If you run SolrCloud, you will use the Collections API; if you run Solr in standalone mode, you will
use the replication handler.

SolrCloud

Support for backups when running SolrCloud is provided with the . This allows the backups to beCollections API
generated across multiple shards, and restored to the same number of shards and replicas as the original
collection.

Two commands are available:

action=BACKUP: This command backs up Solr indexes and configurations. More information is available
in the section .Backup Collection
action=RESTORE: This command restores Solr indexes and configurations. More information is available
in the section .Restore Collection

https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-BackupCollection
https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-RestoreCollection

576Apache Solr Reference Guide 6.1

Standalone Mode

Backups and restoration uses Solr's replication handler. Out of the box, Solr includes implicit support for
replication so this API can be used. Configuration of the replication handler can, however, be customized by
defining your own replication handler in . For details on configuring the replication handler,solrconfig.xml
see the section . Configuring the ReplicationHandler

Backup API

The backup API requires sending a command to the handler to back up the system./replication

You can trigger a back-up with an HTTP command like this (replace "gettingstarted" with the name of the core
you are working with):

curl http://localhost:8983/solr/gettingstarted/replication?command=backup

The backup command is an asynchronous call, and it will represent data from the latest index commit point. All
indexing and search operations will continue to be executed against the index as usual.

Only one backup call can be made against a core at any point in time. While an ongoing backup operation is
happening subsequent calls for restoring will throw an exception.

The backup request can also take the following additional parameters:

Parameter Description

location The path where the backup will be created. If the path is not absolute then the backup path
will be relative to Solr's instance directory.

name The snapshot will be created in a directory called . If a name is notsnapshot.<name>
specified then the directory name would have the following format: snapshot.<yyyyMMdd
HHmmssSSS>

numberToKeep The number of backups to keep. If has been specified on themaxNumberOfBackups
replication handler in , is always used andsolrconfig.xml maxNumberOfBackups
attempts to use will cause an error. Also, this parameter is not taken intonumberToKeep
consideration if the backup name is specified. More information about maxNumberOfBacku

 can be found in the section .ps Configuring the ReplicationHandler

Backup Status

The backup operation can be monitored to see if it has completed by sending the command to the details /re
 handler, as in this example:plication

http://localhost:8983/solr/gettingstarted/replication?command=details"

Backup API

Status API

https://cwiki.apache.org/confluence/display/solr/Index+Replication#IndexReplication-ConfiguringtheReplicationHandler
https://cwiki.apache.org/confluence/display/solr/Index+Replication#IndexReplication-ConfiguringtheReplicationHandler

577Apache Solr Reference Guide 6.1

<lst name="backup">
 <str name="startTime">Sun Apr 12 16:22:50 DAVT 2015</str>
 <int name="fileCount">10</int>
 <str name="status">success</str>
 <str name="snapshotCompletedAt">Sun Apr 12 16:22:50 DAVT 2015</str>
 <str name="snapshotName">my_backup</str>
</lst>

If it failed then a will be sent in the response.snapShootException

Restore API

Restoring the backup requires sending the command to the handler, followed by therestore /replication
name of the backup to restore.

You can restore from a backup with a command like this:

http://localhost:8983/solr/gettingstarted/replication?command=restore&name=backup_na
me"

This will restore the named index snapshot into the current core. Searches will start reflecting the snapshot data
once the restore is complete.

The restore request can also take these additional parameters:

Name Description

location The location of the backup snapshot file. If not specified, it looks for backups in Solr's data directory.

name The name of the backed up index snapshot to be restored. If the name is not provided it looks for
backups with format in the location directory. It picks the latestsnapshot.<timestamp>
timestamp backup in that case.

The restore command is an asynchronous call. Once the restore is complete the data reflected will be of the
backed up index which was restored.

Only one restore call can can be made against a core at one point in time. While an ongoing restore operation is
happening subsequent calls for restoring will throw an exception.

Restore Status API

You can also check the status of a restore operation by sending the command to the restorestatus /replic
 handler, as in this example:ation

curl -XGET
http://localhost:8983/solr/gettingstarted/replication?command=restorestatus

Output Snippet

Example Usage

Status API

578Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <lst name="restorestatus">
 <str name="snapshotName">snapshot.<name></str>
 <str name="status">success</str>
 </lst>
</response>

The status value can be "In Progress" , "success" or "failed". If it failed then an "exception" will also be sent in the
response.

Configuring Logging

Temporary Logging Settings

You can control the amount of logging output in Solr by using the Admin Web interface. Select the linLOGGING
k. Note that this page only lets you change settings in the running system and is not saved for the next run. (For
more information about the Admin Web interface, see .)Using the Solr Administration User Interface

The Logging screen.

This part of the Admin Web interface allows you to set the logging level for many different log categories.
Fortunately, any categories that are will have the logging level of its parent. This makes it possible tounset
change many categories at once by adjusting the logging level of their parent.

Output

In addition to the logging options described below, there is a way to configure which request parameters
(such as parameters sent as part of queries) are logged with an additional request parameter called log

. See the section on for more information.ParamsList Common Query Parameters

https://cwiki.apache.org/confluence/display/solr/Common+Query+Parameters#CommonQueryParameters-ThelogParamsListParameter

579Apache Solr Reference Guide 6.1

When you select , you see the following menu:Level

The Log Level Menu.

Directories are shown with their current logging levels. The Log Level Menu floats over these. To set a log level
for a particular directory, select it and click the appropriate log level button.

Log levels settings are as follows:

Level Result

FINEST Reports everything.

FINE Reports everything but the least important messages.

CONFIG Reports configuration errors.

INFO Reports everything but normal status.

WARN Reports all warnings.

SEVERE Reports only the most severe warnings.

OFF Turns off logging.

UNSET Removes the previous log setting.

Multiple settings at one time are allowed.

Permanent Logging Settings

Solr uses for logging and is configured using .Log4J version 1.2 server/resources/log4j.properties
Take a moment to inspect the contents of the file so that you are familiar with itslog4j.properties
structure. By default, Solr log messages will be written to and to stdout (console),server/logs/solr.log
which is fine when you're just getting started with Solr.

When you're ready to deploy Solr in production, we recommend making a few minor changes to the log settings.

http://logging.apache.org/log4j/1.2/

580Apache Solr Reference Guide 6.1

Edit and set the property to the location where you want Solr to write log files,log4j.properties solr.log
such as . Note that if you installed Solr as a service using the instructions provided at /var/solr/logs Taking

, then see instead of the default versSolr to Production /var/solr/log4j.properties server/resources
ion.

solr.log=/var/solr/logs

Alternatively, you can use the system property to set the location of the log files, such as:solr.solr.home

solr.log=${solr.solr.home}/../logs

During initialization, Log4J will resolve this to a path based on the system property. Whilesolr.solr.home
you’re customizing the file, we also recommend removing the CONSOLE appender fromlog4j.properties
the rootLogger by changing the property to:log4j.rootLogger

log4j.rootLogger=INFO, file

Also, the default log rotation size threshold of 4MB is too small for production servers and should be increased to
a larger value (such as 100MB or more).

log4j.appender.file.MaxFileSize=100MB

Logging Slow Queries

For high-volume search applications, logging every query can generate a large amount of logs and, depending
on the volume, potentially impact performance. If you mine these logs for additional insights into your application,
then logging every query request may be useful. On the other hand, if you're only concerned about warnings and
error messages related to requests, then you can set the log verbosity to WARN. However, this poses a potential
problem in that you won't know if any queries are slow, as slow queries are still logged at the INFO level. Solr
provides a way to set your log verbosity threshold to WARN and be able to set a latency threshold above which a
request is considered "slow" and log that request at the WARN level to help you identify slow queries in your
application. To enable this behavior, configure the element in the secti<slowQueryThresholdMillis> query
on of solrconfig.xml:

<slowQueryThresholdMillis>1000</slowQueryThresholdMillis>

Any queries that take longer than the specified threshold will be logged as "slow" queries at the WARN level.

Using JMX with Solr
Java Management Extensions (JMX) is a technology that makes it possible for complex systems to be controlled
by tools without the systems and tools having any previous knowledge of each other. In essence, it is a standard
interface by which complex systems can be viewed and manipulated.

Solr, like any other good citizen of the Java universe, can be controlled via a JMX interface. You can enable JMX
support by adding lines to . You can use a JMX client, like jconsole, to connect with Solr.solrconfig.xml
Check out the Wiki page for more information. You may also find the followinghttp://wiki.apache.org/solr/SolrJmx
overview of JMX to be useful: .http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html

Configuring JMX

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://wiki.apache.org/solr/SolrJmx
http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html

581Apache Solr Reference Guide 6.1

1.

2.

3.

JMX configuration is provided in . Please see the for moresolrconfig.xml JMX Technology Home Page
details.

A attribute can be used when configuring in . If this attribute is set, SolrrootName <jmx /> solrconfig.xml
uses it as the root name for all the MBeans that Solr exposes via JMX. The default name is "solr" followed by the
core name.

Configuring an Existing MBeanServer

The command:

<jmx />

enables JMX support in Solr if and only if an existing MBeanServer is found. Use this if you want to configure
JMX with JVM parameters. Remove this to disable exposing Solr configuration and statistics to JMX. If this is
specified, Solr will try to list all available MBeanServers and use the first one to register MBeans.

Configuring an Existing MBeanServer with agentId

The command:

<jmx agentId="myMBeanServer" />

enables JMX support in Solr if and only if an existing MBeanServer is found matching the given agentId. If
multiple servers are found, the first one is used. If none is found, an exception is raised and depending on the
configuration, Solr may refuse to start.

Configuring a New MBeanServer

The command:

<jmx serviceUrl="service:jmx:rmi:///jndi/rmi://localhost:9999/solrjmx" />

creates a new MBeanServer exposed for remote monitoring at the specific service URL. If the
JMXConnectorServer can't be started (probably because the serviceUrl is bad), an exception is thrown.

Example

Solr's config set uses the simple configuration option. If you startsample_techproducts_configs <jmx />
the example with the necessary JVM system properties to launch an internal MBeanServer, Solr will register with
it and you can connect using a tool like :jconsole

Launch the example with JMX enabled:techproducts

bin/solr -e techproducts -Dcom.sun.management.jmxremote

Start (provided with the Sun JDK in the bin directory).jconsole

Enabling/disabling JMX and securing access to MBeanServers is left up to the user by specifying
appropriate JVM parameters and configuration. Please explore the forJMX Technology Home Page
more details.

http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html
http://www.oracle.com/technetwork/java/javase/tech/javamanagement-140525.html

582Apache Solr Reference Guide 6.1

3.
4.

Connect to the " " shown in the list of local processes.start.jar
Switch to the "MBeans" tab. You should be able to see " " listed there, at whichsolr/techproducts
point you can drill down and see details of every solr plugin.

Configuring a Remote Connection to Solr JMX

If you want to connect to Solr remotely, you need to pass in some extra parameters, documented here:

http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html

MBean Request Handler
The MBean Request Handler offers programmatic access to the information provided on the page ofPlugin/Stats
the Admin UI.

The MBean Request Handler accepts the following parameters:

Parameter Type Default Description

key multivalued all Restricts results by object key.

cat multivalued all Restricts results by category name.

stats boolean false Specifies whether statistics are returned with results. You can override
the parameter on a per-field basis.stats

wt multivalued xml The output format. This operates the same as the parameter in awt
.query

Examples

The following examples assume you are running Solr's example configuration:techproducts

bin/solr start -e techproducts

To return information about the CACHE category only:

http://localhost:8983/solr/techproducts/admin/mbeans?cat=CACHE

To return information and statistics about the CACHE category only, formatted in JSON:

http://localhost:8983/solr/techproducts/admin/mbeans?stats=true&cat=CACHE&indent=t
rue&wt=json

To return information for everything, and statistics for everything except the :fieldCache

http://localhost:8983/solr/techproducts/admin/mbeans?stats=true&f.fieldCache.stats
=false

Making JMX connections into machines running behind NATs (e.g. Amazon's EC2 service) is not a
simple task. The system property may help, but running onjava.rmi.server.hostname jconsole
the server itself and using a remote desktop is often the simplest solution. See http://web.archive.org/we

.b/20130525022506/http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i

http://docs.oracle.com/javase/8/docs/technotes/guides/management/agent.html
http://localhost:8983/solr/techproducts/admin/mbeans?cat=CACHE
http://localhost:8983/solr/techproducts/admin/mbeans?stats=true&cat=CACHE&indent=true&wt=json
http://localhost:8983/solr/techproducts/admin/mbeans?stats=true&cat=CACHE&indent=true&wt=json
http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false
http://localhost:8983/solr/admin/mbeans?stats=true&f.fieldCache.stats=false
http://web.archive.org/web/20130525022506/http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i
http://web.archive.org/web/20130525022506/http://jmsbrdy.com/monitoring-java-applications-running-on-ec2-i

583Apache Solr Reference Guide 6.1

To return information and statistics for the only:fieldCache

http://localhost:8983/solr/techproducts/admin/mbeans?key=fieldCache&stats=true

http://localhost:8983/solr/admin/mbeans?key=fieldCache&stats=true

584Apache Solr Reference Guide 6.1

SolrCloud
Apache Solr includes the ability to set up a cluster of Solr servers that combines fault tolerance and high
availability. Called , these capabilities provide distributed indexing and search capabilities, supportingSolrCloud
the following features:

Central configuration for the entire cluster
Automatic load balancing and fail-over for queries
ZooKeeper integration for cluster coordination and configuration.

SolrCloud is flexible distributed search and indexing, without a master node to allocate nodes, shards and
replicas. Instead, Solr uses ZooKeeper to manage these locations, depending on configuration files and
schemas. Documents can be sent to any server and ZooKeeper will figure it out.

In this section, we'll cover everything you need to know about using Solr in SolrCloud mode. We've split up the
details into the following topics:

Getting Started with SolrCloud
How SolrCloud Works

Shards and Indexing Data in SolrCloud
Distributed Requests
Read and Write Side Fault Tolerance

SolrCloud Configuration and Parameters
Setting Up an External ZooKeeper Ensemble
Using ZooKeeper to Manage Configuration Files
ZooKeeper Access Control
Collections API
Parameter Reference
Command Line Utilities
SolrCloud with Legacy Configuration Files
ConfigSets API

Rule-based Replica Placement
Cross Data Center Replication (CDCR)

Getting Started with SolrCloud
SolrCloud is designed to provide a highly available, fault tolerant environment for distributing your indexed
content and query requests across multiple servers. It's a system in which data is organized into multiple pieces,
or shards, that can be hosted on multiple machines, with replicas providing redundancy for both scalability and
fault tolerance, and a ZooKeeper server that helps manage the overall structure so that both indexing and search
requests can be routed properly.

This section explains SolrCloud and its inner workings in detail, but before you dive in, it's best to have an idea of
what it is you're trying to accomplish. This page provides a simple tutorial to start Solr in SolrCloud mode, so you
can begin to get a sense for how shards interact with each other during indexing and when serving queries. To
that end, we'll use simple examples of configuring SolrCloud on a single machine, which is obviously not a real
production environment, which would include several servers or virtual machines. In a real production
environment, you'll also use the real machine names instead of "localhost" which we've used here.

In this section you will learn how to start a SolrCloud cluster using startup scripts and a specific configset.

This tutorial assumes that you're already familiar with the basics of using Solr. If you need a refresher,
please see the to get a grounding in Solr concepts. If you load documents as partGetting Started section
of that exercise, you should start over with a fresh Solr installation for these SolrCloud tutorials.

585Apache Solr Reference Guide 6.1

SolrCloud Example

Interactive Startup

The script makes it easy to get started with SolrCloud as it walks you through the process ofbin/solr
launching Solr nodes in cloud mode and adding a collection. To get started, simply do:

$ bin/solr -e cloud

This starts an interactive session to walk you through the steps of setting up a simple SolrCloud cluster with
embedded ZooKeeper. The script starts by asking you how many Solr nodes you want to run in your local
cluster, with the default being 2.

Welcome to the SolrCloud example!

This interactive session will help you launch a SolrCloud cluster on your local
workstation.
To begin, how many Solr nodes would you like to run in your local cluster? (specify
1-4 nodes) [2]

The script supports starting up to 4 nodes, but we recommend using the default of 2 when starting out. These
nodes will each exist on a single machine, but will use different ports to mimic operation on different servers.

Next, the script will prompt you for the port to bind each of the Solr nodes to, such as:

 Please enter the port for node1 [8983]

Choose any available port for each node; the default for the first node is 8983 and 7574 for the second
node. The script will start each node in order and shows you the command it uses to start the server, such as:

solr start -cloud -s example/cloud/node1/solr -p 8983

The first node will also start an embedded ZooKeeper server bound to port 9983. The Solr home for the first
node is in as indicated by the option.example/cloud/node1/solr -s

After starting up all nodes in the cluster, the script prompts you for the name of the collection to create:

 Please provide a name for your new collection: [gettingstarted]

The suggested default is "gettingstarted" but you might want to choose a name more appropriate for your
specific search application.

Next, the script prompts you for the number of shards to distribute the collection across. is covered inSharding
more detail later on, so if you're unsure, we suggest using the default of 2 so that you can see how a collection is
distributed across multiple nodes in a SolrCloud cluster.

Next, the script will prompt you for the number of replicas to create for each shard. is covered inReplication
more detail later in the guide, so if you're unsure, then use the default of 2 so that you can see how replication is
handled in SolrCloud.

Lastly, the script will prompt you for the name of a configuration directory for your collection. You can choose bas
, , or . The configuration directoriesic_configs data_driven_schema_configs sample_techproducts_configs

https://cwiki.apache.org/confluence/display/solr/NRT%2C+Replication%2C+and+Disaster+Recovery+with+SolrCloud

586Apache Solr Reference Guide 6.1

are pulled from so you can review them beforehand if you wish. The server/solr/configsets/ data_drive
 configuration (the default) is useful when you're still designing a schema for your documentsn_schema_configs

and need some flexiblity as you experiment with Solr.

At this point, you should have a new collection created in your local SolrCloud cluster. To verify this, you can run
the status command:

 $ bin/solr status

If you encounter any errors during this process, check the Solr log files in and example/cloud/node1/logs e
.xample/cloud/node2/logs

You can see how your collection is deployed across the cluster by visiting the cloud panel in the Solr Admin UI: h
. Solr also provides a way to perform basic diagnostics for a collection using thettp://localhost:8983/solr/#/~cloud

healthcheck command:

 $ bin/solr healthcheck -c gettingstarted

The healthcheck command gathers basic information about each replica in a collection, such as number of docs,
current status (active, down, etc), and address (where the replica lives in the cluster).

Documents can now be added to SolrCloud using the .Post Tool

To stop Solr in SolrCloud mode, you would use the script and issue the command, as in:bin/solr stop

 $ bin/solr stop -all

Starting with -noprompt

You can also get SolrCloud started with all the defaults instead of the interactive session using the following
command:

 $ bin/solr -e cloud -noprompt

Restarting Nodes

You can restart your SolrCloud nodes using the script. For instance, to restart node1 running on portbin/solr
8983 (with an embedded ZooKeeper server), you would do:

 $ bin/solr restart -c -p 8983 -s example/cloud/node1/solr

To restart node2 running on port 7574, you can do:

 $ bin/solr restart -c -p 7574 -z localhost:9983 -s example/cloud/node2/solr

Notice that you need to specify the ZooKeeper address (-z localhost:9983) when starting node2 so that it can join
the cluster with node1.

Adding a node to a cluster

Adding a node to an existing cluster is a bit advanced and involves a little more understanding of Solr. Once you

http://localhost:8983/solr/#/~cloud
http://localhost:8983/solr/#/~cloud

587Apache Solr Reference Guide 6.1

startup a SolrCloud cluster using the startup scripts, you can add a new node to it by:

 $ mkdir <solr.home for new solr node>
 $ cp <existing solr.xml path> <new solr.home>
 $ bin/solr start -cloud -s solr.home/solr -p <port num> -z <zk hosts string>

Notice that the above requires you to create a Solr home directory. You either need to copy to the solr.xml so
 directory, or keep in centrally in ZooKeeper .lr_home /solr.xml

Example (with directory structure) that adds a node to an example started with "bin/solr -e cloud":

 $ mkdir -p example/cloud/node3/solr
 $ cp server/solr/solr.xml example/cloud/node3/solr
 $ bin/solr start -cloud -s example/cloud/node3/solr -p 8987 -z localhost:9983

The previous command will start another Solr node on port 8987 with Solr home set to example/cloud/node3
. The new node will write its log files to ./solr example/cloud/node3/logs

Once you're comfortable with how the SolrCloud example works, we recommend using the process described in
 for setting up SolrCloud nodes in production.Taking Solr to Production

How SolrCloud Works
The following sections cover provide general information about how various SolrCloud features work. To
understand these features, it's important to first understand a few key concepts that relate to SolrCloud.

Shards and Indexing Data in SolrCloud
Distributed Requests
Read and Write Side Fault Tolerance

If you are already familiar with SolrCloud concepts and basic functionality, you can skip to the section covering S
.olrCloud Configuration and Parameters

Key SolrCloud Concepts

A SolrCloud cluster consists of some "logical" concepts layered on top of some "physical" concepts.

Logical

A Cluster can host multiple Collections of Solr Documents.
A collection can be partitioned into multiple Shards, which contain a subset of the Documents in the
Collection.
The number of Shards that a Collection has determines:

The theoretical limit to the number of Documents that Collection can reasonably contain.
The amount of parallelization that is possible for an individual search request.

Physical

A Cluster is made up of one or more Solr Nodes, which are running instances of the Solr server process.
Each Node can host multiple Cores.
Each Core in a Cluster is a physical Replica for a logical Shard.
Every Replica uses the same configuration specified for the Collection that it is a part of.
The number of Replicas that each Shard has determines:

The level of redundancy built into the Collection and how fault tolerant the Cluster can be in the

588Apache Solr Reference Guide 6.1

1.
2.

3.

event that some Nodes become unavailable.
The theoretical limit in the number concurrent search requests that can be processed under heavy
load.

Shards and Indexing Data in SolrCloud

When your collection is too large for one node, you can break it up and store it in sections by creating multiple sh
.ards

A Shard is a logical partition of the collection, containing a subset of documents from the collection, such that
every document in a collection is contained in exactly one Shard. Which shard contains a each document in a
collection depends on the overall "Sharding" strategy for that collection. For example, you might have a
collection where the "country" field of each document determines which shard it is part of, so documents from the
same country are co-located. A different collection might simply use a "hash" on the uniqueKey of each
document to determine it's Shard.

Before SolrCloud, Solr supported Distributed Search, which allowed one query to be executed across multiple
shards, so the query was executed against the entire Solr index and no documents would be missed from the
search results. So splitting an index across shards is not exclusively a SolrCloud concept. There were, however,
several problems with the distributed approach that necessitated improvement with SolrCloud:

Splitting an index into shards was somewhat manual.
There was no support for distributed indexing, which meant that you needed to explicitly send documents
to a specific shard; Solr couldn't figure out on its own what shards to send documents to.
There was no load balancing or failover, so if you got a high number of queries, you needed to figure out
where to send them and if one shard died it was just gone.

SolrCloud fixes all those problems. There is support for distributing both the index process and the queries
automatically, and ZooKeeper provides failover and load balancing. Additionally, every shard can also have
multiple replicas for additional robustness.

In SolrCloud there are no masters or slaves. Instead, every shard consists of at least one physical ,replica
exactly one of which is a . Leaders are automatically elected, initially on a first-come-first-served basis,leader
and then based on the Zookeeper process described at http://zookeeper.apache.org/doc/trunk/recipes.html#sc_l

.eaderElection.

If a leader goes down, one of the other replicas is automatically elected as the new leader.

When a document is sent to a Solr node for indexing, the system first determines which Shard that document
belongs to, and then which node is currently hosting the leader for that shard. The document is then forwarded
to the current leader for indexing, and the leader forwards the update to all of the other replicas.

Document Routing

Solr offers the ability to specify the router implementation used by a collection by specifying the prouter.name
arameter when . If you use the (default) " " router, you can send documentscreating your collection compositeId
with a prefix in the document ID which will be used to calculate the hash Solr uses to determine the shard a
document is sent to for indexing. The prefix can be anything you'd like it to be (it doesn't have to be the shard
name, for example), but it must be consistent so Solr behaves consistently. For example, if you wanted to
co-locate documents for a customer, you could use the customer name or ID as the prefix. If your customer is
"IBM", for example, with a document with the ID "12345", you would insert the prefix into the document id field:
"IBM!12345". The exclamation mark ('!') is critical here, as it distinguishes the prefix used to determine which
shard to direct the document to.

Then at query time, you include the prefix(es) into your query with the parameter (i.e., _route_ q=solr&_rout
) to direct queries to specific shards. In some situations, this may improve query performance becausee_=IBM!

it overcomes network latency when querying all the shards.

http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection
http://zookeeper.apache.org/doc/trunk/recipes.html#sc_leaderElection
https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-CreateaCollection

589Apache Solr Reference Guide 6.1

The router supports prefixes containing up to 2 levels of routing. For example: a prefix routingcompositeId
first by region, then by customer: "USA!IBM!12345"

Another use case could be if the customer "IBM" has a lot of documents and you want to spread it across
multiple shards. The syntax for such a use case would be : "shard_key/num!document_id" where the /num is the
number of bits from the shard key to use in the composite hash.

So "IBM/3!12345" will take 3 bits from the shard key and 29 bits from the unique doc id, spreading the tenant
over 1/8th of the shards in the collection. Likewise if the num value was 2 it would spread the documents across
1/4th the number of shards. At query time, you include the prefix(es) along with the number of bits into your
query with the parameter (i.e.,) to direct queries to specific shards._route_ q=solr&_route_=IBM/3!

If you do not want to influence how documents are stored, you don't need to specify a prefix in your document ID.

If you created the collection and defined the "implicit" router at the time of creation, you can additionally define a
 parameter to use a field from each document to identify a shard where the document belongs. Ifrouter.field

the field specified is missing in the document, however, the document will be rejected. You could also use the _r
 parameter to name a specific shard.oute_

Shard Splitting

When you create a collection in SolrCloud, you decide on the initial number shards to be used. But it can be
difficult to know in advance the number of shards that you need, particularly when organizational requirements
can change at a moment's notice, and the cost of finding out later that you chose wrong can be high, involving
creating new cores and re-indexing all of your data.

The ability to split shards is in the Collections API. It currently allows splitting a shard into two pieces. The
existing shard is left as-is, so the split action effectively makes two copies of the data as new shards. You can
delete the old shard at a later time when you're ready.

More details on how to use shard splitting is in the section on the .Collections API

Ignoring Commits from Client Applications in SolrCloud

In most cases, when running in SolrCloud mode, indexing client applications should not send explicit commit
requests. Rather, you should configure auto commits with and auto soft-commits toopenSearcher=false
make recent updates visible in search requests. This ensures that auto commits occur on a regular schedule in
the cluster. To enforce a policy where client applications should not send explicit commits, you should update all
client applications that index data into SolrCloud. However, that is not always feasible, so Solr provides
the IgnoreCommitOptimizeUpdateProcessorFactory, which allows you to ignore explicit commits and/or optimize
requests from client applications without having refactor your client application code. To activate this request
processor you'll need to add the following to your solrconfig.xml:

<updateRequestProcessorChain name="ignore-commit-from-client" default="true">
 <processor class="solr.IgnoreCommitOptimizeUpdateProcessorFactory">
 <int name="statusCode">200</int>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.DistributedUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

As shown in the example above, the processor will return 200 to the client but will ignore the commit / optimize

The parameter replaces , which has been deprecated and will be removed in a_route_ shard.keys
future Solr release.

590Apache Solr Reference Guide 6.1

request. Notice that you need to wire-in the implicit processors needed by SolrCloud as well, since this custom
chain is taking the place of the default chain.

In the following example, the processor will raise an exception with a 403 code with a customized error message:

<updateRequestProcessorChain name="ignore-commit-from-client" default="true">
 <processor class="solr.IgnoreCommitOptimizeUpdateProcessorFactory">
 <int name="statusCode">403</int>
 <str name="responseMessage">Thou shall not issue a commit!</str>
 </processor>
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.DistributedUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

Lastly, you can also configure it to just ignore optimize and let commits pass thru by doing:

<updateRequestProcessorChain name="ignore-optimize-only-from-client-403">
 <processor class="solr.IgnoreCommitOptimizeUpdateProcessorFactory">
 <str name="responseMessage">Thou shall not issue an optimize, but commits are
OK!</str>
 <bool name="ignoreOptimizeOnly">true</bool>
 </processor>
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

Distributed Requests

When a Solr node receives a search request, that request is routed behinds the scenes to a replica of some
shard that is part of the collection being searched. The chosen replica will act as an aggregator: creating internal
requests to randomly chosen replicas of every shard in the collection, coordinating the responses, issuing any
subsequent internal requests as needed (For example, to refine facets values, or request additional stored fields)
and constructing the final response for the client.

Limiting Which Shards are Queried

While one of the advantages of using SolrCloud is the ability to query very large collections distributed among
various shards, in some cases .you may know that you are only interested in results from a subset of your shards
 You have the option of searching over all of your data or just parts of it.

Querying all shards for a collection should look familiar; it's as though SolrCloud didn't even come into play:

http://localhost:8983/solr/gettingstarted/select?q=*:*

If, on the other hand, you wanted to search just one shard, you can specify that shard by it's logical ID, as in:

http://localhost:8983/solr/gettingstarted/select?q=*:*&shards=shard1

If you want to search a group of shard Ids, you can specify them together:

http://localhost:8983/solr/gettingstarted/select?q=*:*&shards=shard1,shard2

In both of the above examples, the shard Id(s) will be used to pick a random replica of that shard.

https://cwiki.apache.org/confluence/display/solr/Shards+and+Indexing+Data+in+SolrCloud#ShardsandIndexingDatainSolrCloud-DocumentRouting

591Apache Solr Reference Guide 6.1

Alternatively, you can specify the explict replicas you wish to use in place of a shard Ids:

http://localhost:8983/solr/gettingstarted/select?q=*:*&shards=localhost:7574/solr/ge
ttingstarted,localhost:8983/solr/gettingstarted

Or you can specify a list of replicas to choose from for a single shard (for load balancing purposes) by using the
pipe symbol (|):

http://localhost:8983/solr/gettingstarted/select?q=*:*&shards=localhost:7574/solr/ge
ttingstarted|localhost:7500/solr/gettingstarted

And of course, you can specify a list of shards (seperated by commas) each defined by a list of replicas
(seperated by pipes). In this example, 2 shards are queried, the first being a random replica from shard1, the
second being a random replica from the explicit pipe delimited list:

http://localhost:8983/solr/gettingstarted/select?q=*:*&shards=shard1,localhost:7574/
solr/gettingstarted|localhost:7500/solr/gettingstarted

Configuring the ShardHandlerFactory

You can directly configure aspects of the concurrency and thread-pooling used within distributed search in Solr.
This allows for finer grained control and you can tune it to target your own specific requirements. The default
configuration favors throughput over latency.

To configure the standard handler, provide a configuration like this in the solrconfig.xml:

<requestHandler name="standard" class="solr.SearchHandler" default="true">
 <!-- other params go here -->
 <shardHandler class="HttpShardHandlerFactory">
 <int name="socketTimeOut">1000</int>
 <int name="connTimeOut">5000</int>
 </shardHandler>
</requestHandler>

The parameters that can be specified are as follows:

Parameter Default Explanation

socketTimeout 0 (use OS default) The amount of time in ms that a socket is allowed to
wait.

connTimeout 0 (use OS default) The amount of time in ms that is accepted for binding /
connecting a socket

maxConnectionsPerHost 20 The maximum number of concurrent connections that is
made to each individual shard in a distributed search.

maxConnections 10000 The total maximum number of concurrent connections
in distributed searches.

corePoolSize 0 The retained lowest limit on the number of threads used
in coordinating distributed search.

592Apache Solr Reference Guide 6.1

maximumPoolSize Integer.MAX_VALUE The maximum number of threads used for coordinating
distributed search.

maxThreadIdleTime 5 seconds The amount of time to wait for before threads are
scaled back in response to a reduction in load.

sizeOfQueue -1 If specified, the thread pool will use a backing queue
instead of a direct handoff buffer. High throughput
systems will want to configure this to be a direct hand
off (with -1). Systems that desire better latency will want
to configure a reasonable size of queue to handle
variations in requests.

fairnessPolicy false Chooses the JVM specifics dealing with fair policy
queuing, if enabled distributed searches will be handled
in a First in First out fashion at a cost to throughput. If
disabled throughput will be favored over latency.

Configuring statsCache (Distributed IDF)

Document and term statistics are needed in order to calculate relevancy. Solr provides four implementations out
of the box when it comes to document stats calculation:

LocalStatsCache: This only uses local term and document statistics to compute relevance. In cases
with uniform term distribution across shards, this works reasonably well.
This option is the default if no is configured.<statsCache>
ExactStatsCache: This implementation uses global values (across the collection) for document
frequency.
ExactSharedStatsCache: This is exactly like the exact stats cache in it's functionality but the global
stats are reused for subsequent requests with the same terms.
LRUStatsCache: This implementation uses an LRU cache to hold global stats, which are shared
between requests.

The implementation can be selected by setting in . For example, the<statsCache> solrconfig.xml
following line makes Solr use the implementation:ExactStatsCache

<statsCache class="org.apache.solr.search.stats.ExactStatsCache"/>

Avoiding Distributed Deadlock

Each shard serves top-level query requests and then makes sub-requests to all of the other shards. Care should
be taken to ensure that the max number of threads serving HTTP requests is greater than the possible number
of requests from both top-level clients and other shards. If this is not the case, the configuration may result in a
distributed deadlock.

For example, a deadlock might occur in the case of two shards, each with just a single thread to service HTTP
requests. Both threads could receive a top-level request concurrently, and make sub-requests to each other.
Because there are no more remaining threads to service requests, the incoming requests will be blocked until the
other pending requests are finished, but they will not finish since they are waiting for the sub-requests. By
ensuring that Solr is configured to handle a sufficient number of threads, you can avoid deadlock situations like
this.

Prefer Local Shards

593Apache Solr Reference Guide 6.1

Solr allows you to pass an optional boolean parameter named to indicate that apreferLocalShards
distributed query should prefer local replicas of a shard when available. In other words, if a query includes prefe

, then the query controller will look for local replicas to service the query instead ofrLocalShards=true
selecting replicas at random from across the cluster. This is useful when a query requests many fields or large
fields to be returned per document because it avoids moving large amounts of data over the network when it is
available locally. In addition, this feature can be useful for minimizing the impact of a problematic replica with
degraded performance, as it reduces the likelihood that the degraded replica will be hit by other healthy replicas.

Lastly, it follows that the value of this feature diminishes as the number of shards in a collection increases
because the query controller will have to direct the query to non-local replicas for most of the shards. In other
words, this feature is mostly useful for optimizing queries directed towards collections with a small number of
shards and many replicas. Also, this option should only be used if you are load balancing requests across all
nodes that host replicas for the collection you are querying, as Solr's CloudSolrClient will do. If not
load-balancing, this feature can introduce a hotspot in the cluster since queries won't be evenly distributed
across the cluster.

Read and Write Side Fault Tolerance

SolrCloud supports elasticity, high availability, and fault tolerance in reads and writes. What this means,
basically, is that when you have a large cluster, you can always make requests to the cluster: Reads will return
results whenever possible, even if some nodes are down, and Writes will be acknowledged only if they are
durable; i.e., you won't lose data.

Read Side Fault Tolerance

In a SolrCloud cluster each individual node load balances read requests across all the replicas in collection. You
still need a load balancer on the 'outside' that talks to the cluster, or you need a smart client which understands
how to read and interact with Solr's metadata in ZooKeeper and only requests the ZooKeeper ensemble's
address to start discovering to which nodes it should send requests. (Solr provides a smart Java SolrJ client
called .)CloudSolrClient

Even if some nodes in the cluster are offline or unreachable, a Solr node will be able to correctly respond to a
search request as long as it can communicate with at least one replica of every shard, or one replica of every rel

 shard if the user limited the search via the ' ' or ' ' parameters. The more replicas there areevant shards _route_
of every shard, the more likely that the Solr cluster will be able to handle search results in the event of node
failures.

zkConnected

A Solr node will return the results of a search request as long as it can communicate with at least one replica of
every shard that it knows about, even if it can communicate with ZooKeeper at the time it receives thenot
request. This is normally the preferred behavior from a fault tolerance standpoint, but may result in stale or
incorrect results if there have been major changes to the collection structure that the node has not been informed
of via ZooKeeper (ie: shards may have been added or removed, or split into sub-shards)

A header is included in every search response indicating if the node that processed the requestzkConnected
was connected with ZooKeeper at the time:

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/CloudSolrClient.html

594Apache Solr Reference Guide 6.1

{
 "responseHeader": {
 "status": 0,
 "zkConnected": true,
 "QTime": 20,
 "params": {
 "q": "*:*"
 }
 },
 "response": {
 "numFound": 107,
 "start": 0,
 "docs": [...]
 }
}

shards.tolerant

In the event that one or more shards queried are completely unavailable, then Solr's default behavior is to fail the
request. However, there are many use-cases where partial results are acceptable and so Solr provides a
boolean parameter (default ' '). If then partial results mayshards.tolerant false shards.tolerant=true
be returned. If the returned response does not contain results from all the appropriate shards then the response
header contains a special flag called ' '. The client can specify ' ' along with the 'partialResults shards.info

' parameter to retrieve more fine-grained details.shards.tolerant

Example response with flag set to 'true':partialResults

{
 "responseHeader": {
 "status": 0,
 "zkConnected": true,
 "partialResults": true,
 "QTime": 20,
 "params": {
 "q": "*:*"
 }
 },
 "response": {
 "numFound": 77,
 "start": 0,
 "docs": [...]
 }
}

Write Side Fault Tolerance

SolrCloud is designed to replicate documents to ensure redundancy for your data, and enable you to send
update requests to any node in the cluster. That node will determine if it hosts the leader for the appropriate
shard, and if not it will forward the request to the the leader, which will then forwards it to all existing replicas,
using versioning to make sure every replica has the most up-to-date version. If the leader goes down, and other

Solr Response with partialResults

Solr Response with partialResults

595Apache Solr Reference Guide 6.1

replica can take it's place. This architecture enables you to be certain that your data can be recovered in the
event of a disaster, even if you are using .Near Real Time Searching

Recovery

A Transaction Log is created for each node so that every change to content or organization is noted. The log is
used to determine which content in the node should be included in a replica. When a new replica is created, it
refers to the Leader and the Transaction Log to know which content to include. If it fails, it retries.

Since the Transaction Log consists of a record of updates, it allows for more robust indexing because it includes
redoing the uncommitted updates if indexing is interrupted.

If a leader goes down, it may have sent requests to some replicas and not others. So when a new potential
leader is identified, it runs a synch process against the other replicas. If this is successful, everything should be
consistent, the leader registers as active, and normal actions proceed. If a replica is too far out of sync, the
system asks for a full replication/replay-based recovery.

If an update fails because cores are reloading schemas and some have finished but others have not, the leader
tells the nodes that the update failed and starts the recovery procedure.

Achieved Replication Factor

When using a replication factor greater than one, an update request may succeed on the shard leader but fail on
one or more of the replicas. For instance, consider a collection with one shard and replication factor of three. In
this case, you have a shard leader and two additional replicas. If an update request succeeds on the leader but
fails on both replicas, for whatever reason, the update request is still considered successful from the perspective
of the client. The replicas that missed the update will sync with the leader when they recover.

Behind the scenes, this means that Solr has accepted updates that are only on one of the nodes (the current
leader). Solr supports the optional parameter on update requests that cause the server to return themin_rf
achieved replication factor for an update request in the response. For the example scenario described above, if
the client application included min_rf >= 1, then Solr would return rf=1 in the Solr response header because the
request only succeeded on the leader. The update request will still be accepted as the parameter onlymin_rf
tells Solr that the client application wishes to know what the achieved replication factor was for the update
request. In other words, min_rf does not mean Solr will enforce a minimum replication factor as Solr does not
support rolling back updates that succeed on a subset of replicas.

On the client side, if the achieved replication factor is less than the acceptable level, then the client application
can take additional measures to handle the degraded state. For instance, a client application may want to keep a
log of which update requests were sent while the state of the collection was degraded and then resend the
updates once the problem has been resolved. In short, is an optional mechanism for a client applicationmin_rf
to be warned that an update request was accepted while the collection is in a degraded state.

SolrCloud Configuration and Parameters
In this section, we'll cover the various configuration options for SolrCloud.

The following sections cover these topics:
Setting Up an External ZooKeeper Ensemble
Using ZooKeeper to Manage Configuration Files
ZooKeeper Access Control
Collections API
Parameter Reference
Command Line Utilities
SolrCloud with Legacy Configuration Files
ConfigSets API

596Apache Solr Reference Guide 6.1

Setting Up an External ZooKeeper Ensemble

Although Solr comes bundled with , you should consider yourself discouraged from using thisApache ZooKeeper
internal ZooKeeper in production, because shutting down a redundant Solr instance will also shut down its
ZooKeeper server, which might not be quite so redundant. Because a ZooKeeper ensemble must have a quorum
of more than half its servers running at any given time, this can be a problem.

The solution to this problem is to set up an external ZooKeeper ensemble. Fortunately, while this process can
seem intimidating due to the number of powerful options, setting up a simple ensemble is actually quite
straightforward, as described below.

When planning how many ZooKeeper nodes to configure, keep in mind that the main principle for a ZooKeeper
ensemble is maintaining a majority of servers to serve requests. This majority is also called a . It isquorum
generally recommended to have an odd number of ZooKeeper servers in your ensemble, so a majority is
maintained. For example, if you only have two ZooKeeper nodes and one goes down, 50% of available servers
is not a majority, so ZooKeeper will no longer serve requests. However, if you have three ZooKeeper nodes and
one goes down, you have 66% of available servers available, and ZooKeeper will continue normally while you
repair the one down node. If you have 5 nodes, you could continue operating with two down nodes if necessary.
More information on ZooKeeper clusters is available from the ZooKeeper documentation at http://zookeeper.apa

.che.org/doc/r3.4.5/zookeeperAdmin.html#sc_zkMulitServerSetup

Download Apache ZooKeeper

The first step in setting up Apache ZooKeeper is, of course, to download the software. It's available from http://zo
.okeeper.apache.org/releases.html

Setting Up a Single ZooKeeper

Create the instance

Creating the instance is a simple matter of extracting the files into a specific target directory. The actual directory
itself doesn't matter, as long as you know where it is, and where you'd like to have ZooKeeper store its internal
data.

How Many ZooKeepers?
"For a ZooKeeper service to be active, there must be a majority of non-failing machines that can
communicate with each other. To create a deployment that can tolerate the failure of F machines,

. Thus, a deployment that consists of three machinesyou should count on deploying 2xF+1 machines
can handle one failure, and a deployment of five machines can handle two failures. Note that a
deployment of six machines can only handle two failures since three machines is not a majority.

For this reason, ZooKeeper deployments are usually made up of an odd number of machines."

-- .ZooKeeper Administrator's Guide

When using stand-alone ZooKeeper, you need to take care to keep your version of ZooKeeper updated
with the latest version distributed with Solr. Since you are using it as a stand-alone application, it does
not get upgraded when you upgrade Solr.

Solr currently uses Apache ZooKeeper v3.4.6.

http://zookeeper.apache.org
http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html#sc_zkMulitServerSetup
http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html#sc_zkMulitServerSetup
http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/releases.html
http://zookeeper.apache.org/doc/r3.4.6/zookeeperAdmin.html

597Apache Solr Reference Guide 6.1

Configure the instance

The next step is to configure your ZooKeeper instance. To do that, create the following file: <ZOOKEEPER_HOME>
. To this file, add the following information:/conf/zoo.cfg

tickTime=2000
dataDir=/var/lib/zookeeper
clientPort=2181

The parameters are as follows:

tickTime: Part of what ZooKeeper does is to determine which servers are up and running at any given time, and
the minimum session time out is defined as two "ticks". The parameter specifies, in miliseconds, howtickTime
long each tick should be.

dataDir: This is the directory in which ZooKeeper will store data about the cluster. This directory should start out
empty.

clientPort: This is the port on which Solr will access ZooKeeper.

Once this file is in place, you're ready to start the ZooKeeper instance.

Run the instance

To run the instance, you can simply use the script provided, as with thisZOOKEEPER_HOME/bin/zkServer.sh
command: zkServer.sh start

Again, ZooKeeper provides a great deal of power through additional configurations, but delving into them is
beyond the scope of this tutorial. For more information, see the ZooKeeper page. For thisGetting Started
example, however, the defaults are fine.

Point Solr at the instance

Pointing Solr at the ZooKeeper instance you've created is a simple matter of using the parameter when using-z
the bin/solr script. For example, in order to point the Solr instance to the ZooKeeper you've started on port 2181,
this is what you'd need to do:

Starting example with Zookeeper already running at port 2181 (with all other defaults):cloud

bin/solr start -e cloud -z localhost:2181 -noprompt

Add a node pointing to an existing ZooKeeper at port 2181:

bin/solr start -cloud -s <path to solr home for new node> -p 8987 -z localhost:2181

NOTE: When you are not using an example to start solr, make sure you upload the configuration set to
zookeeper before creating the collection.

Shut down ZooKeeper

To shut down ZooKeeper, use the zkServer script with the "stop" command: .zkServer.sh stop

Setting up a ZooKeeper Ensemble

With an external ZooKeeper ensemble, you need to set things up just a little more carefully as compared to the
Getting Started example.

http://zookeeper.apache.org/doc/r3.4.5/zookeeperStarted.html

598Apache Solr Reference Guide 6.1

The difference is that rather than simply starting up the servers, you need to configure them to know about and
talk to each other first. So your original file might look like this:zoo.cfg

dataDir=/var/lib/zookeeperdata/1
clientPort=2181
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

Here you see three new parameters:

initLimit: Amount of time, in ticks, to allow followers to connect and sync to a leader. In this case, you have 5
ticks, each of which is 2000 milliseconds long, so the server will wait as long as 10 seconds to connect and sync
with the leader.

syncLimit: Amount of time, in ticks, to allow followers to sync with ZooKeeper. If followers fall too far behind a
leader, they will be dropped.

server.X: These are the IDs and locations of all servers in the ensemble, the ports on which they communicate
with each other. The server ID must additionally stored in the file and be located in the <dataDir>/myid dataD

 of each ZooKeeper instance. The ID identifies each server, so in the case of this first instance, you wouldir
create the file with the content "1"./var/lib/zookeeperdata/1/myid

Now, whereas with Solr you need to create entirely new directories to run multiple instances, all you need for a
new ZooKeeper instance, even if it's on the same machine for testing purposes, is a new configuration file. To
complete the example you'll create two more configuration files.

The file should have the content:<ZOOKEEPER_HOME>/conf/zoo2.cfg

tickTime=2000
dataDir=c:/sw/zookeeperdata/2
clientPort=2182
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

You'll also need to create :<ZOOKEEPER_HOME>/conf/zoo3.cfg

tickTime=2000
dataDir=c:/sw/zookeeperdata/3
clientPort=2183
initLimit=5
syncLimit=2
server.1=localhost:2888:3888
server.2=localhost:2889:3889
server.3=localhost:2890:3890

Finally, create your files in each of the directories so that each server knows which instance it is.myid dataDir
The id in the file on each machine must match the "server.X" definition. So, the ZooKeeper instance (ormyid
machine) named "server.1" in the above example, must have a file containing the value "1". The filemyid myid
can be any integer between 1 and 255, and must match the server IDs assigned in the file.zoo.cfg

To start the servers, you can simply explicitly reference the configuration files:

599Apache Solr Reference Guide 6.1

cd <ZOOKEEPER_HOME>
bin/zkServer.sh start zoo.cfg
bin/zkServer.sh start zoo2.cfg
bin/zkServer.sh start zoo3.cfg

Once these servers are running, you can reference them from Solr just as you did before:

bin/solr start -e cloud -z localhost:2181,localhost:2182,localhost:2183 -noprompt

For more information on getting the most power from your ZooKeeper installation, check out the ZooKeeper
.Administrator's Guide

Securing the ZooKeeper connection

You may also want to secure the communication between ZooKeeper and Solr.

To setup ACL protection of znodes, see ZooKeeper Access Control.

Using ZooKeeper to Manage Configuration Files

With SolrCloud your configuration files are kept in ZooKeeper. These files are uploaded in either of the following
cases:

When you start a SolrCloud example using the script.bin/solr
When you create a collection using the script.bin/solr
Explicitly upload a configuration set to ZooKeeper.

Startup Bootstrap

When you try SolrCloud for the first time using the , the related configset gets uploaded tobin/solr -e cloud
zookeeper automatically and is linked with the newly created collection.

The below command would start SolrCloud with the default collection name (gettingstarted) and default configset
(data_driven_schema_configs) uploaded and linked to it.

$ bin/solr -e cloud -noprompt

You can also explicitly upload a configuration directory when creating a collection using the bin/solr

script with the option, such as:-d

$ bin/solr create -c mycollection -d data_driven_schema_configs

The create command will upload a copy of the configuration directory todata_driven_schema_configs
ZooKeeper under . Refer to the page for more details/configs/mycollection Solr Start Script Reference
about the create command for creating collections.

Once a configuration directory has been uploaded to ZooKeeper, you can update them using the ZooKeeper
.Command Line Interface (zkCLI)

It's a good idea to keep these files under version control.

http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html
http://zookeeper.apache.org/doc/r3.4.5/zookeeperAdmin.html

600Apache Solr Reference Guide 6.1

1.
2.
3.
4.
5.

Uploading configs using zkcli or SolrJ

In production situations, can also be uploaded to ZooKeeper independent of collection creation usingConfig Sets
either Solr's or the java method.zkcli.sh script, CloudSolrClient.uploadConfig

The below command can be used to upload a new configset using the zkcli script.

$ sh zkcli.sh -cmd upconfig -zkhost <host:port> -confname <name for configset>
-solrhome <solrhome> -confdir <path to directory with configset>

More information about the ZooKeeper Command Line Utility to help manage changes to configuration files, can
be found in the section on Command Line Utilities.

Managing Your SolrCloud Configuration Files

To update or change your SolrCloud configuration files:

Download the latest configuration files from ZooKeeper, using the source control checkout process.
Make your changes.
Commit your changed file to source control.
Push the changes back to ZooKeeper.
Reload the collection so that the changes will be in effect.

Preparing ZooKeeper before first cluster start

If you will share the same ZooKeeper instance with other applications you should use a in ZooKeeper.chroot
Please see for instructions.Taking Solr to Production#ZooKeeperchroot

There are certain configuration files containing cluster wide configuration. Since some of these are crucial for the
cluster to function properly, you may need to upload such files to ZooKeeper before starting your Solr cluster for
the first time. Examples of such configuration files (not exhaustive) are , and solr.xml security.json clus

.terprops.json

If you for example would like to keep your solr.xml in ZooKeeper to avoid having to copy it to every node's so
 directory, you can push it to ZooKeeper with the lr_home zkcli.sh utility (Unix example):

zkcli.sh -zkhost localhost:2181 -cmd putfile /solr.xml /path/to/solr.xml

ZooKeeper Access Control

This section describes using ZooKeeper access control lists (ACLs) with Solr. For information about ZooKeeper
ACLs, see the ZooKeeper documentation at http://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.htm

.l#sc_ZooKeeperAccessControl

About ZooKeeper ACLs
How to Enable ACLs
Changing ACL Schemes

About ZooKeeper ACLs

SolrCloud uses ZooKeeper for shared information and for coordination.

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/CloudSolrClient.html#uploadConfig(java.nio.file.Path,java.lang.String)
https://cwiki.apache.org/confluence/display/solr/Taking+Solr+to+Production#TakingSolrtoProduction-ZooKeeperchroot
http://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html#sc_ZooKeeperAccessControl
http://zookeeper.apache.org/doc/r3.4.6/zookeeperProgrammers.html#sc_ZooKeeperAccessControl

601Apache Solr Reference Guide 6.1

1.

2.
3.

This section describes how to configure Solr to add more restrictive ACLs to the ZooKeeper content it creates,
and how to tell Solr about the credentials required to access the content in ZooKeeper. If you want to use ACLs
in your ZooKeeper nodes, you will have to activate this functionality; by default, Solr behavior is open-unsafe
ACL everywhere and uses no credentials.

Content stored in ZooKeeper is critical to the operation of a SolrCloud cluster. Open access to SolrCloud
content on ZooKeeper could lead to a variety of problems. For example:

Changing configuration might cause Solr to fail or behave in an unintended way.
Changing cluster state information into something wrong or inconsistent might very well make a SolrCloud
cluster behave strangely.
Adding a delete-collection job to be carried out by the Overseer will cause data to be deleted from the
cluster.

You may want to enable ZooKeeper ACLs with Solr if you grant access to your ZooKeeper ensemble to entities
you do not trust, or if you want to reduce risk of bad actions resulting from, e.g.:

Malware that found its way into your system.
Other systems using the same ZooKeeper ensemble (a "bad thing" might be done by accident).

You might even want to limit read-access, if you think there is stuff in ZooKeeper that not everyone should know
about. Or you might just in general work on a need-to-know basis.

Protecting ZooKeeper itself could mean many different things. This section is about protecting Solr content
. ZooKeeper content basically lives persisted on disk and (partly) in memory of the ZooKeeperin ZooKeeper

processes. -This section is not about protecting ZooKeeper data at storage or ZooKeeper process levels
that's for ZooKeeper to deal with.

But this content is also available to "the outside" via the ZooKeeper API. Outside processes can connect to
ZooKeeper and create/update/delete/read content; for example, a Solr node in a SolrCloud cluster wants to
create/update/delete/read, and a SolrJ client wants to read from the cluster. It is the responsibility of the outside
processes that create/update content to setup ACLs on the content. ACLs describe who is allowed to read,
update, delete, create, etc. Each piece of information (znode/content) in ZooKeeper has its own set of ACLs, and
inheritance or sharing is not possible. The default behavior in Solr is to add one ACL on all the content it creates
- one ACL that gives anyone the permission to do anything (in ZooKeeper terms this is called "the open-unsafe
ACL").

How to Enable ACLs

We want to be able to:

Control the credentials Solr uses for its ZooKeeper connections. The credentials are used to get
permission to perform operations in ZooKeeper.
Control which ACLs Solr will add to znodes (ZooKeeper files/folders) it creates in ZooKeeper.
Control it "from the outside", so that you do not have to modify and/or recompile Solr code to turn this on.

Solr nodes, clients and tools (e.g. ZkCLI) always use a java class called to deal with their SolrZkClient
ZooKeeper stuff. The implementation of the solution described here is all about changing . If youSolrZkClient
use in your application, the descriptions below will be true for your application too.SolrZkClient

Controlling Credentials

You control which credentials provider will be used by configuring the property in zkCredentialsProvider so
's section to the name of a class (on the classpath) implementing the lr.xml <solrcloud> ZkCredentialsP

interface. in the Solr distribution defines the s rovider server/solr/solr.xml zkCredentialsProvider
uch that it will take on the value of the same-named system property if it is definedzkCredentialsProvider

(e.g. by uncommenting the environment variable definition in SOLR_ZK_CREDS_AND_ACLS solr.in.sh/.

 - see below)cmd , or if not, default to the DefaultZkCredentialsProvider implementation.

Out of the Box Implementations

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/common/cloud/SolrZkClient.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/common/cloud/ZkCredentialsProvider
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/common/cloud/ZkCredentialsProvider

602Apache Solr Reference Guide 6.1

You can always make you own implementation, but Solr comes with two implementations:

org.apache.solr.common.cloud.DefaultZkCredentialsProvider: Its getCredentials()

returns a list of length zero, or "no credentials used". This is the default.
org.apache.solr.common.cloud.VMParamsSingleSetCredentialsDigestZkCredentialsPr
ovider: This lets you define your credentials using system properties. It supports at most one set of
credentials.

The schema is "digest". The username and password are defined by system properties "zkDiges

" and " ", respectively. This set of credentials will be addedtUsername zkDigestPassword

to the list of credentials returned by if both username and password aregetCredentials()

provided.
If the one set of credentials above is not added to the list, this implementation will fall back to
default behavior and use the (empty) credentials list from DefaultZkCredentialsProvider

.

Controlling ACLs

You control which ACLs will be added by configuring zkACLProvider property in solr.xml 's <solrcloud>
 section to the name of a class (on the classpath) implementing the interface. ZkACLProvider server/solr

 in the Solr distribution defines the such that it will take on the value of the/solr.xml zkACLProvider
same-named system property if it is defined (e.g. by uncommenting the zkACLProvider SOLR_ZK_CREDS_AN

 environment variable definition in - see below)D_ACLS solr.in.sh/.cmd , or if not, default to the DefaultZ
 kACLProvider implementation.

Out of the Box Implementations

You can always make you own implementation, but Solr comes with:

org.apache.solr.common.cloud.DefaultZkACLProvider: It returns a list of length one for all z
-s. The single ACL entry in the list is "open-unsafe". This is the default.NodePath

org.apache.solr.common.cloud.VMParamsAllAndReadonlyDigestZkACLProvider: This lets
you define your ACLs using system properties. Its implementation does not use getACLsToAdd() zNod

 for anything, so all znodes will get the same set of ACLs. It supports adding one or both of theseePath
options:

A user that is allowed to do everything.
The permission is " " (corresponding to all of , , , , and ALL CREATE READ WRITE DELETE ADMI

), and the schema is "digest". N
The username and password are defined by system properties " " and "zkDigestUsername

", respectively. zkDigestPassword
This ACL will not be added to the list of ACLs unless both username and password are
provided.

A user that is only allowed to perform read operations.
The permission is " " and the schema is "digest". READ
The username and password are defined by system properties "zkDigestReadonlyUsern

" and " ", respectively. ame zkDigestReadonlyPassword
This ACL will not be added to the list of ACLs unless both username and password are
provided.

org.apache.solr.common.cloud.SaslZkACLProvider: Requires SASL authentication. Gives all
permissions for the user specified in system property (default: solr.authorization.superuser solr
) when using SASL, and gives read permissions for anyone else. Designed for a setup
where configurations have already been set up and will not be modified, or where configuration changes
are controlled via Solr APIs. This provider will be useful for administration in a kerberos environment. In
such an environment, the administrator wants Solr to authenticate to ZooKeeper using SASL, since this is
only way to authenticate with ZooKeeper via Kerberos.

http://lucene.apache.org/solr/6_1_0//solr-solrj/org/apache/solr/common/cloud/ZkACLProvider

603Apache Solr Reference Guide 6.1

If none of the above ACLs is added to the list, the (empty) ACL list of DefaultZkACLProvider will
be used by default.

Notice the overlap in system property names with credentials provider VMParamsSingleSetCredentialsDig
 (described above). This is to let the two providers collaborate in a nice andestZkCredentialsProvider

perhaps common way: we always protect access to content by limiting to two users - an admin-user and a
readonly-user - AND we always connect with credentials corresponding to this same admin-user, basically so
that we can do anything to the content/znodes we create ourselves.

You can give the readonly credentials to "clients" of your SolrCloud cluster - e.g. to be used by SolrJ clients.
They will be able to read whatever is necessary to run a functioning SolrJ client, but they will not be able to
modify any content in ZooKeeper.

bin/solr & , &solr.cmd server/scripts/cloud-scripts/zkcli.sh zkcli.bat

These Solr scripts can enable use of ZK ACLs by setting the appropriate system properties: uncomment the
following and replace the passwords with ones you choose to enable the above-described VM parameters ACL
and credentials providers in the following files:

Settings for ZK ACL
#SOLR_ZK_CREDS_AND_ACLS="-DzkACLProvider=org.apache.solr.common.cloud.VMParamsAllAnd
ReadonlyDigestZkACLProvider \

-DzkCredentialsProvider=org.apache.solr.common.cloud.VMParamsSingleSetCredentialsDig
estZkCredentialsProvider \
-DzkDigestUsername=admin-user -DzkDigestPassword=CHANGEME-ADMIN-PASSWORD \
-DzkDigestReadonlyUsername=readonly-user
-DzkDigestReadonlyPassword=CHANGEME-READONLY-PASSWORD"
#SOLR_OPTS="$SOLR_OPTS $SOLR_ZK_CREDS_AND_ACLS"

REM Settings for ZK ACL
REM set
SOLR_ZK_CREDS_AND_ACLS=-DzkACLProvider=org.apache.solr.common.cloud.VMParamsAllAndRe
adonlyDigestZkACLProvider ^
REM
-DzkCredentialsProvider=org.apache.solr.common.cloud.VMParamsSingleSetCredentialsDig
estZkCredentialsProvider ^
REM -DzkDigestUsername=admin-user -DzkDigestPassword=CHANGEME-ADMIN-PASSWORD ^
REM -DzkDigestReadonlyUsername=readonly-user
-DzkDigestReadonlyPassword=CHANGEME-READONLY-PASSWORD
REM set SOLR_OPTS=%SOLR_OPTS% %SOLR_ZK_CREDS_AND_ACLS%

solr.in.sh

solr.in.cmd

604Apache Solr Reference Guide 6.1

Settings for ZK ACL
#SOLR_ZK_CREDS_AND_ACLS="-DzkACLProvider=org.apache.solr.common.cloud.VMParamsAllAnd
ReadonlyDigestZkACLProvider \

-DzkCredentialsProvider=org.apache.solr.common.cloud.VMParamsSingleSetCredentialsDig
estZkCredentialsProvider \
-DzkDigestUsername=admin-user -DzkDigestPassword=CHANGEME-ADMIN-PASSWORD \
-DzkDigestReadonlyUsername=readonly-user
-DzkDigestReadonlyPassword=CHANGEME-READONLY-PASSWORD"

REM Settings for ZK ACL
REM set
SOLR_ZK_CREDS_AND_ACLS=-DzkACLProvider=org.apache.solr.common.cloud.VMParamsAllAndRe
adonlyDigestZkACLProvider ^
REM
-DzkCredentialsProvider=org.apache.solr.common.cloud.VMParamsSingleSetCredentialsDig
estZkCredentialsProvider ^
REM -DzkDigestUsername=admin-user -DzkDigestPassword=CHANGEME-ADMIN-PASSWORD ^
REM -DzkDigestReadonlyUsername=readonly-user
-DzkDigestReadonlyPassword=CHANGEME-READONLY-PASSWORD

Changing ACL Schemes

Over the lifetime of operating your Solr cluster, you may decide to move from an unsecured ZooKeeper to a
secured instance. Changing the configured in will ensure that newly created nodeszkACLProvider solr.xml
are secure, but will not protect the already existing data. To modify all existing ACLs, you can use the updateac

 command with Solr's ZkCLI. First uncomment the environment variablels SOLR_ZK_CREDS_AND_ACLS
definition in (or on Windows) and fill in theserver/scripts/cloud-scripts/zkcli.sh zkcli.bat
passwords for the admin-user and the readonly-user - see above - then run server/scripts/cloud-script

, or on Windows run s/zkcli.sh -cmd updateacls /zk-path server\scripts\cloud-scripts\zkc

 li.bat cmd updateacls /zk-path .

Changing ACLs in ZK should only be done while your SolrCloud cluster is stopped. Attempting to do so
while Solr is running may result in inconsistent state and some nodes becoming inaccessible.

The VM properties and , included in the zkACLProvider zkCredentialsProvider SOLR_ZK_CREDS_AND_
 environment variable in , control the conversion:ACLS zkcli.sh/.bat

The Credentials Provider must be one that has current admin privileges on the nodes. When omitted, the
process will use no credentials (suitable for an unsecure configuration).
The ACL Provider will be used to compute the new ACLs. When omitted, the process will set all
permissions to all users, removing any security present.

The uncommented environment variable in sets the credentialsSOLR_ZK_CREDS_AND_ACLS zkcli.sh/.bat
and ACL providers to the and VMParamsSingleSetCredentialsDigestZkCredentialsProvider VMPar

 implementations, described earlier in the page.amsAllAndReadonlyDigestZkACLProvider

Collections API

The Collections API is used to enable you to create, remove, or reload collections, but in the context of SolrCloud

zkcli.sh

zkcli.bat

605Apache Solr Reference Guide 6.1

you can also use it to create collections with a specific number of shards and replicas.

API Entry Points

The base URL for all API calls below is .http://<hostname>:<port>/solr

/admin/collections?action=CREATE: a collection create
: certain attributes of a collection /admin/collections?action=MODIFYCOLLECTION Modify

: a collection/admin/collections?action=RELOAD reload
: a shard into two new shards/admin/collections?action=SPLITSHARD split

: a new shard/admin/collections?action=CREATESHARD create
: an inactive shard/admin/collections?action=DELETESHARD delete
: for a collection/admin/collections?action=CREATEALIAS create or modify an alias
: for a collection/admin/collections?action=DELETEALIAS delete an alias

: a collection/admin/collections?action=DELETE delete
: of a shard/admin/collections?action=DELETEREPLICA delete a replica

: of a shard/admin/collections?action=ADDREPLICA add a replica
: /admin/collections?action=CLUSTERPROP Add/edit/delete a cluster-wide property

: /admin/collections?action=MIGRATE Migrate documents to another collection
: to a node in the cluster /admin/collections?action=ADDROLE Add a specific role

: /admin/collections?action=REMOVEROLE Remove an assigned role
: /admin/collections?action=OVERSEERSTATUS Get status and statistics of the overseer

: /admin/collections?action=CLUSTERSTATUS Get cluster status
: of a previous asynchronous request/admin/collections?action=REQUESTSTATUS Get the status

: of a previous asynchronous/admin/collections?action=DELETESTATUS Delete the stored response
request

: /admin/collections?action=LIST List all collections
: to a replica specified by/admin/collections?action=ADDREPLICAPROP Add an arbitrary property

collection/shard/replica
: from a replica specified/admin/collections?action=DELETEREPLICAPROP Delete an arbitrary property

by collection/shard/replica
: , one per shard,/admin/collections?action=BALANCESHARDUNIQUE Distribute an arbitrary property

across the nodes in a collection
: based on the "preferredLeader"/admin/collections?action=REBALANCELEADERS Distribute leader role

assignments
: in a shard if leader is lost /admin/collections?action=FORCELEADER Force a leader election

: to/admin/collections?action=MIGRATESTATEFORMAT Migrate a collection from shared clusterstate.json
per-collection state.json

: Solr indexes and configurations for a specifc collection/admin/collections?action=BACKUP Backup
: Solr indexes and configurations for a specific collection/admin/collections?action=RESTORE Restore

Create a Collection

/admin/collections?action=CREATE&name= &numShards= &replicationFactor=name number numbe
&maxShardsPerNode= &createNodeSet= &collection.configName=r number nodelist configname

Input

Query Parameters

Key Type Required Default Description

name string Yes The name of the collection to be created.

606Apache Solr Reference Guide 6.1

router.name string No compositeId The router name that will be used. The router
defines how documents will be distributed among
the shards. Possible values are or implicit comp

. The 'implicit' router does notositeId
automatically route documents to different
shards. Whichever shard you indicate on the
indexing request (or within each document) will
be used as the destination for those documents.
The 'compositeId' router hashes the value in the
uniqueKey field and looks up that hash in the
collection's clusterstate to determine which shard
will receive the document, with the additional
ability to manually direct the routing. When using
the 'implicit' router, the parameter isshards
required. When using the 'compositeId' router,
the parameter is required. For morenumShards
information, see also the section Document

.Routing

numShards integer No empty The number of shards to be created as part of
the collection. This is a required parameter when
using the 'compositeId' router.

shards string No empty A comma separated list of shard names, e.g.,
shard-x,shard-y,shard-z . This is a required
parameter when using the 'implicit' router.

replicationFactor integer No 1 The number of replicas to be created for each
shard.

maxShardsPerNode integer No 1 When creating collections, the shards and/or
replicas are spread across all available (i.e., live)
nodes, and two replicas of the same shard will
never be on the same node. If a node is not live
when the CREATE operation is called, it will not
get any parts of the new collection, which could
lead to too many replicas being created on a
single live node. Defining smaxShardsPerNode
ets a limit on the number of replicas CREATE will
spread to each node. If the entire collection can
not be fit into the live nodes, no collection will be
created at all.

createNodeSet string No Allows defining the nodes to spread the new
collection across. If not provided, the CREATE
operation will create shard-replica spread across
all live Solr nodes. The format is a
comma-separated list of node_names, such as l

 ocalhost:8983_solr, localhost:8984_s
 . Alternatively,olr, localhost:8985_solr

use the special value of to initially createEMPTY
no shard-replica within the new collection and
then later use the operationADDREPLICA
to add shard-replica when and where required.

https://cwiki.apache.org/confluence/display/solr/Shards+and+Indexing+Data+in+SolrCloud#ShardsandIndexingDatainSolrCloud-DocumentRouting
https://cwiki.apache.org/confluence/display/solr/Shards+and+Indexing+Data+in+SolrCloud#ShardsandIndexingDatainSolrCloud-DocumentRouting

607Apache Solr Reference Guide 6.1

createNodeSet.shuffle boolean No true Controls wether or not the shard-replicas created
for this collection will be assigned to the nodes
specified by the createNodeSet in a sequential
manner, or if the list of nodes should be shuffled
prior to creating individual replicas. A 'false'
value makes the results of a collection creation
predictible and gives more exact control over the
location of the individual shard-replicas, but 'true'
can be a better choice for ensuring replicas are
distributed evenly across nodes.

Ignored if createNodeSet is not also specified.

collection.configName string No empty Defines the name of the configurations (which
must already be stored in ZooKeeper) to use for
this collection. If not provided, Solr will default to
the collection name as the configuration name.

router.field string No empty If this field is specified, the router will look at the
value of the field in an input document to
compute the hash and identify a shard instead of
looking at the field. If the fielduniqueKey
specified is null in the document, the document
will be rejected. Please note that oRealTime Get
r retrieval by id would also require the parameter

 (or) to avoid a distributed_route_ shard.keys
search.

property. =name value string No Set core property to . See the sectionname value
 for details on supportedDefining core.properties

properties and values.

autoAddReplicas boolean No false When set to true, enables auto addition of
replicas on shared file systems. See the section

 for more details onautoAddReplicas Settings
settings and overrides.

async string No Request ID to track this action which will be proc
.essed asynchronously

rule string No Replica placement rules. See the section Rule-b
 for details.ased Replica Placement

snitch string No Details of the snitch provider. See the section Ru
 for details.le-based Replica Placement

Output

Output Content

The response will include the status of the request and the new core names. If the status is anything other than
"success", an error message will explain why the request failed.
Examples

Input

http://localhost:8983/solr/admin/collections?action=CREATE&name=newCollection&numSha
rds=2&replicationFactor=1

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS#RunningSolronHDFS-autoAddReplicasSettings

608Apache Solr Reference Guide 6.1

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3764</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3450</int>
 </lst>
 <str name="core">newCollection_shard1_replica1</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3597</int>
 </lst>
 <str name="core">newCollection_shard2_replica1</str>
 </lst>
 </lst>
</response>

Modify attributes of a Collection

/admin/collections?action=MODIFYCOLLECTION&collection=<collection-name>&<attribute
-name>= <attribute-value>&<another-attribute-name>=<another-value>

It's possible to edit multiple attributes at a time. Changing these values only updates the z-node on Zookeeper,
they do not change the topology of the collection. For instance, increasing replicationFactor will automaticallynot
add more replicas to the collection but allow more ADDREPLICA commands to succeed.will

Query Parameters

Key Type Required Description

collection string Yes The name of the collection to be modified.

<attribute-name> string Yes Key-value pairs of attribute names and attribute values.

The attributes that can be modified are:

maxShardsPerNode
replicationFactor
autoAddReplicas
rule
snitch

See the section above for details on these attributes.CREATE

Reload a Collection

/admin/collections?action=RELOAD&name=name

609Apache Solr Reference Guide 6.1

The RELOAD action is used when you have changed a configuration in ZooKeeper.
Input

Query Parameters

Key Type Required Description

name string Yes The name of the collection to reload.

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

The response will include the status of the request and the cores that were reloaded. If the status is anything
other than "success", an error message will explain why the request failed.
Examples

Input

http://localhost:8983/solr/admin/collections?action=RELOAD&name=newCollection

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1551</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.6:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">761</int>
 </lst>
 </lst>
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1527</int>
 </lst>
 </lst>
 </lst>
</response>

Split a Shard

/admin/collections?action=SPLITSHARD&collection= &shard=name shardID

Splitting a shard will take an existing shard and break it into two pieces which are written to disk as two (new)
shards. The original shard will continue to contain the same data as-is but it will start re-routing requests to the
new shards. The new shards will have as many replicas as the original shard. A soft commit is automatically
issued after splitting a shard so that documents are made visible on sub-shards. An explicit commit (hard or soft)
is not necessary after a split operation because the index is automatically persisted to disk during the split
operation.

610Apache Solr Reference Guide 6.1

This command allows for seamless splitting and requires no downtime. A shard being split will continue to accept
query and indexing requests and will automatically start routing them to the new shards once this operation is
complete. This command can only be used for SolrCloud collections created with "numShards" parameter,
meaning collections which rely on Solr's hash-based routing mechanism.

The split is performed by dividing the original shard's hash range into two equal partitions and dividing up the
documents in the original shard according to the new sub-ranges.

One can also specify an optional 'ranges' parameter to divide the original shard's hash range into arbitrary hash
range intervals specified in hexadecimal. For example, if the original hash range is 0-1500 then adding the
parameter: ranges=0-1f4,1f5-3e8,3e9-5dc will divide the original shard into three shards with hash range 0-500,
501-1000 and 1001-1500 respectively.

Another optional parameter 'split.key' can be used to split a shard using a route key such that all documents of
the specified route key end up in a single dedicated sub-shard. Providing the 'shard' parameter is not required in
this case because the route key is enough to figure out the right shard. A route key which spans more than one
shard is not supported. For example, suppose split.key=A! hashes to the range 12-15 and belongs to shard
'shard1' with range 0-20 then splitting by this route key would yield three sub-shards with ranges 0-11, 12-15 and
16-20. Note that the sub-shard with the hash range of the route key may also contain documents for other route
keys whose hash ranges overlap.

Shard splitting can be a long running process. In order to avoid timeouts, you should run this as an asynchronou
s call.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection that includes the shard to be split.

shard string Yes The name of the shard to be split.

ranges string No A comma-separated list of hash ranges in hexadecimal e.g.
ranges=0-1f4,1f5-3e8,3e9-5dc

split.key string No The key to use for splitting the index

property.nam
=e value

string No Set core property to . See the section name value Defining core.properties
for details on supported properties and values.

async string No Request ID to track this action which will be processed asynchronously

Output

Output Content

The output will include the status of the request and the new shard names, which will use the original shard as
their basis, adding an underscore and a number. For example, "shard1" will become "shard1_0" and "shard1_1".
If the status is anything other than "success", an error message will explain why the request failed.
Examples

Input
Split shard1 of the "anotherCollection" collection.

http://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=anotherCol
lection&shard=shard1

Output

611Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6120</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3673</int>
 </lst>
 <str name="core">anotherCollection_shard1_1_replica1</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3681</int>
 </lst>
 <str name="core">anotherCollection_shard1_0_replica1</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6008</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">6007</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">71</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <str name="core">anotherCollection_shard1_1_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
 <str name="core">anotherCollection_shard1_0_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>
 </lst>
</response>

612Apache Solr Reference Guide 6.1

Create a Shard

Shards can only created with this API for collections that use the 'implicit' router. Use SPLITSHARD for
collections using the 'compositeId' router. A new shard with a name can be created for an existing 'implicit'
collection.

/admin/collections?action=CREATESHARD&shard= &collection=shardName name
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection that includes the shard that will be splitted.

shard string Yes The name of the shard to be created.

createNodeSet string No Allows defining the nodes to spread the new collection across. If not
provided, the CREATE operation will create shard-replica spread across
all live Solr nodes. The format is a comma-separated list of node_names,
such as localhost:8983_solr, localhost:8984_solr, localh

.ost:8985_solr

property.name
=value

string No Set core property to . See the section name value Defining
 for details on supported properties and values.core.properties

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

The output will include the status of the request. If the status is anything other than "success", an error message
will explain why the request failed.
Examples

Input
Create 'shard-z' for the "anImplicitCollection" collection.

http://localhost:8983/solr/admin/collections?action=CREATESHARD&collection=anImplici
tCollection&shard=shard-z

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">558</int>
 </lst>
</response>

Delete a Shard

Deleting a shard will unload all replicas of the shard, remove them from , and (by default)clusterstate.json
delete the instanceDir and dataDir for each replica. It will only remove shards that are inactive, or which have no
range given for custom sharding.

613Apache Solr Reference Guide 6.1

/admin/collections?action=DELETESHARD&shard= &collection=shardID name
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection that includes the shard to be deleted.

shard string Yes The name of the shard to be deleted.

deleteInstanceDir boolean No By default Solr will delete the entire instanceDir of each replica that
is deleted. Set this to to prevent the instance directory fromfalse
being deleted.

deleteDataDir boolean No By default Solr will delete the dataDir of each replica that is deleted.
Set this to to prevent the data directory from being deleted.false

deleteIndex boolean No By default Solr will delete the index of each replica that is deleted.
Set this to to prevent the index directory from being deleted.false

async string No Request ID to track this action which will be processed
 .asynchronously

Output

Output Content

The output will include the status of the request. If the status is anything other than "success", an error message
will explain why the request failed.
Examples

Input
Delete 'shard1' of the "anotherCollection" collection.

http://localhost:8983/solr/admin/collections?action=DELETESHARD&collection=anotherCo
llection&shard=shard1

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">558</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">27</int>
 </lst>
 </lst>
 </lst>
</response>

Create or modify an Alias for a Collection

614Apache Solr Reference Guide 6.1

The action will create a new alias pointing to one or more collections. If an alias by the sameCREATEALIAS
name already exists, this action will replace the existing alias, effectively acting like an atomic "MOVE"
command.

/admin/collections?action=CREATEALIAS&name= &collections=name collectionlist
Input

Query Parameters

Key Type Required Description

name string Yes The alias name to be created.

collections string Yes The list of collections to be aliased, separated by commas.

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the
creation of the alias, you can look in the Solr Admin UI, under the Cloud section and find the file.aliases.json
Examples

Input
Create an alias named "testalias" and link it to the collections named "anotherCollection" and "testCollection".

http://localhost:8983/solr/admin/collections?action=CREATEALIAS&name=testalias&colle
ctions=anotherCollection,testCollection

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">122</int>
 </lst>
</response>

Delete a Collection Alias

/admin/collections?action=DELETEALIAS&name=name
Input

Query Parameters

Key Type Required Description

name string Yes The name of the alias to delete.

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

The output will simply be a responseHeader with details of the time it took to process the request. To confirm the

615Apache Solr Reference Guide 6.1

removal of the alias, you can look in the Solr Admin UI, under the Cloud section, and find the filealiases.json
.
Examples

Input
Remove the alias named "testalias".

http://localhost:8983/solr/admin/collections?action=DELETEALIAS&name=testalias

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">117</int>
 </lst>
</response>

Delete a Collection

/admin/collections?action=DELETE&name=collection
Input

Query Parameters

Key Type Required Description

name string Yes The name of the collection to delete.

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

The response will include the status of the request and the cores that were deleted. If the status is anything other
than "success", an error message will explain why the request failed.
Examples

Input
Delete the collection named "newCollection".

http://localhost:8983/solr/admin/collections?action=DELETE&name=newCollection

Output

616Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">603</int>
 </lst>
 <lst name="success">
 <lst name="10.0.1.6:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">19</int>
 </lst>
 </lst>
 <lst name="10.0.1.4:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">67</int>
 </lst>
 </lst>
 </lst>
</response>

Delete a Replica

/admin/collections?action=DELETEREPLICA&collection= &shard= &replica=collection shard r
eplica

Delete a named replica from the specified collection and shard. If the corresponding core is up and running the
core is unloaded, the entry is removed from the clusterstate, and (by default) delete the instanceDir and dataDir.
If the node/core is down, the entry is taken off the clusterstate and if the core comes up later it is automatically
unregistered.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection.

shard string Yes The name of the shard that includes the replica to be removed.

replica string Yes The name of the replica to remove.

deleteInstanceDir boolean No By default Solr will delete the entire instanceDir of the replica that is
deleted. Set this to to prevent the instance directory fromfalse
being deleted.

deleteDataDir boolean No By default Solr will delete the dataDir of the replica that is deleted.
Set this to to prevent the data directory from being deleted.false

deleteIndex boolean No By default Solr will delete the index of the replica that is deleted. Set
this to to prevent the index directory from being deleted.false

onlyIfDown boolean No When set to 'true' will not take any action if the replica is active.
Default 'false'

617Apache Solr Reference Guide 6.1

async string No Request ID to track this action which will be processed
 .asynchronously

Examples

Input

http://localhost:8983/solr/admin/collections?action=DELETEREPLICA&collection=test2&s
hard=shard2&replica=core_node3

Output

Output Content

<response>
 <lst name="responseHeader"><int name="status">0</int><int
name="QTime">110</int></lst>
</response>

 Add Replica

/admin/collections?action=ADDREPLICA&collection= &shard= &node=collection shard solr_no
de_name

Add a replica to a shard in a collection. The node name can be specified if the replica is to be created in a
specific node
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection.

shard string Yes* The name of the shard to which replica is to be added.

If shard is not specified, then _route_ must be.

route string No* If the exact shard name is not known, users may pass the _route_ value
and the system would identify the name of the shard.

Ignored if the shard param is also specified.

node string No The name of the node where the replica should be created

instanceDir string No The instanceDir for the core that will be created

dataDir string No The directory in which the core should be created

property.na
=me value

string No Set core property to . See .name value Defining core.properties

async string No Request ID to track this action which will be processed asynchronously

Examples

Input

618Apache Solr Reference Guide 6.1

http://localhost:8983/solr/admin/collections?action=ADDREPLICA&collection=test2&shar
d=shard2&node=192.167.1.2:8983_solr

Output

Output Content

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3764</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">3450</int>
 </lst>
 <str name="core">test2_shard2_replica4</str>
 </lst>
 </lst>
</response>

Cluster Properties

/admin/collections?action=CLUSTERPROP&name= &val=propertyName propertyValue

Add, edit or delete a cluster-wide property.
Input

Query Parameters

Key Type Required Description

name string Yes The name of the property. The supported properties names are and urlScheme a
. Other names are rejected with an error.utoAddReplicas and location

val string Yes The value of the property. If the value is empty or null, the property is unset.

Output

Output Content

The response will include the status of the request and the properties that were updated or removed. If the status
is anything other than "0", an error message will explain why the request failed.
Examples

Input

http://localhost:8983/solr/admin/collections?action=CLUSTERPROP&name=urlScheme&val=h
ttps

Output

619Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
</response>

Migrate Documents to Another Collection

/admin/collections?action=MIGRATE&collection= &split.key= &target.collectionname key1!
= &forward.timeout=60target_collection

The MIGRATE command is used to migrate all documents having the given routing key to another collection.
The source collection will continue to have the same data as-is but it will start re-routing write requests to the
target collection for the number of seconds specified by the forward.timeout parameter. It is the responsibility of
the user to switch to the target collection for reads and writes after the ‘migrate’ command completes.

The routing key specified by the ‘split.key’ parameter may span multiple shards on both the source and the target
collections. The migration is performed shard-by-shard in a single thread. One or more temporary collections
may be created by this command during the ‘migrate’ process but they are cleaned up at the end automatically.

This is a long running operation and therefore using the parameter is highly recommended. If the asyncasync
parameter is not specified then the operation is synchronous by default and keeping a large read timeout on the
invocation is advised. Even with a large read timeout, the request may still timeout due to inherent limitations of
the Collection APIs but that doesn’t necessarily mean that the operation has failed. Users should check logs,
cluster state, source and target collections before invoking the operation again.

This command works only with collections having the compositeId router. The target collection must not receive
any writes during the time the migrate command is running otherwise some writes may be lost.

Please note that the migrate API does not perform any de-duplication on the documents so if the target collection
contains documents with the same uniqueKey as the documents being migrated then the target collection will
end up with duplicate documents.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the source collection from which documents will be split.

target.collection string Yes The name of the target collection to which documents will be migrated.

split.key string Yes The routing key prefix. For example, if uniqueKey is a!123, then you
would use .split.key=a!

forward.timeout int No The timeout, in seconds, until which write requests made to the source
collection for the given will be forwarded to the target shard.split.key
The default is 60 seconds.

property.name
=value

string No Set core property to . See the section name value Defining
 for details on supported properties and values.core.properties

async string No Request ID to track this action which will be .processed asynchronously

Output

Output Content

620Apache Solr Reference Guide 6.1

The response will include the status of the request.
Examples

Input

http://localhost:8983/solr/admin/collections?action=MIGRATE&collection=test1&split.k
ey=a!&target.collection=test2

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">19014</int>
 </lst>
 <lst name="success">
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="core">test2_shard1_0_replica1</str>
 <str name="status">BUFFERING</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">2479</int>
 </lst>
 <str name="core">split_shard1_0_temp_shard1_0_shard1_replica1</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1002</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">21</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1655</int>
 </lst>
 <str name="core">split_shard1_0_temp_shard1_0_shard1_replica2</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">4006</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">

621Apache Solr Reference Guide 6.1

 <int name="status">0</int>
 <int name="QTime">17</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="core">test2_shard1_0_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>
 <lst name="192.168.43.52:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">31</int>
 </lst>
 </lst>
 <lst name="192.168.43.52:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">31</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="core">test2_shard1_1_replica1</str>
 <str name="status">BUFFERING</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1742</int>
 </lst>
 <str name="core">split_shard1_1_temp_shard1_1_shard1_replica1</str>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1002</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">15</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1917</int>
 </lst>
 <str name="core">split_shard1_1_temp_shard1_1_shard1_replica2</str>
 </lst>
 <lst>

622Apache Solr Reference Guide 6.1

 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">5007</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">8</int>
 </lst>
 </lst>
 <lst>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="core">test2_shard1_1_replica1</str>
 <str name="status">EMPTY_BUFFER</str>
 </lst>
 <lst name="192.168.43.52:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">30</int>
 </lst>
 </lst>
 <lst name="192.168.43.52:8983_solr">
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">30</int>
 </lst>

623Apache Solr Reference Guide 6.1

 </lst>
 </lst>
</response>

Add Role

/admin/collections?action=ADDROLE&role= &node=roleName nodeName

Assign a role to a given node in the cluster. The only supported role as of 4.7 is 'overseer' . Use this API to
dedicate a particular node as Overseer. Invoke it multiple times to add more nodes. This is useful in large
clusters where an Overseer is likely to get overloaded . If available, one among the list of nodes which are
assigned the 'overseer' role would become the overseer. The system would assign the role to any other node if
none of the designated nodes are up and running
Input

Query Parameters

Key Type Required Description

role string Yes The name of the role. The only supported role as of now is .overseer

node string Yes The name of the node. It is possible to assign a role even before that node is
started.

Output

Output Content

The response will include the status of the request and the properties that were updated or removed. If the status
is anything other than "0", an error message will explain why the request failed.

Examples

Input

http://localhost:8983/solr/admin/collections?action=ADDROLE&role=overseer&node=192.1
67.1.2:8983_solr

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
</response>

Remove Role

/admin/collections?action=REMOVEROLE&role= &node=roleName nodeName

Remove an assigned role. This API is used to undo the roles assigned using ADDROLE operation
Input

Query Parameters

624Apache Solr Reference Guide 6.1

Key Type Required Description

role string Yes The name of the role. The only supported role as of now is .overseer

node string Yes The name of the node.

Output

Output Content

The response will include the status of the request and the properties that were updated or removed. If the status
is anything other than "0", an error message will explain why the request failed.
Examples

Input

http://localhost:8983/solr/admin/collections?action=REMOVEROLE&role=overseer&node=19
2.167.1.2:8983_solr

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">0</int>
 </lst>
</response>

Overseer status and statistics

/admin/collections?action=OVERSEERSTATUS

Returns the current status of the overseer, performance statistics of various overseer APIs as well as last 10
failures per operation type.
Examples

Input:

http://localhost:8983/solr/admin/collections?action=OVERSEERSTATUS&wt=json

625Apache Solr Reference Guide 6.1

{
 "responseHeader":{
 "status":0,
 "QTime":33},
 "leader":"127.0.1.1:8983_solr",
 "overseer_queue_size":0,
 "overseer_work_queue_size":0,
 "overseer_collection_queue_size":2,
 "overseer_operations":[
 "createcollection",{
 "requests":2,
 "errors":0,
 "totalTime":1.010137,
 "avgRequestsPerMinute":0.7467088842794136,
 "5minRateRequestsPerMinute":7.525069023276674,
 "15minRateRequestsPerMinute":10.271274280947182,
 "avgTimePerRequest":0.5050685,
 "medianRequestTime":0.5050685,
 "75thPctlRequestTime":0.519016,
 "95thPctlRequestTime":0.519016,
 "99thPctlRequestTime":0.519016,
 "999thPctlRequestTime":0.519016},
 "removeshard",{
 ...
 }],
 "collection_operations":[
 "splitshard",{
 "requests":1,
 "errors":1,
 "recent_failures":[{
 "request":{
 "operation":"splitshard",
 "shard":"shard2",
 "collection":"example1"},
 "response":[
 "Operation splitshard caused
exception:","org.apache.solr.common.SolrException:org.apache.solr.common.SolrExcepti
on: No shard with the specified name exists: shard2",
 "exception",{
 "msg":"No shard with the specified name exists: shard2",
 "rspCode":400}]}],
 "totalTime":5905.432835,
 "avgRequestsPerMinute":0.8198143044809885,
 "5minRateRequestsPerMinute":8.043840552427673,
 "15minRateRequestsPerMinute":10.502079828515368,
 "avgTimePerRequest":2952.7164175,
 "medianRequestTime":2952.7164175000003,
 "75thPctlRequestTime":5904.384052,
 "95thPctlRequestTime":5904.384052,
 "99thPctlRequestTime":5904.384052,
 "999thPctlRequestTime":5904.384052},
 ...
],
 "overseer_queue":[
 ...
],
 ...

626Apache Solr Reference Guide 6.1

Cluster Status

/admin/collections?action=CLUSTERSTATUS

Fetch the cluster status including collections, shards, replicas, configuration name as well as collection aliases
and cluster properties.
Input

Query Parameters

Key Type Required Description

collection string No The collection name for which information is requested. If omitted, information
on all collections in the cluster will be returned.

shard string No The shard(s) for which information is requested. Multiple shard names can be
specified as a comma separated list.

route string No This can be used if you need the details of the shard where a particular
document belongs to and you don't know which shard it falls under.

Output

Output Content

The response will include the status of the request and the cluster status.

Examples

Input

http://localhost:8983/solr/admin/collections?action=clusterstatus&wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":333},
 "cluster":{
 "collections":{
 "collection1":{
 "shards":{
 "shard1":{
 "range":"80000000-ffffffff",
 "state":"active",
 "replicas":{
 "core_node1":{
 "state":"active",
 "core":"collection1",
 "node_name":"127.0.1.1:8983_solr",
 "base_url":"http://127.0.1.1:8983/solr",
 "leader":"true"},
 "core_node3":{
 "state":"active",
 "core":"collection1",
 "node_name":"127.0.1.1:8900_solr",

627Apache Solr Reference Guide 6.1

 "base_url":"http://127.0.1.1:8900/solr"}}},
 "shard2":{
 "range":"0-7fffffff",
 "state":"active",
 "replicas":{
 "core_node2":{
 "state":"active",
 "core":"collection1",
 "node_name":"127.0.1.1:7574_solr",
 "base_url":"http://127.0.1.1:7574/solr",
 "leader":"true"},
 "core_node4":{
 "state":"active",
 "core":"collection1",
 "node_name":"127.0.1.1:7500_solr",
 "base_url":"http://127.0.1.1:7500/solr"}}}},
 "maxShardsPerNode":"1",
 "router":{"name":"compositeId"},
 "replicationFactor":"1",
 "znodeVersion": 11,
 "autoCreated":"true",
 "configName" : "my_config",
 "aliases":["both_collections"]
 },
 "collection2":{
 ...
 }
 },
 "aliases":{ "both_collections":"collection1,collection2" },
 "roles":{
 "overseer":[
 "127.0.1.1:8983_solr",
 "127.0.1.1:7574_solr"]
 },
 "live_nodes":[
 "127.0.1.1:7574_solr",
 "127.0.1.1:7500_solr",
 "127.0.1.1:8983_solr",

628Apache Solr Reference Guide 6.1

 "127.0.1.1:8900_solr"]
 }
}

Request Status

/admin/collections?action=REQUESTSTATUS&requestid=request-id

Request the status and response of an already submitted call. This call is alsoAsynchronous Collection API
used to clear up the stored statuses (See below).
Input

Query Parameters

Key Type Required Description

requestid string Yes The user defined request-id for the request. This can be used to track the
status of the submitted asynchronous task.

Examples

Input: Valid Request Status

http://localhost:8983/solr/admin/collections?action=REQUESTSTATUS&requestid=1000

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <lst name="status">
 <str name="state">completed</str>
 <str name="msg">found 1000 in completed tasks</str>
 </lst>
</response>

Input: Invalid RequestId

http://localhost:8983/solr/admin/collections?action=REQUESTSTATUS&requestid=1004

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <lst name="status">
 <str name="state">notfound</str>
 <str name="msg">Did not find taskid [1004] in any tasks queue</str>
 </lst>
</response>

629Apache Solr Reference Guide 6.1

Delete Status

/admin/collections?action=DELETESTATUS&requestid=request-id

Delete the stored response of an already failed or completed call.Asynchronous Collection API
Input

Query Parameters

Key Type Required Description

requestid string No The request-id of the async call we need to clear the stored response for.

flush boolean No Set to true to clear all stored completed and failed async request responses.

Examples

Input: Valid Request Status

http://localhost:8983/solr/admin/collections?action=DELETESTATUS&requestid=foo

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="status">successfully removed stored response for [foo]</str>
</response>

Input: Invalid RequestId

http://localhost:8983/solr/admin/collections?action=DELETESTATUS&requestid=bar

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="status">[bar] not found in stored responses</str>
</response>

Input: Clearing up all the stored statuses

http://localhost:8983/solr/admin/collections?action=DELETESTATUS&flush=true

Output

630Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">1</int>
 </lst>
 <str name="status"> successfully cleared stored collection api responses </str>
</response>

List Collections

/admin/collections?action=LIST

Fetch the names of the collections in the cluster.

Example

Input

http://localhost:8983/solr/admin/collections?action=LIST&wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":2011},
 "collections":["collection1",
 "example1",
 "example2"]}

Add Replica Property

/admin/collections?action=ADDREPLICAPROP&collection=collectionName&shard=shardName
&replica=replicaName&property=propertyName&property.value=value

Assign an arbitrary property to a particular replica and give it the value specified. If the property already exists, it
will be overwritten with the new value.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection this replica belongs to.

shard string Yes The name of the shard the replica belongs to.

replica string Yes The replica, e.g. core_node1.

631Apache Solr Reference Guide 6.1

property (1) string Yes The property to add. Note: this will have the literal 'property.' prepended
to distinguish it from system-maintained properties. So these two forms
are equivalent:

property=special

and

property=property.special

property.value string Yes The value to assign to the property.

shardUnique
(1)

Boolean No default: false. If true, then setting this property in one replica will
remove the property from all other replicas in that shard.

(1) There is one pre-defined property "preferredLeader" for which shardUnique is forced to 'true' and an error
returned if shardUnique is explicitly set to 'false'. PreferredLeader is a boolean property, any value assigned that
is not equal (case insensitive) to 'true' will be interpreted as 'false' for preferredLeader.
Output

Output Content

The response will include the status of the request. If the status is anything other than "0", an error message will
explain why the request failed.
Examples

Input: This command would set the preferredLeader (property.preferredLeader) to true on core_node1, and
remove that property from any other replica in the shard.

http://localhost:8983/solr/admin/collections?action=ADDREPLICAPROP&shard=shard1&coll
ection=collection1&replica=core_node1&property=preferredLeader&property.value=true

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">46</int>
 </lst>
</response>

Input: This pair of commands will set the "testprop" (property.testprop) to 'value1' and 'value2' respectively for
two nodes in the same shard.

http://localhost:8983/solr/admin/collections?action=ADDREPLICAPROP&shard=shard1&coll
ection=collection1&replica=core_node1&property=testprop&property.value=value1

http://localhost:8983/solr/admin/collections?action=ADDREPLICAPROP&shard=shard1&coll
ection=collection1&replica=core_node3&property=property.testprop&property.value=valu
e2

Input: This pair of commands would result in core_node_3 having the testprop (property.testprop) value set
because the second command specifies shardUnique=true, which would cause the property to be removed from
core_node_1.

632Apache Solr Reference Guide 6.1

http://localhost:8983/solr/admin/collections?action=ADDREPLICAPROP&shard=shard1&coll
ection=collection1&replica=core_node1&property=testprop&property.value=value1

http://localhost:8983/solr/admin/collections?action=ADDREPLICAPROP&shard=shard1&coll
ection=collection1&replica=core_node3&property=testprop&property.value=value2&shardU
nique=true

Delete Replica Property

/admin/collections?action=DELETEREPLICAPROP&collection=collectionName&shard=shardNa
&replica= &property=me replicaName propertyName

Deletes an arbitrary property from a particular replica.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection this replica belongs to

shard string Yes The name of the shard the replica belongs to.

replica string Yes The replica, e.g. core_node1.

property string Yes The property to add. Note: this will have the literal 'property.' prepended to
distinguish it from system-maintained properties. So these two forms are
equivalent:

property=special

and

property=property.special

Output

Output Content

The response will include the status of the request. If the status is anything other than "0", an error message will
explain why the request failed.

Examples

Input: This command would delete the preferredLeader (property.preferredLeader) from core_node1.

http://localhost:8983/solr/admin/collections?action=DELETEREPLICAPROP&shard=shard1&c
ollection=collection1&replica=core_node1&property=preferredLeader

Output:

633Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">9</int>
 </lst>
</response>

Balance a Property

/admin/collections?action=BALANCESHARDUNIQUE&collection= &property=collectionName pro
pertyName

Insures that a particular property is distributed evenly amongst the physical nodes that make up a collection. If
the property already exists on a replica, every effort is made to leave it there. If the property is on any replicanot
on a shard one is chosen and the property is added.
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection to balance the property in.

property string Yes The property to balance. The literal "property." is prepended to this
property if not specified explicitly.

onlyactivenodes boolean No Defaults to true. Normally, the property is instantiated on active nodes
only. If this parameter is specified as "false", then inactive nodes are
also included for distribution.

shardUnique boolean No Something of a safety valve. There is one pre-defined property
(preferredLeader) that defaults this value to "true". For all other
properties that are balanced, this must be set to "true" or an error
message is returned.

Output

Output Content

The response will include the status of the request. If the status is anything other than "0", an error message will
explain why the request failed.

Examples

Input: Either of these commands would put the "preferredLeader" property on one replica in every shard in the
"collection1" collection.

http://localhost:8983/solr/admin/collections?action=BALANCESHARDUNIQUE&collection=co
llection1&property=preferredLeader

http://localhost:8983/solr/admin/collections?action=BALANCESHARDUNIQUE&collection=co
llection1&property=property.preferredLeader

Output:

634Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">9</int>
 </lst>
</response>

Examining the clusterstate after issuing this call should show exactly one replica in each shard that has this
property.

Rebalance Leaders

Reassign leaders in a collection according to the preferredLeader property across active nodes.

/admin/collections?action=REBALANCELEADERS&collection=collectionName

Assigns leaders in a collection according to the preferredLeader property on active nodes. This command should
be run after the preferredLeader property has been assigned via the BALANCESHARDUNIQUE or
ADDREPLICAPROP commands. NOTE: it is not that all shards in a collection have a preferredLeaderrequired
property. Rebalancing will only attempt to reassign leadership to those replicas that have the preferredLeader
property set to "true" are not currently the shard leader are currently active.and and
Input

Query Parameters

Key Type Required Description

collection string Yes The name of the collection to rebalance preferredLeaders on.

maxAtOnce string No The maximum number of reassignments to have queue up at once.
Values <=0 are use the default value Integer.MAX_VALUE. When this
number is reached, the process waits for one or more leaders to be
successfully assigned before adding more to the queue.

maxWaitSeconds string No Defaults to 60. This is the timeout value when waiting for leaders to be
reassigned. NOTE: if maxAtOnce is less than the number of
reassignments that will take place, this is the maximum interval that
any wait for at least one reassignment. For example, if 10single
reassignments are to take place and maxAtOnce is 1 and
maxWaitSeconds is 60, the upper bound on the time that the
command may wait is 10 minutes.

Output

Output Content

The response will include the status of the request. If the status is anything other than "0", an error message will
explain why the request failed.

Examples

Input: Either of these commands would cause all the active replicas that had the "preferredLeader" property set
and were already the preferred leader to become leaders.not

635Apache Solr Reference Guide 6.1

http://localhost:8983/solr/admin/collections?action=REBALANCELEADERS&collection=coll
ection1
http://localhost:8983/solr/admin/collections?action=REBALANCELEADERS&collection=coll
ection1&maxAtOnce=5&maxWaitSeconds=30

Output: In this example, two replicas in the "alreadyLeaders" section already had the leader assigned to the
same node as the preferredLeader property so no action was taken. The replica in the "inactivePreferreds"
section had the preferredLeader property set but the node was down and no action was taken. The three nodes
in the "successes" section were made leaders because they had the preferredLeader property set but were not
leaders and they were active.

636Apache Solr Reference Guide 6.1

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">123</int>
 </lst>
 <lst name="alreadyLeaders">
 <lst name="core_node1">
 <str name="status">success</str>
 <str name="msg">Already leader</str>
 <str name="nodeName">192.168.1.167:7400_solr</str>
 </lst>
 <lst name="core_node17">
 <str name="status">success</str>
 <str name="msg">Already leader</str>
 <str name="nodeName">192.168.1.167:7600_solr</str>
 </lst>
 </lst>
 <lst name="inactivePreferreds">
 <lst name="core_node4">
 <str name="status">skipped</str>
 <str name="msg">Node is a referredLeader, but it's inactive. Skipping</str>
 <str name="nodeName">192.168.1.167:7500_solr</str>
 </lst>
 </lst>
 <lst name="successes">
 <lst name="_collection1_shard3_replica1">
 <str name="status">success</str>
 <str name="msg">
 Assigned 'Collection: 'collection1', Shard: 'shard3', Core:
'collection1_shard3_replica1', BaseUrl:
 'http://192.168.1.167:8983/solr'' to be leader
 </str>
 </lst>
 <lst name="_collection1_shard5_replica3">
 <str name="status">success</str>
 <str name="msg">
 Assigned 'Collection: 'collection1', Shard: 'shard5', Core:
'collection1_shard5_replica3', BaseUrl:
 'http://192.168.1.167:7200/solr'' to be leader
 </str>
 </lst>
 <lst name="_collection1_shard4_replica2">
 <str name="status">success</str>
 <str name="msg">
 Assigned 'Collection: 'collection1', Shard: 'shard4', Core:
'collection1_shard4_replica2', BaseUrl:
 'http://192.168.1.167:7300/solr'' to be leader
 </str>
 </lst>
 </lst>
</response>

Examining the clusterstate after issuing this call should show that every live node that has the "preferredLeader"
property should also have the "leader" property set to .true

637Apache Solr Reference Guide 6.1

Force Shard Leader

In the unlikely event of a shard losing its leader, this command can be invoked to force the election of a new
leader

/admin/collections?action=FORCELEADER&collection=<collectionName>&shard=<shardName>

Query Parameters

Key Type Required Description

collection string Yes The name of the collection

shard string Yes The name of the shard

Migrate Cluster State

A Expert level utility API to move a collection from shared zookeeper node (created with clusterstate.json
, the default in all Solr releases prior to 5.0) to the per-collection stored instateFormat=1 state.json

ZooKeeper (created with , the current default) seamlessly without any application down-time.stateFormat=2

/admin/collections?action=MIGRATESTATEFORMAT&collection=<collection_name>

Key Type Required Description

collection string Yes The name of the collection to be migrated from to itsclusterstate.json
own zookeeper nodestate.json

async string No Request ID to track this action which will be .processed asynchronously

This API is useful in migrating any collections created prior to Solr 5.0 the more scalable cluster state format now
used by default. If a collection was created in any Solr 5.x version or higher, then executing this command is not
necessary.

Backup Collection

Backup Solr collections and it's associated configurations to a shared filesystem - for example a Network File
System

/admin/collections?action=BACKUP&name=myBackupName&collection=myCollectionName&loc
ation=/path/to/my/shared/drive

The backup command will backup Solr indexes and configurations for a specified collection. The backup
command takes one copy from each shard for the indexes. For configurations it backs up the configSet that was
associated with the collection and metadata.

Query Parameters

Key Type Required Description

This is an expert level command, and should be invoked only when regular leader election is not
working. This may potentially lead to loss of data in the event that the new leader doesn't have certain
updates, possibly recent ones, which were acknowledged by the old leader before going down.

638Apache Solr Reference Guide 6.1

collection string Yes The name of the collection that needs to be backed up

location string No The location on the shared drive for the backup command to write to.
Alternately it can be set as a cluster property

async string No Request ID to track this action which will be processed asynchronously

Restore Collection

Restores Solr indexes and associated configurations.

/admin/collections?action=RESTORE&name=myBackupName&location=/path/to/my/sharded/d
rive&collection=myRestoredCollectionName

The restore operation will create a collection with the specified name in the collection parameter. You cannot
restore into the same collection the backup was taken from and the target collection should not be present at the
time the API is called as Solr will create it for you.

The collection created will be of the same number of shards and replicas as the original collection, preserving
routing information, etc. Optionally, you can override some parameters documented below. While restoring, if a
configSet with the same name exists in ZooKeeper then Solr will reuse that, or else it will upload the backed up
configSet in ZooKeeper and use that.

You can use the collection API to make sure client's don't need to change the endpoint to query or indexalias
against the newly restored collection.

Query Parameters

Key Type Required Description

collection string Yes The collection where the indexes will be restored into.

location string No The location on the shared drive for the backup command to write to.
Alternately it can be set as a .cluster property

async string No Request ID to track this action which will be .processed asynchronously

Additionally, there are several parameters that can be overridden:

 Override Parameters

Key Type Required Description

collection.configName String No Defines the name of the configurations to use for this collection.
These must already be stored in ZooKeeper. If not provided,
Solr will default to the collection name as the configuration
name.

replicationFactor Integer No The number of replicas to be created for each shard.

639Apache Solr Reference Guide 6.1

maxShardsPerNode Integer No When creating collections, the shards and/or replicas are
spread across all available (i.e., live) nodes, and two replicas of
the same shard will never be on the same node. If a node is not
live when the CREATE operation is called, it will not get any
parts of the new collection, which could lead to too many
replicas being created on a single live node. Defining maxShar

 sets a limit on the number of replicas CREATE willdsPerNode
spread to each node. If the entire collection can not be fit into
the live nodes, no collection will be created at all.

autoAddReplicas Boolean No When set to true, enables auto addition of replicas on shared
file systems. See the section Automatically Add Replicas in

 for more details on settings and overrides.SolrCloud

property. =name value String No Set core property to . See the section name value Defining
 for details on supported properties and values.core.properties

Asynchronous Calls

Since some collection API calls can be long running tasks e.g. Shard Split, you can optionally have the calls run
asynchronously. Specifying enables you to make an asynchronous call, the status ofasync=<request-id>
which can be requested using the call at any time.REQUESTSTATUS

As of now, REQUESTSTATUS does not automatically clean up the tracking data structures, meaning the status
of completed or failed tasks stays stored in ZooKeeper unless cleared manually. DELETESTATUS can be used
to clear the stored statuses. However, there is a limit of 10,000 on the number of async call responses stored in
a cluster.

Example

Input

http://localhost:8983/solr/admin/collections?action=SPLITSHARD&collection=collection
1&shard=shard1&async=1000

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">99</int>
 </lst>
 <str name="requestid">1000</str>
</response>

Parameter Reference

Cluster Parameters

numShards Defaults
to 1

The number of shards to hash documents to. There must be one leader per shard
and each leader can have N replicas.

https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS#RunningSolronHDFS-AutomaticallyAddReplicasinSolrCloud
https://cwiki.apache.org/confluence/display/solr/Running+Solr+on+HDFS#RunningSolronHDFS-AutomaticallyAddReplicasinSolrCloud

640Apache Solr Reference Guide 6.1

SolrCloud Instance Parameters

These are set in , but by default the and parameters are set up to also work withsolr.xml host hostContext
system properties.

host Defaults to
the first local
host address
found

If the wrong host address is found automatically, you can override the host
address with this parameter.

hostPort Defaults to
the port
specified via
bin/solr

,-p <port>
or if not8983
specified.

The port that Solr is running on. This value is only used when is-DzkRun
specified without a value (see below), to calculate the default port on which
embedded ZooKeeper will run. n the shipped with Solr, the I solr.xml hos

 system property is not referenced, and so is ignored. If you want totPort
run Solr on a non-default port, use rather thanbin/solr -p <port>
specifying .-DhostPort

hostContext Defaults to so
lr

The context path for the Solr web application.

SolrCloud Instance ZooKeeper Parameters

zkRun Defaults to localhost:<hostP
ort+1000>

Causes Solr to run an embedded version of
ZooKeeper. Set to the address of ZooKeeper on
this node; this allows us to know who you are in the
list of addresses in the connect string. UsezkHost

 (with no value) to get the default value.-DzkRun

zkHost No default The host address for ZooKeeper. Usually this is a
comma-separated list of addresses to each node in
your ZooKeeper ensemble.

zkClientTimeout Defaults to 15000 The time a client is allowed to not talk to
ZooKeeper before its session expires.

zkRun and are set up using system properties. is set up in by default,zkHost zkClientTimeout solr.xml
but can also be set using a system property.

SolrCloud Core Parameters

shard Defaults to being automatically assigned based on
numShards

Specifies which shard this core acts as a
replica of.

shard can be specified in the for each core.core.properties

Additional cloud related parameters are discussed in Format of solr.xml

Command Line Utilities

Solr's Administration page (found by default at), provides a section withhttp://hostname:8983/solr/
menu items for monitoring indexing and performance statistics, information about index distribution and
replication, and information on all threads running in the JVM at the time. There is also a section where you can
run queries, and an assistance area.

In addition, SolrCloud provides its own administration page (found at), as wellhttp://localhost:8983/solr/#/~cloud

http://hostname:8983/solr/
http://localhost:8983/solr/#/~cloud

641Apache Solr Reference Guide 6.1

as a few tools available via a ZooKeeper Command Line Utility (CLI). The CLI scripts found in server/script
 let you upload configuration information to ZooKeeper, in the same two ways that weres/cloud-scripts

shown in the examples in . It also provides a few other commands that let you linkParameter Reference
collection sets to collections, make ZooKeeper paths or clear them, and download configurations from
ZooKeeper to the local filesystem.

Using Solr's ZooKeeper CLI

Both (for Unix environments) and (for Windows environments) support the followingzkcli.sh zkcli.bat
command line options:

Short Parameter
Usage

Meaning

 -cmd <arg> CLI Command to be executed: , , , bootstrap upconfig downconfig linkconfi
, , , , , , . g makepath get getfile put putfile list, clear or clusterprop

This parameter is mandatory

-z -zkhost
<locations>

ZooKeeper host address.
This parameter is for all CLI commands.mandatory

-c -collection
<name>

For : name of the collection.linkconfig

-d -confdir
<path>

For : a directory of configuration files. For downconfig: the destination ofupconfig
files pulled from Zookeeper

-h -help Display help text.

-n -confname
<arg>

For , : name of the configuration set.upconfig linkconfig, downconfig

-r -runzk
<port>

Run ZooKeeper internally by passing the Solr run port; only for clusters on one
machine.

-s -solrhome
<path>

For or when using : the solrhome location.bootstrap -runzk mandatory

 -name
<name>

For clusterprop: the mandatory cluster property name.

 -val
<value>

For clusterprop: the cluster property value. If not specified, will be used asnull
value.

The short form parameter options may be specified with a single dash (eg:).-c mycollection
The long form parameter options may be specified using either a single dash (eg: -collection

) or a double dash (eg:)mycollection --collection mycollection

Solr's zkcli.sh vs ZooKeeper's zkCli.sh
The provided by Solr is not the same as the . zkcli.sh included in ZooKeeper distributionszkCli.sh

ZooKeeper's provides a completely general, application-agnostic shell for manipulating datazkCli.sh
in ZooKeeper. Solr's – discussed in this section – is specific to Solr, and has command linezkcli.sh
arguments specific to dealing with Solr data in ZooKeeper.

https://zookeeper.apache.org/doc/trunk/zookeeperStarted.html#sc_ConnectingToZooKeeper

642Apache Solr Reference Guide 6.1

ZooKeeper CLI Examples

Below are some examples of using the CLI which assume you have already started the SolrCloudzkcli.sh
example ()bin/solr -e cloud -noprompt

If you are on Windows machine, simply replace with in these examples.zkcli.sh zkcli.bat

Upload a configuration directory

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:9983 \
 -cmd upconfig -confname my_new_config -confdir
server/solr/configsets/basic_configs/conf

Bootstrap ZooKeeper from existing SOLR_HOME

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:2181 \
 -cmd bootstrap -solrhome /var/solr/data

Put arbitrary data into a new ZooKeeper file

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:9983 \
 -cmd put /my_zk_file.txt 'some data'

Put a local file into a new ZooKeeper file

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:9983 \
 -cmd putfile /my_zk_file.txt /tmp/my_local_file.txt

Link a collection to a configuration set

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:9983 \
 -cmd linkconfig -collection gettingstarted -confname my_new_config

Create a new ZooKeeper path

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:2181 \
 -cmd makepath /solr

This can be useful to create a chroot path in ZooKeeper before first cluster start.

Set a cluster property

This command will add or modify a single cluster property in . Use this command instead/clusterprops.json
of the usual getfile -> edit -> putfile cycle. Unlike the CLUSTERPROP REST API, this command does requirenot

Bootstrap with chroot
Using the boostrap command with a zookeeper chroot in the -zkhost parameter, e.g. -zkhost

, will automatically create the chroot path before uploading the configs.127.0.0.1:2181/solr

643Apache Solr Reference Guide 6.1

a running Solr cluster.

./server/scripts/cloud-scripts/zkcli.sh -zkhost 127.0.0.1:2181 \
 -cmd clusterprop -name urlScheme -val https

SolrCloud with Legacy Configuration Files

All of the required configuration is already set up in the sample configurations shipped with Solr. You only need
to add the following if you are migrating old configuration files. Do not remove these files and parameters from a
new Solr instance if you intend to use Solr in SolrCloud mode.

These properties exist in 3 files: , , and .schema.xml solrconfig.xml solr.xml

1. In , you must have a field defined:schema.xml _version_

<field name="_version_" type="long" indexed="true" stored="true"
multiValued="false"/>

2. In , you must have an defined. This should be defined in the solrconfig.xml UpdateLog updateHandler
section.

<updateHandler>
 ...
 <updateLog>
 <str name="dir">${solr.data.dir:}</str>
 </updateLog>
 ...
</updateHandler>

3. The is part of the default update chain and is automatically injected into any ofDistributedUpdateProcessor
your custom update chains, so you don't actually need to make any changes for this capability. However, should
you wish to add it explicitly, you can still add it to the file as part of an solrconfig.xml updateRequestProc

. For example:essorChain

<updateRequestProcessorChain name="sample">
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.DistributedUpdateProcessorFactory"/>
 <processor class="my.package.UpdateFactory"/>
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

If you do not want the DistributedUpdateProcessFactory auto-injected into your chain (for example, if you want to
use SolrCloud functionality, but you want to distribute updates yourself) then specify the NoOpDistributingUp

 update processor factory in your chain:dateProcessorFactory

http://wiki.apache.org/solr/UpdateRequestProcessor#Distributed_Updates

644Apache Solr Reference Guide 6.1

<updateRequestProcessorChain name="sample">
 <processor class="solr.LogUpdateProcessorFactory" />
 <processor class="solr.NoOpDistributingUpdateProcessorFactory"/>
 <processor class="my.package.MyDistributedUpdateFactory"/>
 <processor class="solr.RunUpdateProcessorFactory" />
</updateRequestProcessorChain>

In the update process, Solr skips updating processors that have already been run on other nodes.

ConfigSets API

The ConfigSets API enables you to create, delete, and otherwise manage ConfigSets. To use a ConfigSet
created with this API as the configuration for a collection, use the .Collections API

This API can only be used with Solr running in SolrCloud mode. If you are not running Solr in SolrCloud mode
but would still like to use shared configurations, please see the section .Config Sets

API Entry Points

The base URL for all API calls is .http://<hostname>:<port>/solr

/admin/configs?action=CREATE: a ConfigSet, based on an existing ConfigSetcreate
: a ConfigSet/admin/configs?action=DELETE delete

: all ConfigSets/admin/configs?action=LIST list

Create a ConfigSet

/admin/configs?action=CREATE&name= &baseConfigSet=name baseConfigSet

Create a ConfigSet, based on an existing ConfigSet.

Input

Key Type Required Default Description

name String Yes ConfigSet to be created

baseConfigSet String Yes ConfigSet to copy as a base

configSetProp.name=value String No ConfigSet property from base to override

Output

Output Content

The output will include the status of the request. If the status is anything other than "success", an error message
will explain why the request failed.

Examples

Input

Create a ConfigSet named 'myConfigSet' based on a 'predefinedTemplate' ConfigSet, overriding the immutable
property to false.

645Apache Solr Reference Guide 6.1

http://localhost:8983/solr/admin/configs?action=CREATE&name=myConfigSet&baseConfigSe
t=predefinedTemplate&configSetProp.immutable=false

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">323</int>
 </lst>
</response>

Delete a ConfigSet

/admin/configs?action=DELETE&name=name

Delete a ConfigSet

Input

Query Parameters

Key Type Required Default Description

name String Yes ConfigSet to be deleted

Output

Output Content

The output will include the status of the request. If the status is anything other than "success", an error message
will explain why the request failed.

Examples

Input

Delete ConfigSet 'myConfigSet'

http://localhost:8983/solr/admin/configs?action=DELETE&name=myConfigSet

Output

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">170</int>
 </lst>
</response>

List ConfigSets

/admin/configs?action=LIST

646Apache Solr Reference Guide 6.1

Fetch the names of the ConfigSets in the cluster.

Examples

Input

http://localhost:8983/solr/admin/configs?action=LIST&wt=json

Output

{
 "responseHeader":{
 "status":0,
 "QTime":203},
 "configSets":["myConfigSet1",
 "myConfig2"]}

Rule-based Replica Placement
When Solr needs to assign nodes to collections, it can either automatically assign them randomly or the user can
specify a set of nodes where it should create the replicas. With very large clusters, it is hard to specify exact
node names and it still does not give you fine grained control over how nodes are chosen for a shard. The user
should be in complete control of where the nodes are allocated for each collection, shard and replica. This helps
to optimally allocate hardware resources across the cluster.

Rule-based replica assignment allows the creation of rules to determine the placement of replicas in the cluster.
In the future, this feature will help to automatically add or remove replicas when systems go down, or when
higher throughput is required. This enables a more hands-off approach to administration of the cluster.

This feature is used in the following instances:

Collection creation
Shard creation
Replica creation
Shard splitting

Common Use Cases

There are several situations where this functionality may be used. A few of the rules that could be implemented
are listed below:

Don’t assign more than 1 replica of this collection to a host.
Assign all replicas to nodes with more than 100GB of free disk space or, assign replicas where there is
more disk space.
Do not assign any replica on a given host because I want to run an overseer there.
Assign only one replica of a shard in a rack.
Assign replica in nodes hosting less than 5 cores.
Assign replicas in nodes hosting the least number of cores.

Rule Conditions

A rule is a set of conditions that a node must satisfy before a replica core can be created there.

647Apache Solr Reference Guide 6.1

Rule Conditions

There are three possible conditions.

shard: this is the name of a shard or a wild card (* means for all shards). If shard is not specified, then the
rule applies to the entire collection.
replica: this can be a number or a wild-card (* means any number zero to infinity).
tag: this is an attribute of a node in the cluster that can be used in a rule, e.g. “freedisk”, “cores”, “rack”,
“dc”, etc. The tag name can be a custom string. If creating a custom tag, a snitch is responsible for
providing tags and values. The section below describes how to add a custom tag, and definesSnitches
six pre-defined tags (cores, freedisk, host, port, node, and sysprop).

Rule Operators

A condition can have one of the following operators to set the parameters for the rule.

equals (no operator required): tag:x means tag value must be equal to ‘x’
greater than (>): tag:>x means tag value greater than ‘x’. x must be a number
less than (<): tag:<x means tag value less than ‘x’. x must be a number
not equal (!): tag:!x means tag value MUST NOT be equal to ‘x’. The equals check is performed on
String value

Fuzzy Operator (~)

This can be used as a suffix to any condition. This would first try to satisfy the rule strictly. If Solr can’t find
enough nodes to match the criterion, it tries to find the next best match which may not satisfy the criterion. For
example, if we have a rule such as, , Solr will try to assign replicas of this collection on nodesfreedisk:>200~
with more than 200GB of free disk space. If that is not possible, the node which has the most free disk space will
be chosen instead.

Choosing Among Equals

The nodes are sorted first and the rules are used to sort them. This ensures that even if many nodes match the
rules, the best nodes are picked up for node assignment. For example, if there is a rule such as ,freedisk:>20
nodes are sorted first on disk space descending and the node with the most disk space is picked up first. Or, if
the rule is , nodes are sorted with number of cores ascending and the node with the least number ofcores:<5
cores is picked up first.

Rules for new shards

The rules are persisted along with collection state. So, when a new replica is created, the system will assign
replicas satisfying the rules. When a new shard is created as a result of ensure that you havecreate shard
created rules specific for that shard name. Rules can be altered using the command. However,modify collection
it is not required to do so if the rules do not specify explicit shard names. For example, a rule such as shard:sh

, will not apply to any new shard created. But, if your rule is ard1,replica:*,ip_3:168: replica:*,ip_3:
, then it will apply to any new shard created.168

The same is applicable to shard splitting. Shard splitting is treated exactly the same way as shard creation. Even
though and may be created from , the rules treat them as distinct, unrelatedshard1_1 shard1_2 shard1
shards.

Snitches

https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-api8
https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-modifycoll

648Apache Solr Reference Guide 6.1

1.
2.
3.

4.
5.

Tag values come from a plugin called Snitch. If there is a tag named ‘rack’ in a rule, there must be Snitch which
provides the value for ‘rack’ for each node in the cluster. A snitch implements the Snitch interface. Solr, by
default, provides a default snitch which provides the following tags:

cores: Number of cores in the node
freedisk: Disk space available in the node
host: host name of the node
port: port of the node
node: node name
ip_1, ip_2, ip_3, ip_4: These are ip fragments for each node. For example, in a host with ip 192.168.1.

, , , and2 ip_1 = 2 ip_2 =1 ip_3 = 168 ip_4 = 192
sysprop.{PROPERTY_NAME}: These are values available from system properties. meansysprop.key
s a value that is passed to the node as during the node startup. It is possible to use-Dkey=keyValue
rules like sysprop.key:expectedVal,shard:*

How Snitches are Configured

It is possible to use one or more snitches for a set of rules. If the rules only need tags from default snitch it need
not be explicitly configured. For example:

snitch=class:fqn.ClassName,key1:val1,key2:val2,key3:val3

How Tag Values are Collected

Identify the set of tags in the rules
Create instances of Snitches specified. The default snitch is always created.
Ask each Snitch if it can provide values for the any of the tags. If even one tag does not have a snitch, the
assignment fails.
After identifying the Snitches, they provide the tag values for each node in the cluster.
If the value for a tag is not obtained for a given node, it cannot participate in the assignment.

Examples

Keep less than 2 replicas (at most 1 replica) of this collection on any node

For this rule, we define the condition with operators for "less than 2", and use a pre-defined tag named replica
 to define nodes with any name.node

replica:<2,node:*

For a given shard, keep less than 2 replicas on any node

For this rule, we use the condition to define any shard name, the condition with operators forshard replica
"less than 2", and finally a pre-defined tag named to define nodes with any name.node

shard:*,replica:<2,node:*

Assign all replicas in shard1 to rack 730

This rule limits the condition to 'shard1', but any number of replicas. We're also referencing a custom tagshard
named . Before defining this rule, we will need to configure a custom Snitch which provides values for therack

649Apache Solr Reference Guide 6.1

tag .rack

shard:shard1,replica:*,rack:730

In this case, the default value of is * (or, all replicas). So, it can be omitted and the rule can be reducedreplica
to:

shard:shard1,rack:730

Create replicas in nodes with less than 5 cores only

This rule uses the condition to define any number of replicas, but adds a pre-defined tag named replica core
and uses operators for "less than 5".

replica:*,cores:<5

Again, we can simplify this to use the default value for , like so:replica

cores:<5

Do not create any replicas in host 192.45.67.3

This rule uses only the pre-defined tag to define an IP address where replicas should not be placed.host

host:!192.45.67.3

Defining Rules

Rules are specified per collection during collection creation as request parameters. It is possible to specify
multiple ‘rule’ and ‘snitch’ params as in this example:

snitch=class:EC2Snitch&rule=shard:*,replica:1,dc:dc1&rule=shard:*,replica:<2,dc:dc3

These rules are persisted in in Zookeeper and are available throughout the lifetime of theclusterstate.json
collection. This enables the system to perform any future node allocation without direct user interaction. The
rules added during collection creation can be modified later using the API.MODIFYCOLLECTION

Cross Data Center Replication (CDCR)

The architecture is not particularly well suited for situations where a single SolrCloud cluster consistsSolrCloud
of nodes in separated data clusters connected by an expensive pipe. The root problem is that SolrCloud is
designed to support by immediately forwarding updates between nodes in the clusterNear Real Time Searching
on a per-shard basis. "CDCR" features exist to help mitigate the risk of an entire Data Center outage.

What is CDCR?

https://cwiki.apache.org/confluence/display/solr/Collections+API#CollectionsAPI-modifycoll

650Apache Solr Reference Guide 6.1

Glossary
Architecture
Major Components

CDCR Configuration
CDCR Initialization
Inter-Data Center Communication
Updates Tracking & Pushing
Synchronization of Update Checkpoints
Maintenance of Updates Log
Monitoring
CDC Replicator
Limitations

Configuration
Source Configuration
Target Configuration
Configuration Details

The Replica Element
The Replicator Element
The updateLogSynchronizer Element
The Buffer Element

CDCR API
API Entry Points (Control)
API Entry Points (Monitoring)
Control Commands
Monitoring commands

Initial Startup
Monitoring
ZooKeeper settings
Upgrading and Patching Production

What is CDCR?

The goal of the project is to replicate data to multiple Data Centers. The initial version of the solution will cover
the active-passive scenario where data updates are replicated from a Source Data Center to one or more Target
Data Centers. The Target Data Center(s) will not propagate updates to the Source Data Center and updates
should be sent to any of the Target Data Center(s). Data updates include adds, updates and deletes. Sourcenot
and Target Data Centers can serve search queries when CDCR is operating. The Target Data Centers will have
slightly stale views of the corpus due to propagation delays, but this is minimal (perhaps a few seconds).

Data changes on the Source Data Center are replicated to the Target Data Center only after they are persisted
to disk. The data changes can be replicated in real-time (with a small delay) or could be scheduled to be sent in
intervals to the Target Data Center. This solution pre-supposes that the Source and Target data centers begin
with the same documents indexed. Of course the indexes may be empty to start.

Each shard leader in the Source Data Center will be responsible for replicating its updates to the appropriate
collection in the Target Data Center. When receiving updates from the Source Data Center, shard leaders in the
Target Data Center will replicate the changes to their own replicas.

This replication model is designed to tolerate some degradation in connectivity, accommodate limited bandwidth,
and support batch updates to optimize communication.

Replication supports both a new empty index and pre-built indexes. In the scenario where the replication is set
up on a pre-built index, CDCR will ensure consistency of the replication of the updates, but cannot ensure
consistency on the full index. Therefore any index created before CDCR was set up will have to be replicated by
other means (described in the section) in order that SourceStarting CDCR the first time with an existing index
and Target indexes be fully consistent.

The active-passive nature of the initial implementation implies a "push" model from the Source collection to the

651Apache Solr Reference Guide 6.1

Target collection. Therefore, the Source configuration must be able to "see" the ZooKeeper ensemble in the
Target cluster. The ZooKeeper ensemble is provided configured in the Source's file.solrconfig.xml

CDCR is configured to replicate from collections in the Source cluster to collections in the Target cluster on a
collection-by-collection basis. Since CDCR is configured in (on both Source and Targetsolrconfig.xml
clusters), the settings can be tailored for the needs of each collection.

CDCR can be configured to replicate from one collection to a second collection . That is awithin the same cluster
specialized scenario not covered in this document.

Glossary

Terms used in this document include:

Node: A JVM instance running Solr; a server.
Cluster: A set of Solr nodes managed as a single unit by a ZooKeeper ensemble, hosting one or more
Collections.
Data Center: A group of networked servers hosting a Solr cluster. In this document, the terms andCluster

 are interchangeable as we assume that each Solr cluster is hosted in a different group ofData Center
networked servers.
Shard: A sub-index of a single logical collection. This may be spread across multiple nodes of the cluster.
Each shard can have as many replicas as needed.
Leader: Each shard has one node identified as its leader. All the writes for documents belonging to a
shard are routed through the leader.
Replica: A copy of a shard for use in failover or load balancing. Replicas comprising a shard can either be
leaders or non-leaders.
Follower: A convenience term for a replica that is the leader of a shard.not
Collection: Multiple documents that make up one logical index. A cluster can have multiple collections.
Updates Log: An append-only log of write operations maintained by each node.

Architecture

Here is a picture of the data flow.

652Apache Solr Reference Guide 6.1

1.
2.
3.

4.
5.

6.

Updates and deletes are first written to the Source cluster, then forwarded to the Target cluster. The data flow
sequence is:

A shard leader receives a new data update that is processed by its Update Processor.
The data update is first applied to the local index.
Upon successful application of the data update on the local index, the data update is added to the
Updates Log queue.
After the data update is persisted to disk, the data update is sent to the replicas within the Data Center.
After Step 4 is successful CDCR reads the data update from the Updates Log and pushes it to the
corresponding collection in the Target Data Center. This is necessary in order to ensure consistency
between the Source and Target Data Centers.
The leader on the Target data center writes the data locally and forwards it to all its followers.

Steps 1, 2, 3 and 4 are performed synchronously by SolrCloud; Step 5 is performed asynchronously by a
background thread. Given that CDCR replication is performed asynchronously, it becomes possible to push
batch updates in order to minimize network communication overhead. Also, if CDCR is unable to push the
update at a given time -- for example, due to a degradation in connectivity -- it can retry later without any impact
on the Source Data Center.

One implication of the architecture is that the leaders in the Source cluster must be able to "see" the leaders in
the Target cluster. Since leaders may change, this effectively means that all nodes in the Source cluster must be
able to "see" all Solr nodes in the Target cluster so firewalls, ACL rules, etc. must be configured with care.

Major Components

There are a number of key features and components in CDCR’s architecture:

CDCR Configuration

In order to configure CDCR, the Source Data Center requires the host address of the ZooKeeper cluster
associated with the Target Data Center. The ZooKeeper host address is the only information needed by CDCR
to instantiate the communication with the Target Solr cluster. The CDCR configuration file on the Source cluster
will therefore contain a list of ZooKeeper hosts. The CDCR configuration file might also contain
secondary/optional configuration, such as the number of CDC Replicator threads, batch updates related settings,
etc.

CDCR Initialization

CDCR supports incremental upddates to either new or existing collections. CDCR may not be able to keep up
with very high volume updates, especially if there are significant communications latencies due to a slow "pipe"
between the data centers. Some scenarios:

There is an initial bulk load of a corpus followed by lower volume incremental updates. In this case, one
can do the initial bulk load, replicate the index and keep then synchronized via CDCR. See thethen
section for more information.Starting CDCR the first time with an existing index
The index is being built up from scratch, without a significant initial bulk load. CDCR can be set up on

653Apache Solr Reference Guide 6.1

empty collections and keep them synchronized from the start.
The index is always being updated at a volume too high for CDCR to keep up. This is especially possible
in situations where the connection between the Source and Target data centers is poor. This scenario is
unsuitable for CDCR in its current form.

Inter-Data Center Communication

Communication between Data Centers will be achieved through HTTP and the Solr REST API using the SolrJ
client. The SolrJ client will be instantiated with the ZooKeeper host of the Target Data Center. SolrJ will manage
the shard leader discovery process.

Updates Tracking & Pushing

CDCR replicates data updates from the Source to the Target Data Center by leveraging the Updates Log.

A background thread regularly checks the Updates Log for new entries, and then forwards them to the Target
Data Center. The thread therefore needs to keep a checkpoint in the form of a pointer to the last update
successfully processed in the Updates Log. Upon acknowledgement from the Target Data Center that updates
have been successfully processed, the Updates Log pointer is updated to reflect the current checkpoint.

This pointer must be synchronized across all the replicas. In the case where the leader goes down and a new
leader is elected, the new leader will be able to resume replication from the last update by using this
synchronized pointer. The strategy to synchronize such a pointer across replicas will be explained next.

If for some reason, the Target Data Center is offline or fails to process the updates, the thread will periodically try
to contact the Target Data Center and push the updates.

Synchronization of Update Checkpoints

A reliable synchronization of the update checkpoints between the shard leader and shard replicas is critical to
avoid introducing inconsistency between the Source and Target Data Centers. Another important requirement is
that the synchronization must be performed with minimal network traffic to maximize scalability.

In order to achieve this, the strategy is to:

Uniquely identify each update operation. This unique identifier will serve as pointer.
Rely on two storages: an ephemeral storage on the Source shard leader, and a persistent storage on the
Target cluster.

The shard leader in the Source cluster will be in charge of generating a unique identifier for each update
operation, and will keep a copy of the identifier of the last processed updates in memory. The identifier will be
sent to the Target cluster as part of the update request. On the Target Data Center side, the shard leader will
receive the update request, store it along with the unique identifier in the Updates Log, and replicate it to the
other shards.

SolrCloud is already providing a unique identifier for each update operation, i.e., a “version” number. This version
number is generated using a time-based lmport clock which is incremented for each update operation sent. This
provides an “happened-before” ordering of the update operations that will be leveraged in (1) the initialization of
the update checkpoint on the Source cluster, and in (2) the maintenance strategy of the Updates Log.

The persistent storage on the Target cluster is used only during the election of a new shard leader on the Source
cluster. If a shard leader goes down on the Source cluster and a new leader is elected, the new leader will
contact the Target cluster to retrieve the last update checkpoint and instantiate its ephemeral pointer. On such a
request, the Target cluster will retrieve the latest identifier received across all the shards, and send it back to the
Source cluster. To retrieve the latest identifier, every shard leader will look up the identifier of the first entry in its
Update Logs and send it back to a coordinator. The coordinator will have to select the highest among them.

This strategy does not require any additional network traffic and ensures reliable pointer synchronization.
Consistency is principally achieved by leveraging SolrCloud. The update workflow of SolrCloud ensures that

654Apache Solr Reference Guide 6.1

every update is applied to the leader but also to any of the replicas. If the leader goes down, a new leader is
elected. During the leader election, a synchronization is performed between the new leader and the other
replicas. As a result, this ensures that the new leader has a consistent Update Logs with the previous leader.
Having a consistent Updates Log means that:

On the Source cluster, the update checkpoint can be reused by the new leader.
On the Target cluster, the update checkpoint will be consistent between the previous and new leader. This
ensures the correctness of the update checkpoint sent by a newly elected leader from the Target cluster.

Maintenance of Updates Log

The CDCR replication logic requires modification to the maintenance logic of the Updates Log on the Source
Data Center. Initially, the Updates Log acts as a fixed size queue, limited to 100 update entries. In the CDCR
scenario, the Update Logs must act as a queue of variable size as they need to keep track of all the updates up
through the last processed update by the Target Data Center. Entries in the Update Logs are removed only when
all pointers (one pointer per Target Data Center) are after them.

 If the communication with one of the Target Data Center is slow, the Updates Log on the Source Data Center
can grow to a substantial size. In such a scenario, it is necessary for the Updates Log to be able to efficiently find
a given update operation given its identifier. Given that its identifier is an incremental number, it is possible to
implement an efficient search strategy. Each transaction log file contains as part of its filename the version
number of the first element. This is used to quickly traverse all the transaction log files and find the transaction
log file containing one specific version number.

Monitoring

CDCR provides the following monitoring capabilities over the replication operations:

Monitoring of the outgoing and incoming replications, with information such as the Source and Target
nodes, their status, etc.
Statistics about the replication, with information such as operations (add/delete) per second, number of
documents in the queue, etc.

Information about the lifecycle and statistics will be provided on a per-shard basis by the CDC Replicator thread.
The CDCR API can then aggregate this information an a collection level.

CDC Replicator

The CDC Replicator is a background thread that is responsible for replicating updates from a Source Data
Center to one or more Target Data Centers. It will also be responsible in providing monitoring information on a
per-shard basis. As there can be a large number of collections and shards in a cluster, we will use a fixed-size
pool of CDC Replicator threads that will be shared across shards.

Limitations

The current design of CDCR has some limitations. CDCR will continue to evolve over time and many of these
limitations will be addressed. Among them are:

CDCR is unlikely to be satisfactory for bulk-load situations where the update rate is high, especially if the
bandwidth between the Source and Target clusters is restricted. In this scenario, the initial bulk load
should be performed, the Source and Target data centers synchronized and CDCR be utilized for
incremental updates.
CDCR is currently only active-passive; data is pushed from the Source cluster to the Target cluster. There
is active work being done in this area in the 6x code line to remove this limitation.

655Apache Solr Reference Guide 6.1

Configuration

The Source and Target configurations differ in the case of the data centers being in separate clusters. "Cluster"
here means separate ZooKeeper ensembles controlling disjoint Solr instances. Whether these data centers are
physically separated or not is immaterial for this discussion.

Source Configuration

Here is a sample of a Source configuration file, a section in . The presence of the <replica>solrconfig.xml
section causes CDCR to use this cluster as the Source and should not be present in the Target collections in the
cluster-to-cluster case. Details about each setting are after the two examples:

<requestHandler name="/cdcr" class="solr.CdcrRequestHandler">
 <lst name="replica">
 <str name="zkHost">10.240.18.211:2181</str>
 <str name="Source">collection1</str>
 <str name="Target">collection1</str>
 </lst>

 <lst name="replicator">
 <str name="threadPoolSize">8</str>
 <str name="schedule">1000</str>
 <str name="batchSize">128</str>
 </lst>

 <lst name="updateLogSynchronizer">
 <str name="schedule">1000</str>
 </lst>
</requestHandler>

<!-- Modify the <updateLog> section of your existing <updateHandler>
 in your config as below -->
<updateHandler class="solr.DirectUpdateHandler2">
 <updateLog class="solr.CdcrUpdateLog">
 <str name="dir">${solr.ulog.dir:}</str>
 <!--Any parameters from the original <updateLog> section -->
 </updateLog>
</updateHandler>

Target Configuration

Here is a typical Target configuration.

Target instance must configure an update processor chain that is specific to CDCR. The update processor chain
must include the . The task of this processor is to ensure that the versionCdcrUpdateProcessorFactory
numbers attached to update requests coming from a CDCR Source SolrCloud are reused and not overwritten by
the Target. A properly configured Target configuration looks similar to this.

656Apache Solr Reference Guide 6.1

<requestHandler name="/cdcr" class="solr.CdcrRequestHandler">
 <lst name="buffer">
 <str name="defaultState">disabled</str>
 </lst>
</requestHandler>

<requestHandler name="/update" class="solr.UpdateRequestHandler">
 <lst name="defaults">
 <str name="update.chain">cdcr-processor-chain</str>
 </lst>
</requestHandler>

<updateRequestProcessorChain name="cdcr-processor-chain">
 <processor class="solr.CdcrUpdateProcessorFactory"/>
 <processor class="solr.RunUpdateProcessorFactory"/>
</updateRequestProcessorChain>

<!-- Modify the <updateLog> section of your existing <updateHandler> in your
 config as below -->
<updateHandler class="solr.DirectUpdateHandler2">
 <updateLog class="solr.CdcrUpdateLog">
 <str name="dir">${solr.ulog.dir:}</str>
 <!--Any parameters from the original <updateLog> section -->
 </updateLog>
</updateHandler>

Configuration Details

The configuration details, defaults and options are as follows:

The Replica Element

CDCR can be configured to forward update requests to one or more replicas. A replica is defined with a “replica”
list as follows:

Parameter Required Default Description

zkHost Yes none The host address for ZooKeeper of the Target SolrCloud. Usually this is a
comma-separated list of addresses to each node in the Target ZooKeeper
ensemble.

Source Yes none The name of the collection on the Source SolrCloud to be replicated.

Target Yes none The name of the collection on the Target SolrCloud to which updates will
be forwarded.

The Replicator Element

The CDC Replicator is the component in charge of forwarding updates to the replicas. The replicator will monitor
the update logs of the Source collection and will forward any new updates to the Target collection. The replicator
uses a fixed thread pool to forward updates to multiple replicas in parallel. If more than one replica is configured,
one thread will forward a batch of updates from one replica at a time in a round-robin fashion. The replicator can
be configured with a “replicator” list as follows:

Parameter Required Default Description

657Apache Solr Reference Guide 6.1

threadPoolSize No 2 The number of threads to use for forwarding updates. One thread per
replica is recommended.

schedule No 10 The delay in milliseconds for the monitoring the update log(s).

batchSize No 128 The number of updates to send in one batch. The optimal size
depends on the size of the documents. Large batches of large
documents can increase your memory usage significantly.

The updateLogSynchronizer Element

Expert: Non-leader nodes need to synchronize their update logs with their leader node from time to time in order
to clean deprecated transaction log files. By default, such a synchronization process is performed every minute.
The schedule of the synchronization can be modified with a “updateLogSynchronizer” list as follows:

Parameter Required Default Description

schedule No 60000 The delay in milliseconds for synchronizing the updates log.

The Buffer Element

CDCR is configured by default to buffer any new incoming updates. When buffering updates, the updates log will
store all the updates indefinitely. Replicas do not need to buffer updates, and it is recommended to disable buffer
on the Target SolrCloud. The buffer can be disabled at startup with a “buffer” list and the parameter
“defaultState” as follows:

Parameter Required Default Description

defaultState No enabled The state of the buffer at startup.

CDCR API

The CDCR API is used to control and monitor the replication process. Control actions are performed at a
collection level, i.e., by using the following base URL for API calls: http://<hostname>:<port>/solr/<collection>.
Monitor actions are performed at a core level, i.e., by using the following base URL for API calls: http://<hostnam

>.e>:<port>/solr/<core

Currently, none of the CDCR API calls have parameters.

API Entry Points (Control)

collection/cdcr?action=STATUS: of CDCR.Returns the current state
: replicationcollection/cdcr?action=START Starts CDCR

: replication.collection/cdcr?action=STOPPED Stops CDCR
: of updates.collection/cdcr?action=ENABLEBUFFER Enables the buffering

: of updates.collection/cdcr?action=DISABLEBUFFER Disables the buffering

API Entry Points (Monitoring)

core/cdcr?action=QUEUES: for each replica and about the update logs.Fetches statistics about the queue
: (operations per second) forcore/cdcr?action=OPS Fetches statistics about the replication performance

each replica
: for each replica.core/cdcr?action=ERRORS Fetches statistics and other information about replication errors

658Apache Solr Reference Guide 6.1

Control Commands

/collection/cdcr?action=STATUS
Input

Query Parameters: There are no parameters to this command.

Output

Output Content

The current state of the CDCR, which includes the state of the replication process and the state of the buffer.
Examples

Input: There are no parameters to this command.

 http://localhost:8983/solr/collection/cdcr?action=STATUS

Output

{
 "responseHeader": {
 "status": 0,
 "QTime": 0
 },
 "status": {
 "process": "stopped",
 "buffer": "enabled"
 }
}

/collection/cdcr?action=ENABLEBUFFER
Input

Query Parameters: There are no parameters to this command.
Output

Output Content

The status of the process and an indication of whether the buffer is enabled
Examples

Input This command enables the buffer, there are no parameters.

 http://localhost:8983/solr/collection/cdcr?action=ENABLEBUFFER

Output

659Apache Solr Reference Guide 6.1

{
 "responseHeader": {
 "status": 0,
 "QTime": 0
 },
 "status": {
 "process": "started",
 "buffer": "enabled"
 }
}

/collection/cdcr?action=DISABLEBUFFER
Input

Query Parameters: There are no parameters to this command
Output

Output Content: The status of CDCR and an indication that the buffer is disabled.

Examples

Input: This command disables buffering

http://localhost:8983/solr/collection/cdcr?action=DISABLEBUFFER

Output: The status of CDCR and an indication that the buffer is disabled.

{
 "responseHeader": {
 "status": 0,
 "QTime": 0
 },
 "status": {
 "process": "started",
 "buffer": "disabled"
 }
}

/collection/cdcr?action=START
Input

Query Parameters: There are no parameters for this action

Output

Output Content: Confirmation that CDCR is started and the status of buffering

Examples

Input

http://localhost:8983/solr/collection/cdcr?action=START

660Apache Solr Reference Guide 6.1

Output

{
 "responseHeader": {
 "status": 0,
 "QTime": 0
 },
 "status": {
 "process": "started",
 "buffer": "enabled"
 }
}

/collection/cdcr?action=STOPPED
Input

Query Parameters: There are no parameters for this command.

Output

Output Content: The status of CDCR, including the confirmation that CDCR is stopped

Examples

Input

 http://localhost:8983/solr/collection/cdcr?action=STOPPED

Output

{
 "responseHeader": {
 "status": 0,
 "QTime": 0
 },
 "status": {
 "process": "stopped",
 "buffer": "enabled"
 }
}

Monitoring commands

/core/cdcr?action=QUEUES
Input

Query Parameters: There are no parameters for this command

Output

Output Content

The output is composed of a list “queues” which contains a list of (ZooKeeper) Target hosts, themselves
containing a list of Target collections. For each collection, the current size of the queue and the timestamp of the

661Apache Solr Reference Guide 6.1

last update operation successfully processed is provided. The timestamp of the update operation is the original
timestamp, i.e., the time this operation was processed on the Source SolrCloud. This allows an estimate the
latency of the replication process.

The “queues” object also contains information about the updates log, such as the size (in bytes) of the updates
log on disk (“tlogTotalSize”), the number of transaction log files (“tlogTotalCount”) and the status of the updates
log synchronizer (“updateLogSynchronizer”).

Examples

Input

 http://localhost:8983/solr/core/cdcr?action=QUEUES

Output

{
 responseHeader={
 status=0,
 QTime=1
 },
 queues={
 127.0.0.1: 40342/solr={
 Target_collection={
 queueSize=104,
 lastTimestamp=2014-12-02T10: 32: 15.879Z
 }
 }
 },
 tlogTotalSize=3817,
 tlogTotalCount=1,
 updateLogSynchronizer=stopped
}

/core/cdcr?action=OPS
Input

Query Parameters: There are no parameters for this command.

Output

Output Content: The output is composed of a list “operationsPerSecond” which contains a list of (ZooKeeper)
Target hosts, themselves containing a list of Target collections. For each collection, the average number of
processed operations per second since the start of the replication process is provided. The operations are further
broken down into two groups: add and delete operations.
Examples

Input

 http://localhost:8983/solr/collection/cdcr?action=OPS

Output

662Apache Solr Reference Guide 6.1

{
 responseHeader={
 status=0,
 QTime=1
 },
 operationsPerSecond={
 127.0.0.1: 59661/solr={
 Target_collection={
 all=297.102944952749052,
 adds=297.102944952749052,
 deletes=0.0
 }
 }
 }
}

/core/cdcr?action=ERRORS
Input

Query Parameters: There are no parameters for this command.

Output

Output Content: The output is composed of a list “errors” which contains a list of (ZooKeeper) Target hosts,
themselves containing a list of Target collections. For each collection, information about errors encountered
during the replication is provided, such as the number of consecutive errors encountered by the replicator thread,
the number of bad requests or internal errors since the start of the replication process, and a list of the last errors
encountered ordered by timestamp.

Examples

Input

 http://localhost:8983/solr/collection/cdcr?action=ERRORS

Output

663Apache Solr Reference Guide 6.1

{
 responseHeader={
 status=0,
 QTime=2
 },
 errors={
 127.0.0.1: 36872/solr={
 Target_collection={
 consecutiveErrors=3,
 bad_request=0,
 internal=3,
 last={
 2014-12-02T11: 04: 42.523Z=internal,
 2014-12-02T11: 04: 39.223Z=internal,
 2014-12-02T11: 04: 38.22Z=internal
 }
 }
 }
 }
}

Initial Startup

This is a general approach for initializing CDCR in a production environment based upon an approach taken by
the initial working installation of CDCR and generously contributed to illustrate a "real world" scenario. NOTE:
The configuration snippets below illustrate specific points of configuration, you configure your Source andmust
Target configurations installation at :Configuration:

Customer uses the CDCR approach to keep a remote DR instance available for production backup. This
is an active-passive solution.
Customer has 26 clouds with 200 million assets per cloud (15GB indexes). Total document count is over
4.8 billion.

Source and Target clouds were synched in 2-3 hour maintenance windows to establish the base
index for the Targets.

Tip: As usual, it is good to start small. Sync a single cloud and monitor for a period of time before doing
the others. You may need to adjust your settings several times before finding the right balance.

Before starting, stop or pause the indexers. This is best done during a small maintenance window.
Stop the SolrCloud instances at the Source
Include the cdcr request handler configuration in solrconfig.xml

664Apache Solr Reference Guide 6.1

 http://localhost:898
<requestHandler name="/cdcr" class="solr.CdcrRequestHandler">
 <lst name="replica">
 <str name="zkHost">${TargetZk}</str>
 <str name="Source">${SourceCollection}</str>
 <str name="Target">${TargetCollection}</str>
 </lst>
 <lst name="replicator">
 <str name="threadPoolSize">8</str>
 <str name="schedule">10</str>
 <str name="batchSize">2000</str>
 </lst>
 <lst name="updateLogSynchronizer">
 <str name="schedule">1000</str>
 </lst>
 </requestHandler>

 <updateRequestProcessorChain name="cdcr-processor-chain">
 <processor class="solr.CdcrUpdateProcessorFactory" />
 <processor class="solr.RunUpdateProcessorFactory" />
 </updateRequestProcessorChain>

Upload the modified to ZooKeeper on both Source and Targetsolrconfig.xml
Sync the index directories from the Source collection to Target collection across to the
corresponding shard nodes.

Tip: rsync works well for this.

For example: if there are 2 shards on collection1 with 2 replicas for each shard, copy the
corresponding index directories from

shard1replica1Source to shard1replica1Target

shard1replica2Source to shard1replica2Target

shard2replica1Source to shard2replica1Target

shard2replica2Source to shard2replica2Target

Start the ZooKeeper on the Target (DR) side
Start the SolrCloud on the Target (DR) side
Start the ZooKeeper on the Source side
Start the SolrCloud on the Source side

Tip: As a general rule, the Target (DR) side of the SolrCloud should be started before the
Source side.

Activate the CDCR on Source instance using the cdcr api

http://host:port/solr/collection_name/cdcr?action=START

http://host:port/solr/collection_name/cdcr?action=START

There is no need to run the /cdcr?action=START command on the Target
Disable the buffer on the Target

http://hostport

665Apache Solr Reference Guide 6.1

1.

a.

b.

2.
a.

1.

1.

a.

b.

http://host:port/solr/collection_name/cdcr?action=DISABLEBUFFER

Renable indexing

Monitoring

Network and disk space monitoring are essential. Ensure that the system has plenty of available storage
to queue up changes if there is a disconnect between the Source and Target. A network outage between
the two data centers can cause your disk usage to grow.

Tip: Set a monitor for your disks to send alerts when the disk gets over a certain percentage (eg.
70%)
Tip: Run a test. With moderate indexing, how long can the system queue changes before you run
out of disk space?

Create a simple way to check the counts between the Source and the Target.
Keep in mind that if indexing is running, the Source and Target may not match document for
document. Set an alert to fire if the difference is greater than some percentage of the overall cloud
size.

ZooKeeper settings

With CDCR, the Target ZooKeepers will have connections from the Target clouds . and the Source clouds
You may need to increase the maxClientCnxns setting in the zoo.cfg.

set numbers of connection to 200 from client
is maxClientCnxns=0 that means no limit
maxClientCnxns=800

Upgrading and Patching Production

When rolling in upgrades to your indexer or application, you should shutdown the Source (production) and
the Target (DR). Depending on your setup, you may want to pause/stop indexing. Deploy the release or
patch and renable indexing. Then start the Target (DR).

Tip: There is no need to reissue the DISABLEBUFFERS or START commands. These are
persisted.
Tip: After starting the Target, run a simple test. Add a test document to each of the Source clouds.
Then check for it on the Target.

#send to the Source
curl http://<Source>/solr/cloud1/update -H 'Content-type:application/json' -d
'[{"SKU":"ABC"}]'

#check the Target
curl "http://<Target>:8983/solr/cloud1/select?q=SKU:ABC&wt=json&indent=true"

666Apache Solr Reference Guide 6.1

Legacy Scaling and Distribution
This section describes how to set up distribution and replication in Solr. It is considered "legacy" behavior, since
while it is still supported in Solr, the SolrCloud functionality described in the previous chapter is where the current
development is headed. However, if you don't need all that SolrCloud delivers, search distribution and index
replication may be sufficient.

This section covers the following topics:

Introduction to Scaling and Distribution: Conceptual information about distribution and replication in Solr.

Distributed Search with Index Sharding: Detailed information about implementing distributed searching in Solr.

Index Replication: Detailed information about replicating your Solr indexes.

Combining Distribution and Replication: Detailed information about replicating shards in a distributed index.

Merging Indexes: Information about combining separate indexes in Solr.

Introduction to Scaling and Distribution
Both Lucene and Solr were designed to scale to support large implementations with minimal custom coding. This
section covers:

distributing an index across multiple servers
replicating an index on multiple servers
merging indexes

If you need full scale distribution of indexes and queries, as well as replication, load balancing and failover, you
may want to use SolrCloud. Full details on configuring and using SolrCloud is available in the section .SolrCloud

What Problem Does Distribution Solve?

If searches are taking too long or the index is approaching the physical limitations of its machine, you should
consider distributing the index across two or more Solr servers.

To distribute an index, you divide the index into partitions called shards, each of which runs on a separate
machine. Solr then partitions searches into sub-searches, which run on the individual shards, reporting results
collectively. The architectural details underlying index sharding are invisible to end users, who simply experience
faster performance on queries against very large indexes.

What Problem Does Replication Solve?

Replicating an index is useful when:

You have a large search volume which one machine cannot handle, so you need to distribute searches
across multiple read-only copies of the index.
There is a high volume/high rate of indexing which consumes machine resources and reduces search
performance on the indexing machine, so you need to separate indexing and searching.
You want to make a backup of the index (see).Making and Restoring Backups

Distributed Search with Index Sharding

667Apache Solr Reference Guide 6.1

It is highly recommended that you use when needing to scale up or scale out. The setup describedSolrCloud
below is legacy and was used prior to the existence of SolrCloud. SolrCloud provides for a truly distributed set of
features with support for things like automatic routing, leader election, optimistic concurrency and other sanity
checks that are expected out of a distributed system.

Everything on this page is specific to legacy setup of distributed search. Users trying out SolrCloud should not
follow any of the steps or information below.

Update reorders (i.e., replica A may see update X then Y, and replica B may see update Y then X). deleteByQu
 also handles reorders the same way, to ensure replicas are consistent. All replicas of a shard are consistent,ery

even if the updates arrive in a different order on different replicas.

Distributing Documents across Shards

When not using SolrCloud, it is up to you to get all your documents indexed on each shard of your server farm.
Solr supports distributed indexing (routing) in it's true form only in the SolrCloud mode.

In the legacy distributed mode, Solr does not calculate universal term/doc frequencies. For most large-scale
implementations, it is not likely to matter that Solr calculates TF/IDF at the shard level. However, if your collection
is heavily skewed in its distribution across servers, you may find misleading relevancy results in your searches.
In general, it is probably best to randomly distribute documents to your shards.

Executing Distributed Searches with the Parametershards

If a query request includes the parameter, the Solr server distributes the request across all the shardsshards
listed as arguments to the parameter. The parameter uses this syntax:shards

 host : port / base_url [, host : port / base_url]*

For example, the parameter below causes the search to be distributed across two Solr servers: anshards solr1
d , both of which are running on port 8983:solr2

http://localhost:8983/solr/core1/select?shards=solr1:8983/solr/core1,solr2:8983/so
lr/core1&indent=true&q=ipod+solr

Rather than require users to include the shards parameter explicitly, it is usually preferred to configure this
parameter as a default in the RequestHandler section of .solrconfig.xml

Currently, only query requests are distributed. This includes requests to the standard request handler (and
subclasses such as the DisMax RequestHandler), and any other handler (org.apache.solr.handler.comp

) using standard components that support distributed search.onent.searchHandler

As in SolrCloud mode, when , distributed responses will include information about theshards.info=true
shard (where each shard represents a logically different index or physical location)

The following components support distributed search:

The component, which returns documents matching a queryQuery
The component, which processes facet.query and facet.field requests where facets are sorted byFacet
count (the default).
The component, which enables Solr to include "highlighted" matches in field values.Highlighting
The component, which returns simple statistics for numeric fields within the DocSet.Stats
The component, which helps with debugging.Debug

Do not add the parameter to the standard requestHandler; otherwise, search queries may entershards
an infinite loop. Instead, define a new requestHandler that uses the parameter, and passshards
distributed search requests to that handler.

668Apache Solr Reference Guide 6.1

1.

2.

3.

Limitations to Distributed Search

Distributed searching in Solr has the following limitations:

Each document indexed must have a unique key.
If Solr discovers duplicate document IDs, Solr selects the first document and discards subsequent ones.
The index for distributed searching may become momentarily out of sync if a commit happens between
the first and second phase of the distributed search. This might cause a situation where a document that
once matched a query and was subsequently changed may no longer match the query but will still be
retrieved. This situation is expected to be quite rare, however, and is only possible for a single query
request.
The number of shards is limited by number of characters allowed for GET method's URI; most Web
servers generally support at least 4000 characters, but many servers limit URI length to reduce their
vulnerability to Denial of Service (DoS) attacks.
Shard information can be returned with each document in a distributed search by including fl=i
d, [shard] in the search request. This returns the shard URL.
In a distributed search, the data directory from the core descriptor overrides any data directory in solrco
nfig.xml.
Update commands may be sent to any server with distributed indexing configured correctly. Document
adds and deletes are forwarded to the appropriate server/shard based on a hash of the unique document
id. commands and commands are sent to every server in .commit deleteByQuery shards

Formerly a limitation was that TF/IDF relevancy computations only used shard-local statistics. This is still the
case by default. If your data isn't randomly distributed, or if you want more exact statistics, then remember to
configure the ExactStatsCache.

Avoiding Distributed Deadlock

Like in SolrCloud mode, inter-shard requests could lead to a distributed deadlock. It can be avoided by following
the instructions .here

Testing Index Sharding on Two Local Servers

For simple functionality testing, it's easiest to just set up two local Solr servers on different ports. (In a production
environment, of course, these servers would be deployed on separate machines.)

Make two Solr home directories:

mkdir example/nodes
mkdir example/nodes/node1
Copy solr.xml into this solr.home
cp server/solr/solr.xml example/nodes/node1/.
Repeat the above steps for the second node
mkdir example/nodes/node2
cp server/solr/solr.xml example/nodes/node2/.

Start the two Solr instances

Start first node on port 8983
bin/solr start -s example/nodes/node1 -p 8983

Start second node on port 8984
bin/solr start -s example/nodes/node2 -p 8984

669Apache Solr Reference Guide 6.1

3.

4.

5.

Create a core on both the nodes with the sample_techproducts_configs.

bin/solr create_core -c core1 -p 8983 -d sample_techproducts_configs
Create a core on the Solr node running on port 8984
bin/solr create_core -c core1 -p 8984 -d sample_techproducts_configs

In the third window, index an example document to each of the server:

bin/post -c core1 example/exampledocs/monitor.xml -port 8983

bin/post -c core1 example/exampledocs/monitor2.xml -port 8984

Search on the node on port 8983:

curl http://localhost:8983/solr/core1/select?q=*:*&wt=xml&indent=true

This should bring back one document.

Search on the node on port 8984:

curl http://localhost:8984/solr/core1/select?q=*:*&wt=xml&indent=true

This should also bring back a single document.

Now do a distributed search across both servers with your browser or In the example below, ancurl.
extra parameter 'fl' is passed to restrict the returned fields to id and name.

curl
http://localhost:8983/solr/core1/select?q=*:*&indent=true&shards=localhost:898
3/solr/core1,localhost:8984/solr/core1&fl=id,name

This should contain both the documents as shown below:

670Apache Solr Reference Guide 6.1

5.

<response>
 <lst name="responseHeader">
 <int name="status">0</int>
 <int name="QTime">8</int>
 <lst name="params">
 <str name="q">*:*</str>
 <str
name="shards">localhost:8983/solr/core1,localhost:8984/solr/core1</str>
 <str name="indent">true</str>
 <str name="fl">id,name</str>
 <str name="wt">xml</str>
 </lst>
 </lst>
 <result name="response" numFound="2" start="0" maxScore="1.0">
 <doc>
 <str name="id">3007WFP</str>
 <str name="name">Dell Widescreen UltraSharp 3007WFP</str>
 </doc>
 <doc>
 <str name="id">VA902B</str>
 <str name="name">ViewSonic VA902B - flat panel display - TFT - 19"</str>
 </doc>
 </result>
</response>

Index Replication
Index Replication distributes complete copies of a master index to one or more slave servers. The master server
continues to manage updates to the index. All querying is handled by the slaves. This division of labor enables
Solr to scale to provide adequate responsiveness to queries against large search volumes.

The figure below shows a Solr configuration using index replication. The master server's index is replicated on
the slaves.

A Solr index can be replicated across multiple slave servers, which then process requests.

671Apache Solr Reference Guide 6.1

Topics covered in this section:
Index Replication in Solr
Replication Terminology
Configuring the ReplicationHandler
Setting Up a Repeater with the ReplicationHandler
Commit and Optimize Operations
Slave Replication
HTTP API Commands for the ReplicationHandler
Distribution and Optimization

Index Replication in Solr

Solr includes a Java implementation of index replication that works over HTTP:

The configuration affecting replication is controlled by a single file, solrconfig.xml
Supports the replication of configuration files as well as index files
Works across platforms with same configuration
No reliance on OS-dependent file system features (eg: hard links)
Tightly integrated with Solr; an admin page offers fine-grained control of each aspect of replication
The Java-based replication feature is implemented as a request handler. Configuring replication is
therefore similar to any normal request handler.

Replication Terminology

The table below defines the key terms associated with Solr replication.

Term Definition

Index A Lucene index is a directory of files. These files make up the searchable and returnable data
of a Solr Core.

Distribution The copying of an index from the master server to all slaves. The distribution process takes
advantage of Lucene's index file structure.

Inserts and
Deletes

As inserts and deletes occur in the index, the directory remains unchanged. Documents are
always inserted into newly created files. Documents that are deleted are not removed from the
files. They are flagged in the file, deletable, and are not removed from the files until the index is
optimized.

Replication In SolrCloud
Although there is no explicit concept of "master/slave" nodes in a cluster, the SolrCloud ReplicationH

 discussed on this page is still used by SolrCloud as needed to support "shard recovery" – butandler
this is done in a peer to peer manner. When using SolrCloud, the must beReplicationHandler
available via the path. Solr does this implicitly unless overridden explicitly in your /replication solrc

, but If you wish to override the default behavior, make certain that you do not explicitly setonfig.xml
any of the "master" or "slave" configuration options mentioned below, or they will interfere with normal
SolrCloud operation.

672Apache Solr Reference Guide 6.1

Master and
Slave

A Solr replication master is a single node which receives all updates initially and keeps
everything organized. Solr replication slave nodes receive no updates directly, instead all
changes (such as inserts, updates, deletes, etc.) are made against the single master node.
Changes made on the master are distributed to all the slave nodes which service all query
requests from the clients.

Update An update is a single change request against a single Solr instance. It may be a request to
delete a document, add a new document, change a document, delete all documents matching
a query, etc. Updates are handled synchronously within an individual Solr instance.

Optimization A process that compacts the index and merges segments in order to improve query
performance. Optimization should only be run on the master nodes. An optimized index may
give query performance gains compared to an index that has become fragmented over a period
of time with many updates. Distributing an optimized index requires a much longer time than
the distribution of new segments to an un-optimized index.

Segments A self contained subset of an index consisting of some documents and data structures related
to the inverted index of terms in those documents.

mergeFactor A parameter that controls the number of segments in an index. For example, when
mergeFactor is set to 3, Solr will fill one segment with documents until the limit
maxBufferedDocs is met, then it will start a new segment. When the number of segments
specified by mergeFactor is reached (in this example, 3) then Solr will merge all the segments
into a single index file, then begin writing new documents to a new segment.

Snapshot A directory containing hard links to the data files of an index. Snapshots are distributed from
the master nodes when the slaves pull them, "smart copying" any segments the slave node
does not have in snapshot directory that contains the hard links to the most recent index data
files.

Configuring the ReplicationHandler

In addition to configuration options specific to the master/slave roles, there are a fewReplicationHandler
special configuration options that are generally supported (even when using SolrCloud).

maxNumberOfBackups an integer value dictating the maximum number of backups this node will keep
on disk as it receives commands.backup
Similar to most other request handlers in Solr you may configure a set of "defaults, invariants, and/or

" parameters corresponding with any request parameters supported by the appends ReplicationHandl
 when .er processing commands

Configuring the Replication RequestHandler on a Master Server

Before running a replication, you should set the following parameters on initialization of the handler:

Name Description

replicateAfter String specifying action after which replication should occur. Valid values are
commit, optimize, or startup. There can be multiple values for this parameter. If you
use "startup", you need to have a "commit" and/or "optimize" entry also if you want
to trigger replication on future commits or optimizes.

backupAfter String specifying action after which a backup should occur. Valid values are commit,
optimize, or startup. There can be multiple values for this parameter. It is not
required for replication, it just makes a backup.

https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-SearchHandlers
https://cwiki.apache.org/confluence/display/solr/RequestHandlers+and+SearchComponents+in+SolrConfig#RequestHandlersandSearchComponentsinSolrConfig-SearchHandlers

673Apache Solr Reference Guide 6.1

maxNumberOfBackups Integer specifying how many backups to keep. This can be used to delete all but
the most recent N backups.

confFiles The configuration files to replicate, separated by a comma.

commitReserveDuration If your commits are very frequent and your network is slow, you can tweak this
parameter to increase the amount of time taken to download 5Mb from the master
to a slave. The default is 10 seconds.

The example below shows a possible 'master' configuration for the , including a fixedReplicationHandler
number of backups and an invariant setting for the request parameter to prevent slavesmaxWriteMBPerSec
from saturating it's network interface

<requestHandler name="/replication" class="solr.ReplicationHandler">
 <lst name="master">
 <str name="replicateAfter">optimize</str>
 <str name="backupAfter">optimize</str>
 <str name="confFiles">schema.xml,stopwords.txt,elevate.xml</str>
 <str name="commitReserveDuration">00:00:10</str>
 </lst>
 <int name="maxNumberOfBackups">2</int>
 <lst name="invariants">
 <str name="maxWriteMBPerSec">16</str>
 </lst>
</requestHandler>

Replicating solrconfig.xml

In the configuration file on the master server, include a line like the following:

<str name="confFiles">solrconfig_slave.xml:solrconfig.xml,x.xml,y.xml</str>

This ensures that the local configuration will be saved as on thesolrconfig_slave.xml solrconfig.xml
slave. All other files will be saved with their original names.

On the master server, the file name of the slave configuration file can be anything, as long as the name is
correctly identified in the string; then it will be saved as whatever file name appears after the colonconfFiles
':'.

Configuring the Replication RequestHandler on a Slave Server

The code below shows how to configure a ReplicationHandler on a slave.

674Apache Solr Reference Guide 6.1

<requestHandler name="/replication" class="solr.ReplicationHandler">
 <lst name="slave">

 <!-- fully qualified url for the replication handler of master. It is
 possible to pass on this as a request param for the fetchindex command -->
 <str name="masterUrl">http://remote_host:port/solr/core_name/replication</str>

 <!-- Interval in which the slave should poll master. Format is HH:mm:ss .
 If this is absent slave does not poll automatically.

 But a fetchindex can be triggered from the admin or the http API -->

 <str name="pollInterval">00:00:20</str>

 <!-- THE FOLLOWING PARAMETERS ARE USUALLY NOT REQUIRED-->

 <!-- To use compression while transferring the index files. The possible
 values are internal|external. If the value is 'external' make sure
 that your master Solr has the settings to honor the accept-encoding header.
 See here for details: http://wiki.apache.org/solr/SolrHttpCompression
 If it is 'internal' everything will be taken care of automatically.
 USE THIS ONLY IF YOUR BANDWIDTH IS LOW.
 THIS CAN ACTUALLY SLOWDOWN REPLICATION IN A LAN -->
 <str name="compression">internal</str>

 <!-- The following values are used when the slave connects to the master to
 download the index files. Default values implicitly set as 5000ms and
 10000ms respectively. The user DOES NOT need to specify these unless the
 bandwidth is extremely low or if there is an extremely high latency -->

 <str name="httpConnTimeout">5000</str>
 <str name="httpReadTimeout">10000</str>

 <!-- If HTTP Basic authentication is enabled on the master, then the slave
 can be configured with the following -->

 <str name="httpBasicAuthUser">username</str>
 <str name="httpBasicAuthPassword">password</str>
 </lst>
</requestHandler>

Setting Up a Repeater with the ReplicationHandler

A master may be able to serve only so many slaves without affecting performance. Some organizations have
deployed slave servers across multiple data centers. If each slave downloads the index from a remote data
center, the resulting download may consume too much network bandwidth. To avoid performance degradation in
cases like this, you can configure one or more slaves as repeaters. A repeater is simply a node that acts as both
a master and a slave.

To configure a server as a repeater, the definition of the Replication in the requestHandler solrconfi
 file must include file lists of use for both masters and slaves.g.xml

Be sure to set the parameter to commit, even if is set to optimizereplicateAfter replicateAfter
on the main master. This is because on a repeater (or any slave), a commit is called only after the index is
downloaded. The optimize command is never called on slaves.
Optionally, one can configure the repeater to fetch compressed files from the master through the

675Apache Solr Reference Guide 6.1

compression parameter to reduce the index download time.

Here is an example of a ReplicationHandler configuration for a repeater:

<requestHandler name="/replication" class="solr.ReplicationHandler">
 <lst name="master">
 <str name="replicateAfter">commit</str>
 <str name="confFiles">schema.xml,stopwords.txt,synonyms.txt</str>
 </lst>
 <lst name="slave">
 <str
name="masterUrl">http://master.solr.company.com:8983/solr/core_name/replication</str
>
 <str name="pollInterval">00:00:60</str>
 </lst>
</requestHandler>

Commit and Optimize Operations

When a commit or optimize operation is performed on the master, the RequestHandler reads the list of file
names which are associated with each commit point. This relies on the parameter in thereplicateAfter
configuration to decide which types of events should trigger replication.

Setting on the Master Description

commit Triggers replication whenever a commit is performed on the master index.

optimize Triggers replication whenever the master index is optimized.

startup Triggers replication whenever the master index starts up.

The replicateAfter parameter can accept multiple arguments. For example:

<str name="replicateAfter">startup</str>
<str name="replicateAfter">commit</str>
<str name="replicateAfter">optimize</str>

Slave Replication

The master is totally unaware of the slaves. The slave continuously keeps polling the master (depending on the
 parameter) to check the current index version of the master. If the slave finds out that thepollInterval

master has a newer version of the index it initiates a replication process. The steps are as follows:

The slave issues a command to get the list of the files. This command returns the names offilelist
the files as well as some metadata (for example, size, a lastmodified timestamp, an alias if any).
The slave checks with its own index if it has any of those files in the local index. It then runs the filecontent
command to download the missing files. This uses a custom format (akin to the HTTP chunked encoding)
to download the full content or a part of each file. If the connection breaks in between, the download
resumes from the point it failed. At any point, the slave tries 5 times before giving up a replication
altogether.
The files are downloaded into a temp directory, so that if either the slave or the master crashes during the
download process, no files will be corrupted. Instead, the current replication will simply abort.
After the download completes, all the new files are moved to the live index directory and the file's
timestamp is same as its counterpart on the master.

676Apache Solr Reference Guide 6.1

A commit command is issued on the slave by the Slave's ReplicationHandler and the new index is loaded.

Replicating Configuration Files

To replicate configuration files, list them using using the parameter. Only files found in the direconfFiles conf
ctory of the master's Solr instance will be replicated.

Solr replicates configuration files only when the index itself is replicated. That means even if a configuration file is
changed on the master, that file will be replicated only after there is a new commit/optimize on master's index.

Unlike the index files, where the timestamp is good enough to figure out if they are identical, configuration files
are compared against their checksum. The files (on master and slave) are judged to be identical ifschema.xml
their checksums are identical.

As a precaution when replicating configuration files, Solr copies configuration files to a temporary directory before
moving them into their ultimate location in the conf directory. The old configuration files are then renamed and
kept in the same directory. The ReplicationHandler does not automatically clean up these old files.conf/

If a replication involved downloading of at least one configuration file, the ReplicationHandler issues a
core-reload command instead of a commit command.

Resolving Corruption Issues on Slave Servers

If documents are added to the slave, then the slave is no longer in sync with its master. However, the slave will
not undertake any action to put itself in sync, until the master has new index data. When a commit operation
takes place on the master, the index version of the master becomes different from that of the slave. The slave
then fetches the list of files and finds that some of the files present on the master are also present in the local
index but with different sizes and timestamps. This means that the master and slave have incompatible indexes.
To correct this problem, the slave then copies all the index files from master to a new index directory and asks
the core to load the fresh index from the new directory.

HTTP API Commands for the ReplicationHandler

You can use the HTTP commands below to control the ReplicationHandler's operations.

Command Description

http:// /solr/ /replimaster_host:port core_name
cation?command=enablereplication

Enables replication on the master for all its slaves.

http:// /solr/ /replimaster_host:port core_name
cation?command=disablereplication

Disables replication on the master for all its slaves.

http:// /solr/ /replication?host:port core_name
command=indexversion

Returns the version of the latest replicatable index on the
specified master or slave.

http:// /solr/ /replicslave_host:port core_name
ation?command=fetchindex

Forces the specified slave to fetch a copy of the index from its
master.

If you like, you can pass an extra attribute such as masterUrl or
compression (or any other parameter which is specified in the <

 tag) to do a one time replication from alst name="slave">
master. This obviates the need for hard-coding the master in the
slave.

677Apache Solr Reference Guide 6.1

http:// /solr/ /replicslave_host:port core_name
ation?command=abortfetch

Aborts copying an index from a master to the specified slave.

http:// /solr/ /replicslave_host:port core_name
ation?command=enablepoll

Enables the specified slave to poll for changes on the master.

http:// /solr/ /replicslave_host:port core_name
ation?command=disablepoll

Disables the specified slave from polling for changes on the
master.

http:// /solr/ /replicslave_host:port core_name
ation?command=details

Retrieves configuration details and current status.

http:// /solr/ /replication?host:port core_name
command=filelist&generation=<generation-

>number

Retrieves a list of Lucene files present in the specified host's
index. You can discover the generation number of the index by
running the command.indexversion

http:// /solr/ /replimaster_host:port core_name
cation?command=backup

Creates a backup on master if there are committed index data
in the server; otherwise, does nothing. This command is useful
for making periodic backups.

supported request parameters:

numberToKeep: request parameter can be used with the
backup command unless the initialimaxNumberOfBackups
zation parameter has been specified on the handler – in
which case is always used andmaxNumberOfBackups
attempts to use the request parameter willnumberToKeep
cause an error.
name : (optional) Backup name . The snapshot will be
created in a directory called snapshot.<name> within the
data directory of the core . By default the name is generated
using date in format. If pyyyyMMddHHmmssSSS location
arameter is passed , that would be used instead of the data
directory

 location : Backup location

http://master_host:port /solr/ /replcore_name
ication?command=deletebackup

Delete any backup created using the command .backup

request parameters:

name: The name of the snapshot . A snapshot with the
name snapshot.<name> must exist .If not, an error is thrown
location: Location where the snapshot is created

Distribution and Optimization

Optimizing an index is not something most users should generally worry about - but in particular users should be
aware of the impacts of optimizing an index when using the .ReplicationHandler

The time required to optimize a master index can vary dramatically. A small index may be optimized in minutes.
A very large index may take hours. The variables include the size of the index and the speed of the hardware.

Distributing a newly optimized index may take only a few minutes or up to an hour or more, again depending on
the size of the index and the performance capabilities of network connections and disks. During optimization the
machine is under load and does not process queries very well. Given a schedule of updates being driven a few
times an hour to the slaves, we cannot run an optimize with every committed snapshot.

Copying an optimized index means that the index will need to be transferred during the next snappull. Thisentire

678Apache Solr Reference Guide 6.1

is a large expense, but not nearly as huge as running the optimize everywhere. Consider this example: on a
three-slave one-master configuration, distributing a newly-optimized index takes approximately 80 seconds .total
Rolling the change across a tier would require approximately ten minutes per machine (or machine group). If this
optimize were rolled across the query tier, and if each slave node being optimized were disabled and not
receiving queries, a rollout would take at least twenty minutes and potentially as long as an hour and a half.
Additionally, the files would need to be synchronized so that the the optimize, snappull would not thinkfollowing
that the independently optimized files were different in any way. This would also leave the door open to
independent corruption of indexes instead of each being a perfect copy of the master.

Optimizing on the master allows for a straight-forward optimization operation. No query slaves need to be taken
out of service. The optimized index can be distributed in the background as queries are being normally serviced.
The optimization can occur at any time convenient to the application providing index updates.

While optimizing may have some benefits in some situations, a rapidly changing index will not retain those
benefits for long, and since optimization is an intensive process, it may be better to consider other options, such
as lowering the merge factor (discussed in the section on).Index Configuration

Combining Distribution and Replication
When your index is too large for a single machine and you have a query volume that single shards cannot keep
up with, it's time to replicate each shard in your distributed search setup.

The idea is to combine distributed search with replication. As shown in the figure below, a combined
distributed-replication configuration features a master server for each shard and then 1- slaves that aren
replicated from the master. As in a standard replicated configuration, the master server handles updates and
optimizations without adversely affecting query handling performance.

Query requests should be load balanced across each of the shard slaves. This gives you both increased query
handling capacity and fail-over backup if a server goes down.

A Solr configuration combining both replication and master-slave distribution.

None of the master shards in this configuration know about each other. You index to each master, the index is
replicated to each slave, and then searches are distributed across the slaves, using one slave from each
master/slave shard.

https://cwiki.apache.org/confluence/display/solr/IndexConfig+in+SolrConfig#IndexConfiginSolrConfig-mergeFactor

679Apache Solr Reference Guide 6.1

1.
2.

3.

For high availability you can use a load balancer to set up a virtual IP for each shard's set of slaves. If you are
new to load balancing, HAProxy () is a good open source software load-balancer. If a slavehttp://haproxy.1wt.eu/
server goes down, a good load-balancer will detect the failure using some technique (generally a heartbeat
system), and forward all requests to the remaining live slaves that served with the failed slave. A single virtual IP
should then be set up so that requests can hit a single IP, and get load balanced to each of the virtual IPs for the
search slaves.

With this configuration you will have a fully load balanced, search-side fault-tolerant system (Solr does not yet
support fault-tolerant indexing). Incoming searches will be handed off to one of the functioning slaves, then the
slave will distribute the search request across a slave for each of the shards in your configuration. The slave will
issue a request to each of the virtual IPs for each shard, and the load balancer will choose one of the available
slaves. Finally, the results will be combined into a single results set and returned. If any of the slaves go down,
they will be taken out of rotation and the remaining slaves will be used. If a shard master goes down, searches
can still be served from the slaves until you have corrected the problem and put the master back into production.

Merging Indexes

If you need to combine indexes from two different projects or from multiple servers previously used in a
distributed configuration, you can use either the IndexMergeTool included in or the lucene-misc CoreAdminH

.andler

To merge indexes, they must meet these requirements:

The two indexes must be compatible: their schemas should include the same fields and they should
analyze fields the same way.
The indexes must not include duplicate data.

Optimally, the two indexes should be built using the same schema.

Using IndexMergeTool

To merge the indexes, do the following:

Make sure that both indexes you want to merge are closed.
Issue this command:

java -cp $SOLR/server/solr-webapp/webapp/WEB-INF/lib/lucene-core-VERSION.jar:$
SOLR/server/solr-webapp/webapp/WEB-INF/lib/lucene-misc-VERSION.jar
 org/apache/lucene/misc/IndexMergeTool
 /path/to/newindex
 /path/to/old/index1
 /path/to/old/index2

This will create a new index at that contains both index1 and index2./path/to/newindex
Copy this new directory to the location of your application's solr index (move the old one aside first, of
course) and start Solr.

Using CoreAdmin

The command of the can be used to merge indexes into a new core – eitherMERGEINDEXES CoreAdminHandler
from one or more arbitrary directories or by merging from one or more existing core names.indexDir srcCore

See the section for details.CoreAdminHandler

http://haproxy.1wt.eu/
https://cwiki.apache.org/confluence/display/solr/CoreAdmin+API#CoreAdminAPI-MERGEINDEXES
https://cwiki.apache.org/confluence/display/solr/CoreAdmin+API#CoreAdminAPI-MERGEINDEXES

680Apache Solr Reference Guide 6.1

681Apache Solr Reference Guide 6.1

Client APIs
This section discusses the available client APIs for Solr. It covers the following topics:

Introduction to Client APIs: A conceptual overview of Solr client APIs.

Choosing an Output Format: Information about choosing a response format in Solr.

Using JavaScript: Explains why a client API is not needed for JavaScript responses.

Using Python: Information about Python and JSON responses.

Client API Lineup: A list of all Solr Client APIs, with links.

Using SolrJ: Detailed information about SolrJ, an API for working with Java applications.

Using Solr From Ruby: Detailed information about using Solr with Ruby applications.

MBean Request Handler: Describes the MBean request handler for programmatic access to Solr server statistics
and information.

Introduction to Client APIs
At its heart, Solr is a Web application, but because it is built on open protocols, any type of client application can
use Solr.

HTTP is the fundamental protocol used between client applications and Solr. The client makes a request and
Solr does some work and provides a response. Clients use requests to ask Solr to do things like perform queries
or index documents.

Client applications can reach Solr by creating HTTP requests and parsing the HTTP responses. Client APIs
encapsulate much of the work of sending requests and parsing responses, which makes it much easier to write
client applications.

Clients use Solr's five fundamental operations to work with Solr. The operations are query, index, delete, commit,
and optimize.

Queries are executed by creating a URL that contains all the query parameters. Solr examines the request URL,
performs the query, and returns the results. The other operations are similar, although in certain cases the HTTP
request is a POST operation and contains information beyond whatever is included in the request URL. An index
operation, for example, may contain a document in the body of the request.

Solr also features an EmbeddedSolrServer that offers a Java API without requiring an HTTP connection. For
details, see .Using SolrJ

Choosing an Output Format
Many programming environments are able to send HTTP requests and retrieve responses. Parsing the
responses is a slightly more thorny problem. Fortunately, Solr makes it easy to choose an output format that will
be easy to handle on the client side.

Specify a response format using the parameter in a query. The available response formats are documented inwt
.Response Writers

Most client APIs hide this detail for you, so for many types of client applications, you won't ever have to specify a
 parameter. In JavaScript, however, the interface to Solr is a little closer to the metal, so you will need to addwt

this parameter yourself.

682Apache Solr Reference Guide 6.1

Client API Lineup
The Solr Wiki contains a list of client APIs at .http://wiki.apache.org/solr/IntegratingSolr

Here is the list of client APIs, current at this writing (November 2011):

Name Environment URL

SolRuby Ruby https://github.com/rsolr/rsolr

DelSolr Ruby https://github.com/avvo/delsolr

acts_as_solr Rails http://acts-as-solr.rubyforge.org/, http://rubyforge.org/projects/background-s
olr/

Flare Rails http://wiki.apache.org/solr/Flare

SolPHP PHP http://wiki.apache.org/solr/SolPHP

SolrJ Java http://wiki.apache.org/solr/SolJava

Python API Python http://wiki.apache.org/solr/SolPython

PySolr Python http://code.google.com/p/pysolr/

SolPerl Perl http://wiki.apache.org/solr/SolPerl

Solr.pm Perl http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm

SolrForrest Forrest/Cocoon http://wiki.apache.org/solr/SolrForrest

SolrSharp C# http://www.codeplex.com/solrsharp

SolColdfusion ColdFusion http://solcoldfusion.riaforge.org/

SolrNet .NET http://code.google.com/p/solrnet/

AJAX Solr AJAX http://github.com/evolvingweb/ajax-solr/wiki

Using JavaScript
Using Solr from JavaScript clients is so straightforward that it deserves a special mention. In fact, it is so
straightforward that there is no client API. You don't need to install any packages or configure anything.

HTTP requests can be sent to Solr using the standard mechanism.XMLHttpRequest

Out of the box, Solr can send , which are easily interpreted inJavaScript Object Notation (JSON) responses
JavaScript. Just add to the request URL to have responses sent as JSON.wt=json

For more information and an excellent example, read the SolJSON page on the Solr Wiki:

http://wiki.apache.org/solr/SolJSON

Using Python
Solr includes an output format specifically for , but is a little more robust.Python JSON output

http://wiki.apache.org/solr/IntegratingSolr
https://github.com/rsolr/rsolr
https://github.com/avvo/delsolr
http://acts-as-solr.rubyforge.org/
http://rubyforge.org/projects/background-solr/
http://rubyforge.org/projects/background-solr/
http://wiki.apache.org/solr/Flare
http://wiki.apache.org/solr/SolPHP
http://wiki.apache.org/solr/SolJava
http://wiki.apache.org/solr/SolPython
http://code.google.com/p/pysolr/
http://wiki.apache.org/solr/SolPerl
http://search.cpan.org/~garafola/Solr-0.03/lib/Solr.pm
http://wiki.apache.org/solr/SolrForrest
http://www.codeplex.com/solrsharp
http://solcoldfusion.riaforge.org/
http://code.google.com/p/solrnet/
http://github.com/evolvingweb/ajax-solr/wiki
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-JSONResponseWriter
http://wiki.apache.org/solr/SolJSON
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-PythonResponseWriter
https://cwiki.apache.org/confluence/display/solr/Response+Writers#ResponseWriters-JSONResponseWriter

683Apache Solr Reference Guide 6.1

Simple Python

Making a query is a simple matter. First, tell Python you will need to make HTTP connections.

from urllib2 import *

Now open a connection to the server and get a response. The query parameter tells Solr to return results in awt
format that Python can understand.

connection = urlopen(

'http://localhost:8983/solr/collection_name/select?q=cheese&wt=python')
response = eval(connection.read())

Now interpreting the response is just a matter of pulling out the information that you need.

print response['response']['numFound'], "documents found."

Print the name of each document.

for document in response['response']['docs']:
 print " Name =", document['name']

Python with JSON

JSON is a more robust response format, but you will need to add a Python package in order to use it. At a
command line, install the simplejson package like this:

$ sudo easy_install simplejson

Once that is done, making a query is nearly the same as before. However, notice that the wt query parameter is
now json, and the response is now digested by .simplejson.load()

from urllib2 import *
import simplejson
connection =
urlopen('http://localhost:8983/solr/collection_name/select?q=cheese&wt=json')
response = simplejson.load(connection)
print response['response']['numFound'], "documents found."

Print the name of each document.

for document in response['response']['docs']:
 print " Name =", document['name']

Using SolrJ
SolrJ is an API that makes it easy for Java applications to talk to Solr. SolrJ hides a lot of the details of
connecting to Solr and allows your application to interact with Solr with simple high-level methods.

The center of SolrJ is the package, which contains just five main classes.org.apache.solr.client.solrj

http://lucene.apache.org/solr/6_1_0/solr-solrj/

684Apache Solr Reference Guide 6.1

Begin by creating a , which represents the Solr instance you want to use. Then send SolrClient SolrReques
 or and get back SolrResponses.ts SolrQuerys

SolrClient is abstract, so to connect to a remote Solr instance, you'll actually create an instance of either Htt
, or . Both communicate with Solr via HTTP, the difference is that pSolrClient CloudSolrClient HttpSolr

 is configured using an explicit Solr URL, while is configured using the zkHost StringClient CloudSolrClient
for a cluster.SolrCloud

String urlString = "http://localhost:8983/solr/techproducts";
SolrClient solr = new HttpSolrClient.Builder(urlString).build();

String zkHostString = "zkServerA:2181,zkServerB:2181,zkServerC:2181/solr";
SolrClient solr = new CloudSolrClient.Builder().withZkHost(zkHostString).build();

Once you have a , you can use it by calling methods like , , and .SolrClient query() add() commit()

Building and Running SolrJ Applications

The SolrJ API is included with Solr, so you do not have to download or install anything else. However, in order to
build and run applications that use SolrJ, you have to add some libraries to the classpath.

At build time, the examples presented with this section require to be in the classpath.solr-solrj-x.y.z.jar

At run time, the examples in this section require the libraries found in the 'dist/solrj-lib' directory.

The Ant script bundled with this sections' examples includes the libraries as appropriate when building and
running.

You can sidestep a lot of the messing around with the JAR files by using Maven instead of Ant. All you will need
to do to include SolrJ in your application is to put the following dependency in the project's :pom.xml

<dependency>
 <groupId>org.apache.solr</groupId>
 <artifactId>solr-solrj</artifactId>
 <version>x.y.z</version>
</dependency>

If you are worried about the SolrJ libraries expanding the size of your client application, you can use a code
obfuscator like to remove APIs that you are not using.ProGuard

Setting XMLResponseParser

SolrJ uses a binary format, rather than XML, as its default response format. If you are trying to mix Solr and SolrJ
versions where one is version 1.x and the other is 3.x or later, then you MUST use the XML response parser.
The binary format changed in 3.x, and the two javabin versions are entirely incompatible. The following code will
make this change:

solr.setParser(new XMLResponseParser());

Single node Solr client

SolrCloud client

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/SolrClient.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/HttpSolrClient.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/HttpSolrClient.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/CloudSolrClient.html
http://proguard.sourceforge.net/

685Apache Solr Reference Guide 6.1

Performing Queries

Use to have Solr search for results. You have to pass a object that describes the query,query() SolrQuery
and you will get back a QueryResponse (from the package).org.apache.solr.client.solrj.response

SolrQuery has methods that make it easy to add parameters to choose a request handler and send
parameters to it. Here is a very simple example that uses the default request handler and sets the query string:

SolrQuery query = new SolrQuery();
query.setQuery(mQueryString);

To choose a different request handler, there is a specific method available in SolrJ version 4.0 and later:

query.setRequestHandler("/spellCheckCompRH");

You can also set arbitrary parameters on the query object. The first two code lines below are equivalent to each
other, and the third shows how to use an arbitrary parameter to set the query string:q

query.set("fl", "category,title,price");
query.setFields("category", "title", "price");
query.set("q", "category:books");

Once you have your set up, submit it with :SolrQuery query()

QueryResponse response = solr.query(query);

The client makes a network connection and sends the query. Solr processes the query, and the response is sent
and parsed into a .QueryResponse

The is a collection of documents that satisfy the query parameters. You can retrieve theQueryResponse
documents directly with and you can call other methods to find out information aboutgetResults()
highlighting or facets.

SolrDocumentList list = response.getResults();

Indexing Documents

Other operations are just as simple. To index (add) a document, all you need to do is create a SolrInputDocu
 and pass it along to the 's method. This example assumes that the SolrClient objectment SolrClient add()

called 'solr' is already created based on the examples shown earlier.

SolrInputDocument document = new SolrInputDocument();
document.addField("id", "552199");
document.addField("name", "Gouda cheese wheel");
document.addField("price", "49.99");
UpdateResponse response = solr.add(document);

// Remember to commit your changes!

solr.commit();

686Apache Solr Reference Guide 6.1

Uploading Content in XML or Binary Formats

SolrJ lets you upload content in binary format instead of the default XML format. Use the following code to
upload using binary format, which is the same format SolrJ uses to fetch results. If you are trying to mix Solr and
SolrJ versions where one is version 1.x and the other is 3.x or later, then you MUST stick with the XML request
writer. The binary format changed in 3.x, and the two javabin versions are entirely incompatible.

solr.setRequestWriter(new BinaryRequestWriter());

Using the ConcurrentUpdateSolrClient

When implementing java applications that will be bulk loading a lot of documents at once, ConcurrentUpdateS
is an alternative to consider instead of using . The olrClient HttpSolrClient ConcurrentUpdateSolrCl

 buffers all added documents and writes them into open HTTP connections. This class is thread safe.ient
Although any SolrClient request can be made with this implementation, it is only recommended to use the Concu

 for requests.rrentUpdateSolrClient /update

EmbeddedSolrServer

The class provides an implementation of the client API talking directly to EmbeddedSolrServer SolrClient
an micro-instance of Solr running directly in your Java application. This embedded approach is not
recommended in most cases and fairly limited in the set of features it supports – in particular it can not be used
with or . exists primarily to help facilitate testing.SolrCloud Index Replication EmbeddedSolrServer

For information on how to use please review the SolrJ JUnit tests in the EmbeddedSolrServer org.apache.
 package of the Solr source release.solr.client.solrj.embedded

Using Solr From Ruby
Solr has an optional Ruby response format that extends its in the following ways to allow theJSON output
response to be safely eval'd by Ruby's interpreter:

Ruby's single quoted strings are used to prevent possible string exploits
\ and ' are the only two characters escaped...
unicode escapes not used... data is written as raw UTF-8

nil used for null
=> used as the key/value separator in maps

Here's an example Ruby response from Solr, for http://localhost:8983/solr/techproducts/select?q=iPod&wt=ruby
 (with Solr launching using `bin/solr start -e techproducts`):&indent=on

{
 'responseHeader'=>{
 'status'=>0,
 'QTime'=>0,
 'params'=>{
 'q'=>'iPod',
 'indent'=>'on',
 'wt'=>'ruby'}},
 'response'=>{'numFound'=>3,'start'=>0,'docs'=>[
 {
 'id'=>'IW-02',

http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrClient.html
http://lucene.apache.org/solr/6_1_0/solr-solrj/org/apache/solr/client/solrj/impl/ConcurrentUpdateSolrClient.html
http://lucene.apache.org/solr/6_1_0/solr-core/org/apache/solr/client/solrj/embedded/EmbeddedSolrServer.html
http://Response Writers#JSON Response Writer
http://localhost:8983/solr/techproducts/select?q=iPod&wt=ruby&indent=on
http://localhost:8983/solr/techproducts/select?q=iPod&wt=ruby&indent=on

687Apache Solr Reference Guide 6.1

 'name'=>'iPod & iPod Mini USB 2.0 Cable',
 'manu'=>'Belkin',
 'manu_id_s'=>'belkin',
 'cat'=>['electronics',
 'connector'],
 'features'=>['car power adapter for iPod, white'],
 'weight'=>2.0,
 'price'=>11.5,
 'price_c'=>'11.50,USD',
 'popularity'=>1,
 'inStock'=>false,
 'store'=>'37.7752,-122.4232',
 'manufacturedate_dt'=>'2006-02-14T23:55:59Z',
 '_version_'=>1491038048794705920},
 {
 'id'=>'F8V7067-APL-KIT',
 'name'=>'Belkin Mobile Power Cord for iPod w/ Dock',
 'manu'=>'Belkin',
 'manu_id_s'=>'belkin',
 'cat'=>['electronics',
 'connector'],
 'features'=>['car power adapter, white'],
 'weight'=>4.0,
 'price'=>19.95,
 'price_c'=>'19.95,USD',
 'popularity'=>1,
 'inStock'=>false,
 'store'=>'45.18014,-93.87741',
 'manufacturedate_dt'=>'2005-08-01T16:30:25Z',
 '_version_'=>1491038048792608768},
 {
 'id'=>'MA147LL/A',
 'name'=>'Apple 60 GB iPod with Video Playback Black',
 'manu'=>'Apple Computer Inc.',
 'manu_id_s'=>'apple',
 'cat'=>['electronics',
 'music'],
 'features'=>['iTunes, Podcasts, Audiobooks',
 'Stores up to 15,000 songs, 25,000 photos, or 150 hours of video',
 '2.5-inch, 320x240 color TFT LCD display with LED backlight',
 'Up to 20 hours of battery life',
 'Plays AAC, MP3, WAV, AIFF, Audible, Apple Lossless, H.264 video',
 'Notes, Calendar, Phone book, Hold button, Date display, Photo wallet,
Built-in games, JPEG photo playback, Upgradeable firmware, USB 2.0 compatibility,
Playback speed control, Rechargeable capability, Battery level indication'],
 'includes'=>'earbud headphones, USB cable',
 'weight'=>5.5,
 'price'=>399.0,
 'price_c'=>'399.00,USD',
 'popularity'=>10,
 'inStock'=>true,
 'store'=>'37.7752,-100.0232',

688Apache Solr Reference Guide 6.1

 'manufacturedate_dt'=>'2005-10-12T08:00:00Z',
 '_version_'=>1491038048799948800}]
 }}

Here is a simple example of how one may query Solr using the Ruby response format:

require 'net/http'

h = Net::HTTP.new('localhost', 8983)
http_response = h.get('/solr/techproducts/select?q=iPod&wt=ruby')
rsp = eval(http_response.body)

puts 'number of matches = ' + rsp['response']['numFound'].to_s
#print out the name field for each returned document
rsp['response']['docs'].each { |doc| puts 'name field = ' + doc['name'] }

For simple interactions with Solr, this may be all you need! If you are building complex interactions with Solr, then
consider the libraries mentioned at https://wiki.apache.org/solr/Ruby%20Response%20Format

https://wiki.apache.org/solr/Ruby%20Response%20Format

689Apache Solr Reference Guide 6.1

Major Changes from Solr 5 to Solr 6
There are some major changes in Solr 6 to consider before starting to migrate your configurations and indexes.
There are many hundreds of changes, so a thorough review of the section as well as the Upgrading Solr CHANG

 file in your Solr instance will help you plan your migration to Solr 6. This section attempts to highlight someES.txt
of the major changes you should be aware of.

Topics discussed in this section:

Highlights of New Features in Solr 6
Java 8 Required
Index Format Changes
Managed Schema is now the Default
Default Similarity Changes
Replica & Shard Delete Command Changes
facet.date.* Parameters Removed

Highlights of New Features in Solr 6

Some of the major improvements in Solr 6 include:

Streaming Expressions

Introduced in Solr 5, allow querying Solr and getting results as a stream of data, sortedStreaming Expressions
and aggregated as requested.

Several new expression types have been added in Solr 6:

Parallel expressions using a MapReduce-like shuffling for faster throughput of high-cardinality fields.
Daemon expressions to support continuous push or pull streaming.
Advanced parallel relational algebra like distributed joins, intersections, unions and complements.
Publish/Subscribe messaging.
JDBC connections to pull data from other systems and join with documents in the Solr index.

Parallel SQL Interface

Built on streaming expressions, new in Solr 6 is a Parallel SQL interface to be able to send SQL queries

to Solr. SQL statements are compiled to streaming expressions on the fly, providing the full range of

aggregations available to streaming expression requests. A JDBC driver is included, which allows

using SQL clients and database visualization tools to query your Solr index and import data to other

systems.

Cross Data Center Replication

Replication across data centers is now possible with . Using anCross Data Center Replication

active-passive model, a SolrCloud cluster can be replicated to another data center, and monitored with

a new API.

Graph Query Parser

690Apache Solr Reference Guide 6.1

A new makes it possible to to graph traversal queries of Directed (Cyclic) Graphs query parsergraph

modelled using Solr documents.

DocValues

Most non-text field types in the Solr sample configsets now default to using .DocValues

Java 8 Required

The minimum supported version of Java for Solr 6 (and the) is now Java 8.SolrJ client libraries

Index Format Changes

Solr 6 has no support for reading Lucene/Solr 4.x and earlier indexes. Be sure to run the Lucene IndexUpgrad
 included with Solr 5.5 if you might still have old 4x formatted segments in your index. Alternatively: fullyer

optimize your index with Solr 5.5 to make sure it consists only of one up-to-date index segment.

Managed Schema is now the Default

Solr's default behavior when a does not explicitly define a is nowsolrconfig.xml <schemaFactory/>
dependent on the specified in that . When luceneMatchVersion solrconfig.xml luceneMatchVersion

, will continue to be used for back compatibility, otherwise an instance< 6.0 ClassicIndexSchemaFactory
of will be used.ManagedIndexSchemaFactory

The most notable impacts of this change are:

Existing files that are modified to use , but do hasolrconfig.xml luceneMatchVersion >= 6.0 not
ve an explicitly configured , will have their fileClassicIndexSchemaFactory schema.xml
automatically upgraded to a file.managed-schema
Schema modifications via the will now be enabled by default.Schema API

Please review the section for more details.Schema Factory Definition in SolrConfig

Default Similarity Changes

Solr's default behavior when a Schema does not explicitly define a global is now dependent on<similarity/>
the specified in the . When , anluceneMatchVersion solrconfig.xml luceneMatchVersion < 6.0
instance of will be used, otherwise an instance ofClassicSimilarityFactory SchemaSimlarityFactor

 will be used. Most notably this change means that users can take advantage of per Field Type similarityy
declarations, with out needing to also explicitly declare a global usage of .SchemaSimlarityFactory

Regardless of whether it is explicitly declared, or used as an implicit global default, SchemaSimlarityFactory
's implicit behavior when a Field Types do not declare an explicit has also been changed to<similarity />
depend on the the . When , an instance of luceneMatchVersion luceneMatchVersion < 6.0 ClassicSi

 will be used, otherwise an instance of will be used. A milarity BM25Simlarity defaultSimFromFieldTy
 init option may be specified on the declaration to change this behavior. pe SchemaSimilarityFactory

Please review the for more details javadocsSchemaSimlarityFactory

Replica & Shard Delete Command Changes

The now default to deleting the instance directory, data directory, andDELETESHARD and DELETEREPLICA

https://cwiki.apache.org/confluence/display/solr/Other+Parsers#OtherParsers-GraphQueryParser

691Apache Solr Reference Guide 6.1

index directory for any replica they delete. Please review the documentation for details on newCollection API
request parameters to prevent this behavior if you wish to keep all data on disk when using these commands

facet.date.* Parameters Removed

The parameter (and associated parameters) that were deprecated in Solr 3.xfacet.date facet.date.*
have been removed completely. If you have not yet switched to using the equivalent functionalityfacet.range
you must do so now before upgrading.

692Apache Solr Reference Guide 6.1

1.

2.

3.

4.

5.

6.
7.

Upgrading a Solr Cluster
This page covers how to upgrade an existing Solr cluster that was installed using the . service installation scripts

Planning Your Upgrade
Upgrade Process

Step 1: Stop Solr
Step 2: Install Solr as a Service
Step 3: Set Environment Variable Overrides
Step 4: Start Solr
Step 5: Run Healthcheck

Planning Your Upgrade

Here is a checklist of things you need to prepare before starting the upgrade process:

Examine the page to determine if any behavior changes in the new version of Solr willUpgrading Solr
affect your installation.
If not using replication (ie: collections with replicationFactor > 1), then you should make a backup of each
collection. If all of your collections use replication, then you don't technically need to make a backup since
you will be upgrading and verifying each node individually.
Determine which Solr node is currently hosting the Overseer leader process in SolrCloud, as you should
upgrade this node last. To determine the Overseer, use the Overseer Status API, see: .Collections API
Plan to perform your upgrade during a system maintenance window if possible. You'll be doing a rolling
restart of your cluster (each node, one-by-one), but we still recommend doing the upgrade when system
usage is minimal.
Verify the cluster is currently healthy and all replicas are active, as you should not perform an upgrade on
a degraded cluster.
Re-build and test all custom server-side components against the new Solr JAR files.
Determine the values of the following variables that are used by the Solr start scripts:

ZK_HOST: The ZooKeeper connection string your current SolrCloud nodes use to connect to
ZooKeeper; this value will be the same for all nodes in the cluster.
SOLR_HOST: The hostname each Solr node used to register with ZooKeeper when joining the
SolrCloud cluster; this value will be used to set the Java system property when starting thehost
new Solr process.
SOLR_PORT: The port each Solr node is listening on, such as 8983.
SOLR_HOME: The absolute path to the Solr home directory for each Solr node; this directory must
contain a file. This value will be passed to the new Solr process using the solr.xml solr.solr.

 system property, see: .home Solr Cores and solr.xml
If you are upgrading from an installation of Solr 5.x or later, these values can typically be found in either /

 or .var/solr/solr.in.sh /etc/default/solr.in.sh

You should now be ready to upgrade your cluster. Please verify this process in a test / staging cluster before
doing it in production.

Upgrade Process

The approach we recommend is to perform the upgrade of each Solr node, one-by-one. In other words, you will

The steps outlined on this page assume you use the default service name of " ". If you use ansolr
alternate service name or Solr installation directory, some of the paths and commands mentioned below
will have to be modified accordingly.

693Apache Solr Reference Guide 6.1

need to stop a node, upgrade it to the new version of Solr, and restart it before moving on to the next node. This
means that for a short period of time, there will be a mix of "Old Solr" and "New Solr" nodes running in your
cluster. We also assume that you will point the new Solr node to your existing Solr home directory where the
Lucene index files are managed for each collection on the node. This means that you won't need to move any
index files around to perform the upgrade.

Step 1: Stop Solr

Begin by stopping the Solr node you want to upgrade. After stopping the node, if using a replication, (ie:
collections with replicationFactor > 1) verify that all leaders hosted on the downed node have successfully
migrated to other replicas; you can do this by visiting the . If not usingCloud panel in the Solr Admin UI
replication, then any collections with shards hosted on the downed node will be temporarily off-line.

Step 2: Install Solr as a Service

Please follow the instructions to install Solr as a Service on Linux documented at . AfterTaking Solr to Production
running the install script, the new Solr node will be running, so please stop it by doing: sudo service solr

. You need to update the include file in the next step to complete thestop /etc/default/solr.in.sh
upgrade process.

Step 3: Set Environment Variable Overrides

Open with a text editor and verify that the following variables are set correctly, or/etc/default/solr.in.sh
add them bottom of the include file as needed:

ZK_HOST=
SOLR_HOST=
SOLR_PORT=
SOLR_HOME=

Make sure the user you plan to own the Solr process is the owner of the directory. For instance, ifSOLR_HOME
you plan to run Solr as the "solr" user and is , then you would do: SOLR_HOME /var/solr/data sudo chown
-R solr: /var/solr/data

Step 4: Start Solr

You are now ready to start the upgraded Solr node by doing: . The upgradedsudo service solr start
instance will join the existing cluster because you're using the same , , and SOLR_HOME SOLR_PORT SOLR_HOST
settings used by the old Solr node; thus, the new server will look like the old node to the running cluster. Be sure
to look in for errors during startup./var/solr/logs/solr.log

Step 5: Run Healthcheck

You should run the Solr command for all collections that are hosted on the upgraded node beforehealthcheck

If you have a file for your existing Solr install, running the /var/solr/solr.in.sh install_solr_s
 script will move this file to it's new location: (see ervice.sh /etc/default/solr.in.sh SOLR-8101

for more details)

https://issues.apache.org/jira/browse/SOLR-8101

694Apache Solr Reference Guide 6.1

proceeding to upgrade the next node in your cluster. For instance, if the newly upgraded node hosts a replica for
the collection, then you can run the following command (replace ZK_HOST with the ZooKeeperMyDocuments
connection string):

$ /opt/solr/bin/solr healthcheck -c MyDocuments -z ZK_HOST

Look for any problems reported about any of the replicas for the collection.

Lastly, repeat Steps 1-5 for all nodes in your cluster.

IndexUpgrader Tool
The Lucene distribution includes an index from previous Lucene versions to the current filea tool that upgrades
format.

The tool can be used from command line, or it can be instantiated and executed in Java.

In a Solr distribution, the Lucene files are located in . You./server/solr-webapp/webapp/WEB-INF/lib
will need to include the and lucene-core-<version>.jar lucene-backwards-codecs-<version>.jar
 on the classpath when running the tool.

java -cp lucene-core-6.0.0.jar:lucene-backward-codecs-6.0.0.jar
org.apache.lucene.index.IndexUpgrader [-delete-prior-commits] [-verbose]
/path/to/index

This tool keeps only the last commit in an index. For this reason, if the incoming index has more than one
commit, the tool refuses to run by default. Specify to override this, allowing the-delete-prior-commits

tool to delete all but the last commit.

Upgrading large indexes may take a long time. As a rule of thumb, the upgrade processes about 1 GB per
minute.

This tool may reorder documents if the index was partially upgraded before execution (e.g., documents
were added). If your application relies on monotonicity of document IDs (which means that the order in
which the documents were added to the index is preserved), do a full forceMerge instead.

http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/index/IndexUpgrader.html

695Apache Solr Reference Guide 6.1

Further Assistance
There is a very active user community around Solr and Lucene. The solr-user mailing list, and #solr IRC channel
are both great resources for asking questions.

To view the mailing list archives, subscribe to the list, or join the IRC channel, please see https://lucene.apache.o
.rg/solr/resources#community

https://lucene.apache.org/solr/resources#community
https://lucene.apache.org/solr/resources#community

696Apache Solr Reference Guide 6.1

Solr Glossary
Where possible, terms are linked to relevant parts of the Solr Reference Guide for more information.

Jump to a letter:

A G H J K P U V X Y B C D E F I L M N O Q R S T W Z

A

Atomic updates

An approach to updating only one or more fields of a document, instead of reindexing the entire document.

B

Boolean operators

These control the inclusion or exclusion of keywords in a query by using operators such as AND, OR, and NOT.

C

Cluster

In Solr, a cluster is a set of Solr nodes operating in coordination with each other via , and managed asZooKeeper
a unit. A cluster may contain many collections. See also .SolrCloud

Collection

In Solr, one or more grouped together in a single logical index using a single configuration andDocuments
Schema. In a collection may be divided up into multiple logical shards, which may in turn beSolrCloud
distributed across many nodes, or in a Single node Solr installation, a collection may be a single .Core

Commit

To make document changes permanent in the index. In the case of added documents, they would be searchable
after a .commit

Core

An individual Solr instance (represents a logical index). Multiple cores can run on a single node. See also SolrClo
.ud

Core reload

To re-initialize a Solr core after changes to , or other configuration files.schema.xml solrconfig.xml

D

Distributed search

Distributed search is one where queries are processed across more than one .shard

https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents#UpdatingPartsofDocuments-AtomicUpdates

697Apache Solr Reference Guide 6.1

Document

A group of and their values. Documents are the basic unit of data in a . Documents are assignedfields collection
to using standard hashing, or by specifically assigning a shard within the document ID. Documents areshards
versioned after each write operation.

E

Ensemble

A term to indicate multiple ZooKeeper instances running simultaneously and in coordination withZooKeeper
each other for fault tolerance.

F

Facet

The arrangement of search results into categories based on indexed terms.

Field

The content to be indexed/searched along with metadata defining how the content should be processed by Solr.

I

Inverse document frequency (IDF)

A measure of the general importance of a term. It is calculated as the number of total Documents divided by the
number of Documents that a particular word occurs in the collection. See and http://en.wikipedia.org/wiki/Tf-idf th

 for more info on TF-IDF based scoring and Lucene scoring in particular. Seee Lucene TFIDFSimilarity javadocs
also .#Term frequency

Inverted index

A way of creating a searchable index that lists every word and the documents that contain those words, similar to
an index in the back of a book which lists words and the pages on which they can be found. When performing
keyword searches, this method is considered more efficient than the alternative, which would be to create a list
of documents paired with every word used in each document. Since users search using terms they expect to be
in documents, finding the term before the document saves processing resources and time.

L

Leader

A single for each that takes charge of coordinating index updates (document additions orReplica Shard
deletions) to other replicas in the same shard. This is a transient responsibility assigned to a node via an
election, if the current Shard Leader goes down, a new node will automatically be elected to take it's place. See
also .SolrCloud

M

Metadata

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

698Apache Solr Reference Guide 6.1

Literally, . Metadata is information about a document, such as it's title, author, or location.data about data

N

Natural language query

A search that is entered as a user would normally speak or write, as in, "What is aspirin?"

Node

A JVM instance running Solr. Also known as a Solr server.

O

Optimistic concurrency

Also known as "optimistic locking", this is an approach that allows for updates to documents currently in the
index while retaining locking or version control.

Overseer

A single node in that is responsible for processing and coordinating actions involving the entire cluster.SolrCloud
It keeps track of the state of existing nodes, collections, shards, and replicas, and assigns new replicas to nodes.
This is a transient responsibility assigned to a node via an election, if the current Overseer goes down, a new
node will be automatically elected to take it's place. See also .SolrCloud

Q

Query parser

A query parser processes the terms entered by a user.

R

Recall

The ability of a search engine to retrieve of the possible matches to a user's query.all

Relevance

The appropriateness of a document to the search conducted by the user.

Replica

A that acts as a physical copy of a in a .Core Shard SolrCloud Collection

Replication

A method of copying a master index from one server to one or more "slave" or "child" servers.

RequestHandler

Logic and configuration parameters that tell Solr how to handle incoming "requests", whether the requests are to
return search results, to index documents, or to handle other custom situations.

https://cwiki.apache.org/confluence/display/solr/Updating+Parts+of+Documents#UpdatingPartsofDocuments-OptimisticConcurrency

699Apache Solr Reference Guide 6.1

S

SearchComponent

Logic and configuration parameters used by request handlers to process query requests. Examples of search
components include faceting, highlighting, and "more like this" functionality.

Shard

In SolrCloud, a logical partition of a single . Every shard consists of at least one physical , butCollection Replica
there may be multiple Replicas distributed across multiple for fault tolerance. See also .Nodes SolrCloud

SolrCloud

Umbrella term for a suite of functionality in Solr which allows managing a of Solr for scalability,Cluster Nodes
fault tolerance, and high availability.

Solr Schema (managed-schema or schema.xml)

The Solr index Schema defines the fields to be indexed and the type for the field (text, integers, etc.) By default
schema data can be "managed" at run time using the and is typically kept in a file named Schema API managed

 which Solr modifies as needed, but a collection may be configured to use a static Schema, which is-schema
only loaded on startup from a human edited configuration file - typically named . See schema.xml Schema

 for details.Factory Definition in SolrConfig

SolrConfig (solrconfig.xml)

The Apache Solr configuration file. Defines indexing options, RequestHandlers, highlighting, spellchecking and
various other configurations. The file, solrconfig.xml is located in the Solr home conf directory.

Spell Check

The ability to suggest alternative spellings of search terms to a user, as a check against spelling errors causing
few or zero results.

Stopwords

Generally, words that have little meaning to a user's search but which may have been entered as part of a natura
 query. Stopwords are generally very small pronouns, conjunctions and prepositions (such as, "the",l language

"with", or "and")

Suggester

Functionality in Solr that provides the ability to suggest possible query terms to users as they type.

Synonyms

Synonyms generally are terms which are near to each other in meaning and may substitute for one another. In a
search engine implementation, synonyms may be abbreviations as well as words, or terms that are not
consistently hyphenated. Examples of synonyms in this context would be "Inc." and "Incorporated" or "iPod" and
"i-pod".

T

Term frequency

The number of times a word occurs in a given document. See and http://en.wikipedia.org/wiki/Tf-idf the Lucene
 for more info on TF-IDF based scoring and Lucene scoring in particular.TFIDFSimilarity javadocs

http://en.wikipedia.org/wiki/Tf-idf
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html
http://lucene.apache.org/core/6_1_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

700Apache Solr Reference Guide 6.1

See also .#Inverse document frequency (IDF)

Transaction log

An append-only log of write operations maintained by each . This log is required with SolrCloudReplica
implementations and is created and managed automatically by Solr.

W

Wildcard

A wildcard allows a substitution of one or more letters of a word to account for possible variations in spelling or
tenses.

Z

ZooKeeper

Also known as . The system used by SolrCloud to keep track of configuration files and nodeApache ZooKeeper
names for a cluster. A ZooKeeper cluster is used as the central configuration store for the cluster, a coordinator
for operations requiring distributed synchronization, and the system of record for cluster topology. See also SolrC

.loud

http://zookeeper.apache.org/

	Apache Solr Reference Guide
	About This Guide
	Getting Started
	Installing Solr
	Running Solr
	A Quick Overview
	A Step Closer
	Solr Start Script Reference

	Upgrading Solr
	Using the Solr Administration User Interface
	Overview of the Solr Admin UI
	Getting Assistance
	Logging
	Cloud Screens
	Collections / Core Admin
	Java Properties
	Thread Dump
	Collection-Specific Tools
	Analysis Screen
	Dataimport Screen
	Documents Screen
	Files Screen
	Query Screen
	Stream Screen
	Schema Browser Screen

	Core-Specific Tools
	Ping
	Plugins & Stats Screen
	Replication Screen
	Segments Info

	Documents, Fields, and Schema Design
	Overview of Documents, Fields, and Schema Design
	Solr Field Types
	Field Type Definitions and Properties
	Field Types Included with Solr
	Working with Currencies and Exchange Rates
	Working with Dates
	Working with Enum Fields
	Working with External Files and Processes
	Field Properties by Use Case

	Defining Fields
	Copying Fields
	Dynamic Fields
	Other Schema Elements
	Schema API
	Putting the Pieces Together
	DocValues
	Schemaless Mode

	Understanding Analyzers, Tokenizers, and Filters
	Analyzers
	About Tokenizers
	About Filters
	Tokenizers
	Filter Descriptions
	CharFilterFactories
	Language Analysis
	Phonetic Matching
	Running Your Analyzer

	Indexing and Basic Data Operations
	Introduction to Solr Indexing
	Post Tool
	Uploading Data with Index Handlers
	Uploading Data with Solr Cell using Apache Tika
	Uploading Structured Data Store Data with the Data Import Handler
	Updating Parts of Documents
	Detecting Languages During Indexing
	De-Duplication
	Content Streams
	UIMA Integration

	Searching
	Overview of Searching in Solr
	Velocity Search UI
	Relevance
	Query Syntax and Parsing
	Common Query Parameters
	The Standard Query Parser
	The DisMax Query Parser
	The Extended DisMax Query Parser
	Function Queries
	Local Parameters in Queries
	Other Parsers

	Faceting
	BlockJoin Faceting

	Highlighting
	Standard Highlighter
	FastVector Highlighter
	Postings Highlighter

	Spell Checking
	Query Re-Ranking
	Transforming Result Documents
	Suggester
	MoreLikeThis
	Pagination of Results
	Result Grouping
	Collapse and Expand Results
	Result Clustering
	Spatial Search
	The Terms Component
	The Term Vector Component
	The Stats Component
	The Query Elevation Component
	Response Writers
	Velocity Response Writer

	Near Real Time Searching
	RealTime Get
	Exporting Result Sets
	Streaming Expressions
	Graph Traversal

	Parallel SQL Interface
	Solr JDBC - DbVisualizer
	Solr JDBC - SQuirreL SQL
	Solr JDBC - Apache Zeppelin

	The Well-Configured Solr Instance
	Configuring solrconfig.xml
	DataDir and DirectoryFactory in SolrConfig
	Lib Directives in SolrConfig
	Schema Factory Definition in SolrConfig
	IndexConfig in SolrConfig
	RequestHandlers and SearchComponents in SolrConfig
	InitParams in SolrConfig
	UpdateHandlers in SolrConfig
	Query Settings in SolrConfig
	RequestDispatcher in SolrConfig
	Update Request Processors
	Codec Factory

	Solr Cores and solr.xml
	Format of solr.xml
	Defining core.properties
	CoreAdmin API
	Config Sets

	Configuration APIs
	Blob Store API
	Config API
	Request Parameters API
	Managed Resources

	Solr Plugins
	Adding Custom Plugins in SolrCloud Mode

	JVM Settings

	Managing Solr
	Taking Solr to Production
	Securing Solr
	Authentication and Authorization Plugins
	Basic Authentication Plugin
	Kerberos Authentication Plugin
	Rule-Based Authorization Plugin

	Enabling SSL

	Running Solr on HDFS
	Making and Restoring Backups
	Configuring Logging
	Using JMX with Solr
	MBean Request Handler

	SolrCloud
	Getting Started with SolrCloud
	How SolrCloud Works
	Shards and Indexing Data in SolrCloud
	Distributed Requests
	Read and Write Side Fault Tolerance

	SolrCloud Configuration and Parameters
	Setting Up an External ZooKeeper Ensemble
	Using ZooKeeper to Manage Configuration Files
	ZooKeeper Access Control
	Collections API
	Parameter Reference
	Command Line Utilities
	SolrCloud with Legacy Configuration Files
	ConfigSets API

	Rule-based Replica Placement
	Cross Data Center Replication (CDCR)

	Legacy Scaling and Distribution
	Introduction to Scaling and Distribution
	Distributed Search with Index Sharding
	Index Replication
	Combining Distribution and Replication
	Merging Indexes

	Client APIs
	Introduction to Client APIs
	Choosing an Output Format
	Client API Lineup
	Using JavaScript
	Using Python
	Using SolrJ
	Using Solr From Ruby

	Major Changes from Solr 5 to Solr 6
	Upgrading a Solr Cluster
	IndexUpgrader Tool

	Further Assistance
	Solr Glossary

